
Interpolation

Introduction

1. For analyzing functions f(x) , say finding minima, we use a
fundamental assumption that we can obtain f(x) when we want it,
regardless of x. There are many contexts in which this assumption is
unrealistics.

2. We need a model for interpolating f(x) to all of Rn given a collection
of samples f(xi)

3. We seek for the interpolated function (also denoted as f(x)) to be
smooth and serve as a reasonable prediction of function values.

4. We will design methods for interpolating functions of single variable,
using the set of polynomials.



Interpolation

Polynomial representation in a basis:

f(x) = a1φ1(x) + a2φ2(x) + · · ·+ akφk(x)

where {φ1(x), φ2(x), . . . , φk(x)} is a basis:

1. Monomial basis:
φi(x) = xi−1
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2. Lagrange basis

φi(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

where {x1, x2, . . . , xk} are prescribed distinct points.
Note that

φi(x`) =

{
1 when ` = i
0 otherwise

1
φ1 φ2 φ3 φ4
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3. Newton basis

φi(x) =

i−1∏
j=1

(x− xj) with φ1(x) ≡ 1,

where {x1, x2, . . . , xk} are prescribed distinct points.
Note that

φi(x`) = 0 for all ` < i.
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Interpolation

Polynomial interpolation:

Given a set of k points (xi, yi), with the assumption xi 6= xj .
Find a polynomial f(x) of degree k − 1 such that f(xi) = yi.
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1. Interpolating polynomial in monomial basis

f(x) = a1 + a2x+ a3x
2 + · · ·+ akx

k−1

where a1, a2, . . . , ak are determined by the Vandermonde linear
system: 

1 x1 x21 · · · xk−11

1 x2 x22 · · · xk−12
...

...
...

...
...

1 xk x2k · · · xk−1k



a1
a2
...
ak

 =


y1
y2
...
yk


2. Interpolating polynomial in Lagrange basis

f(x) = y1φ1(x) + y2φ2(x) + · · ·+ ykφk(x)
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3. Interpolating polynomial in Newton basis

f(x) = a1φ1(x) + a2φ2(x) + · · ·+ akφk(x)

where a1, a2, . . . , ak are determined by the following triangular
systems: 

1
1 φ2(x2)
...

...
. . .

1 φ2(xk) · · · φk(xk)



a1
a2
...
ak

 =


y1
y2
...
yk


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Remarks

1. The Verdermonde system could be poor conditioned and unstable.

2. Computing f(x) in Lagrange basis takes O(k2) time, constrastingly,
computing f(x) in monomial basis takes only O(k) by Horner’s rule.

3. f(x) in Newton basis attempts to compromise between the numerical
quality of the monomial basis and the efficiency of the Lagrange basis.

Examples

I interpeg1.m

I interpeg2.m

I interpeg3.m



Piecewise interpolation

1. So far, we have constructed interpolation bases defined on all of R.

2. When the number k of data points becomes large, many degeneracies
apparent. Mostly noticble, the polynomial interpolation is nonlocal,
changing any single value yi can change the behavior of f(x) for all x,
even those that are far away from xi. This property is undersiable
from most applications.

3. A solution to avoid such drawback is to design a set of base functions
φi(x) of the property of compact support:

A function g(x) has compact support if there exists a
constant c ∈ R such that g(x) = 0 for any x with ‖x‖2 > c.

4. Piecewise formulas provide one technique for constructing
interpolatory bases with compact support.



Piecewise interpolation

Piecewise constant interpolation:

1. Order the data points such that x1 < x2 < · · · < xk

2. For i = 1, 2, . . . , k, define the basis

φi(x) =

{
1 when xi−1+xi

2 ≤ x < xi+xi+1

2
0 otherwise

3. Piecewise constant interpolation

f(x) =

k∑
i=1

yiφi(x)

4. discontinuous!



Piecewise interpolation

Piecewise linear interpolation:

1. Order the data points such that x1 < x2 < · · · < xk

2. Define the basis (”hat functions”)

φi(x) =


x−xi−1

xi−xi−1
when xi−1 < x ≤ xi

xi+1−x
xi+1−xi

when xi < x ≤ xi+1

0 otherwise

for i = 2, . . . , k − 1 with the boundary “half-hat” basis φ1(x) and
φk(x).

3. Piecewise linear interpolation

f(x) =

k∑
i=1

yiφi(x)

4. Continuous, but non-smooth.

5. Smooth piecewise high-degree polynomial interpolation – “splines”



Piecewise interpolation

Piecewise constant Piecewise linear
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Theory of interpolation

1. Linear algebra of functions

2. Error bound of piecewise interpolations



Theory of interpolation

Linear algebra of functions

1. There are other bases (beyond monomials, Lagranges and Newtons)
for the set of functions f .

2. Inner product of functions f and g:

〈f, g〉w =

∫ b

a

w(x)f(x)g(x)dx

and
‖f‖ =

√
〈f, f〉w

where w(x) is a given positive (weighting) function.
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3. Lagendre polynomials

Let a = −1, b = 1 and w(x) = 1, applying Gram-Schmidt
process to the monomial basis {1, x, x2, x3, . . .}, we generate
the Lagendre basis of polynomials:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x), . . .

where {Pi(x)} are orthogonal.



Theory of interpolation

4. An application of Lagendre polynomials:
Least squares function approximation (not interpolation)

min
ai

‖f −
n∑

i=1

aiPi(x)‖ = ‖f −
n∑

i=1

a∗iPi(x)‖

where

a∗i =
〈f, Pi〉
〈Pi, Pi〉

.

Note that we need intergration here, numerical integration to be
covered later.
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5. Chebyshev polynomials

Let a = −1, b = 1 and w(x) = 1√
1−x2

, applying

Gram-Schmidt process to the monomial basis
{1, x, x2, x3, . . .}, we generate the Chebyshev basis of
polynomials:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x, . . .

where {Ti(x)} are orthogonal.
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6. Surprising properties of Chebyshev polynomials

(a) Three-term recurrence

Tk+1 = 2xTk(x)− Tk−1(x)

with T0(x) = 1 and T1(x) = x.
(b) Tk(x) = cos(k arccos(x))

I ...

7. Chebyshev polynomials play important role in modern numerical
algorithms for solving very large scale linear systems and eigenvalue
and singular value problems!
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Error bound of piecewise interpolations

1. Consider the approximation of a function f(x) with a polynomial of
degree n on an interval [a, b]. Define ∆ = b− a

2. Piecewise constant interpolation
If we approximate f(x) with a constant c = f(a+b

2 ), as in piecewise
constant interpolation, and assume that |f ′(x)| ≤M for all x ∈ [a, b],
then

max
x∈[a,b]

|f(x)− c| ≤M∆x = O(∆x)



Theory of interpolation

3. Piecewise linear interpolation
Approximate f(x) with

f̃(x) = f(a)
b− x
b− a

+ f(b)
x− a
b− a

.

By the Taylor series

f(a) = f(x) + (a− x)f ′(x) + · · ·
f(b) = f(x) + (b− x)f ′(x) + · · ·

we have

f̃(x) = f(x) +
1

2
(x− a)(x− b)f ′′(x) +O((∆x)3).

Therefore, the error = O(∆x2) assuming f ′′(x) is bounded. Note that
|x− a| |x− b| ≤ 1

2 (∆x)
2.


