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I. Notion of a graph

1. A (undirected) graph G = (V,E) consists of V , a nonempty set of vertices (or nodes) and
E, a set of unordered pairs of elements of V called edges.

Each edge has either one or two vertices associated with it, called its endpoints. The edge
e = {u, v} is called incident with the vertices u and v.

Two vertices u and v in G are called adjacent if {u, v} is an edge of G.

The degree deg(v) of a vertex v is the number of edges incident with it. (note: a loop at a
vertex contributes twice to the degree of that vertex.)

2. A graph in which each edge connects two different vertices and where no two edges connect
the same pair of vertices is called simple graph. Graphs that may have multiple edges
connecting the same vertices are called multigraphs.

3. The handshaking theorem. Let G = (V,E) be a graph, then

2 · n(E) =
∑
v∈V

deg(v).

Note that this applies even if multiple edges and loops are present.

Question: How many edges are there in a graph with 10 vertices and each of degree 6?

4. Graph representations

• By a picture

• By an adjacency list.

• Using an adjacency matrix: Suppose that a simple graph G = (V,E) with n vertices
{v1, v2, . . . , vn}. The adjacency matrix A = (aij) is the n× n zero-one matrix,

aij =

{
1 if {vi, vj} is an edge of G,
0 otherwise.

Note that A is symmetric.
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• Using an incidence matrix: Suppose that a simple graph G = (V,E) with n vertices
{v1, v2, . . . , vn} and m edges e1, e2, . . . , em. The incidence matrix is an n × m matrix
B = (bij), where

bij =

{
1 when edge ej is incident with vi,
0 otherwise.

5. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E.

6. The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2), denoted as G1 ∪G2, is the
simple graph with vertex set V1 ∪ V2 and edges E1 ∪ E2.

7. Graph isomorphism

• Two simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is an
one-to-one and onto function f from V1 to V2 with the property that a and b in G1 are
adjacent if and only if f(a) and f(b) are adjacent in G2 for all a and b in V1. Such a
function f is called an isomorphism.

In other words, when two simple graphs are isomorphic, there is one-to-one correspon-
dence between vertices of the two graphs that preserves the adjacency relationship.

• Theorem: Simple graphs G1 and G2 are isomorphic if and only if for some orderings
of their vertices, their adjacency matrices are equal.

• There is no efficient algorithm known to decide whether two simple graphs are isomor-
phic. There are n! possible one-to-one correspondences. Most computer scientists believe
that no such algorithm exists.

• To show that two simple graphs are not isomorphic, we can show that they do not share
an invariant property that isomorphic simple graphs must both have, such as the same
number of vertices, edges, and degrees.

II. Special types of graphs

1. Complete graph Kn on n vertices: a simple graph that contains exactly one edge between
each pair of distinct vertices.

Examples: K1, K2, K3, K4, K5

2. Cycle Cn with n ≥ 3: consists of n vertices v1, v2, . . . , vn and edges {v1, v2}, {v2, v3}, ...,
{vn−1, vn}, {vn, v1}.
Examples: C3, C4, C5

3. Wheel Wn with n ≥ 3: add an additional vertex to the cycle Cn and connect this new vertex
to each of the n vertices in Cn by new edges.

Examples: W3, W4, W5

4. n-cube Qn: has vertices representing the 2n bit strings of length n. Two vertices are adjacent
if and only if the bit strings that they represent differ one bit position.

Examples: Q1, Q2, Q3
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5. Bipartite graph: a simple graph G is called bipartite if its vertex set V can be partitioned
into two disjoint nonempty sets V1 and V2 such that every edge connects a vertex in V1 and
a vertex in V2 (so that no edge in G connects either two vertices in V1 or two vertices in V2).

Theorem: A simple graph is bipartite if and only if it is possible to assign one of two different
colors to each vertex of the graph so that no two adjacent vertices are assigned the same
color.

6. Complete bipartite graph Km,n: each vertex of V1 of m vertices is connected to each
vertex of V2 of n vertices.

Examples: K2,3, K3,3.

III. Connectivity

1. A path of length n from v0 to vn in a graph G = (V,E), where V = {vi} and E = { ei =
{vi, vj} }, is an alternating sequence of n + 1 vertices and n edges beginning with v0 and
ending with vn:

(v0, e1, v1, e2, v2, . . . , vn−1, en, vn),

where the edge ei is incident with vi−1 and vi. When the graph is simple, we denote this path
by its vertex sequence v0, v1, v2, . . . , vn−1, vn.

2. The path is a cycle (or circuit) if it begins and ends at the same vertex. A path or cycle is
simple if it does not contain the same edge more than once.

3. A graph is called connected if there is a path between every pair of distinct vertices of the
graph.

4. Counting paths between vertices

Theorem: let G be a graph with adjacency matrix A with respect to the ordering v1, v2, . . . , vn.
The number of different paths of length k from vi to vj equals to the (i, j) entry of Ak.

Proof: The theorem can be proven using mathematical induction. Let G be a graph with the
adjacency matrix A. Basis step: the number of paths from vi and vj of length 1 is the (i, j)th
entry of A, because this entry is the number of edges from vi to vj .

Inductive step: Assume that the (i, j)th entry of Ak is the number of different paths of length
k from vi to vj . (This is the induction hypothesis.)

Because Ak+1 = AkA, the (i, j)th entry of Ak+1 is bi1a1j + bi2a2j + · · · + binan,j , where bik
is the (i, k)th entry of Ak. By the induction hypothesis, bik is the number of paths of length
k from vi to vk. Next, we know that a path of length k + 1 from vi to vj is made up of a
path of length k from vi to some intermediate vertex vk, plus an edge from vk to vj . By the
product rule for counting, the number of such paths is the product of the number of paths
of the length k from vi to vk, namely bik, and the number of edges from vk to vj , namely
akj . When these products are added for all possible intermediate vertices, the desired results
follows by the sum rule for counting.

By the principle of mathematical induction, the theorem is proven. 2

5. An Eulerian path (cycle) in G is a path (cycle) containing every edge of G exactly once.

Theorem. A connected graph has an Euler cycle if and only if each of its vertices has even
degree.
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Proof. “⇒”: Suppose G has an Eulerian cycle T . For any vertex v of G, T enters and leaves
v the same number of times without repeating any edge. Hence v has even degree.

“⇐: We use the proof by construction. Suppose that each vertex of G has even degree. Let
us construct an Eulerian cycle. We begin a path T1 at any edge e. We extend T1 by adding
one edge after the other. If T1 is not closed at any step, say T1 begins at u and ends at v 6= u,
then only an odd number of the edges incident on v appear in T1. Hence we can extend T1 by
another edge incident on v. Thus we can continue to extend T1 until T1 returns to its initial
vertex u, i.e., until T1 is closed.

If T1 includes all the edges of G, then T1 is our Euler cycle. If T1 does not include all the
edges of G. Consider the graph H obtained by deleting all edges of T1 from G. H may not
be connected, but each vertex of H has even degree since T1 contains an even number of
the edges incident on any vertex. Since G is connected, there is an edge e′ of H which has
an endpoint u′ in T1. We construct a path T2 in H beginning at u′ and using e′. Since all
vertices in H have even degree, we can continue to extend T2 in H until T2 returns to u′. We
can clearly put T1 and T2 together to form a larger closed path in G. We can continue this
process until all edges of G are used, and obtained an Eulerian cycle, and so G is Eulerian. 2

Theorem. A connected graph has an Euler path but not an Euler cycle if and only if it has
exactly two vertices of odd degree.

Example: use Eulerian paths and cycles to solve the graph puzzles that ask you to draw a
picture in a continuous motion without lifting a pencil so that no parts of the pictures is
retraced.

6. A Hamiltonian path (cycle) in G is a path (cycle) that containing every vertex of G
exactly once.

Example (traveling salesperson problem): is there a simple cycle contains every vertex exactly
once?

Although it is clear that only connected graphs can be Hamiltonian, there is no simple criterion
to tell us whether or not a graph is Hamiltonian as there is for Eulerian graphs. We have the
following sufficient condition.

Dirac’s Theorem. Let G be a simple graph with n vertices and n ≥ 3 such that the degree
of every vertex in G is at least n/2, then G has a Hamilton cycle.

Amazing fact: there are no known efficient algorithms to decide if a graph is Hamiltonian.
Most computer scientists believe that no such algorithm exists.

IV. Planar graphs

1. A graph is called planar if it can be drawn in the plane without any edges crossing. Such a
drawing is called a planar representation of graph.

Questions: (a) Is K4 planar? (b) Is Q3 planar? (c) Is K3,3 planar?

2. A pictural representation of a planar graph splits the plane into regions (faces), including an
unbounded region.

Euler’s formula: let G be a connected planar graph with e edges and v vertices. Let r be
the number of regions in a planar representation of G. Then v − e + r = 2.
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Proof. Suppose G consists of a single vertex v. Then v = 1, e = 0 and r = 1. Hence
v − e + r = 1− 0 + 1 = 2. Otherwise G can be built up from a single vertex by the following
two constructions:

(a) Add a new vertex w, and connect it to an existing vertex u by an edge e which does not
cross any existing edge.

(b) Connect two existing vertices w and v by an edge e which does not cross any existing
edge.

Neither operations changes the value of v − e + r. Hence G has the same value of v − e + r
as G consisting of a single vertex, that is, v − e + r = 2. Thus the theorem is proved. 2

3. A graph G = (V,E) is k-colorable if we can paint the vertices using “colors” {1, 2, . . . , k}
such that no adjacent vertices have the same color.

Theorem (Appel and Haken, 1976). Every planar graph is 4-coloable.

4. If a graph is planar, so will be any graph obtained by removing an edge {u, v} and adding a
new vertex {w} together with edges {u,w} and {w, v}. Such an operation called elementary
subdivision.

Two graphs G1 and G2 are called homeomporhic if they can be obtained from the same or
isomorphic graph by a sequence of elementary subdivisions.

Kuratowaski’s Theorem. A graph is nonplanar if and only if it contains a subgraph
homeomorphic to K3,3 or K5.

V. Trees

1. A tree is a connected graph with no cycles.

2. Theorem. Let G be a graph with n ≥ 1 vertices. Then the following statements are
equivalent:

(a) G is a tree.

(b) G is a cycle-free (acyclic) and has n− 1 edges

(c) G is connected and has n− 1 edges.

Proof: by mathematical induction on n. The theorem is certainly true for the graph with
only one vertex and hence no edges. That is the theorem holds for n = 1. We now assume
that n > 1 and that the theorem holds for graphs with less than n vertices.

(a) ⇒ (b): Suppose G is a tree. Then G is cycle-free, so we only need to show that G has
n− 1 edges. Since G is cycle-free, G has a vertex of degree 1. Delete this vertex and its edge,
we obtain a tree T which has n− 1 vertices. By the hypothesis, T has n− 2 edges. Then G
has n− 1 edges.

(b) ⇒ (c): Suppose G is a cycle-free (acyclic) and has n − 1 edges. We show that G is
connected. Suppose T is disconnected and has k components T1, . . . , Tk, which are trees
since each is connected and cycle-free. Say Ti has ni vertices. Note that ni < n. Hence the
theorem holds for Ti, so Ti has ni − 1 edges. Thus n = n1 + n2 + · · · + nk and n − 1 =
(n1−1) + (n2−1) + · · ·+ (nk−1) = n−k. Hence k = 1. But this contradicts the assumption
that G is disconnected and has k > 1 components. Hence G is connected.

5



(c) ⇒ (a): Suppose G is connected and has n−1 edges. We need to show that G is cyclc-free.
Suppose a cycle containing an edge e. Delete e we obtain the graph H = G− e which is also
connected. But H has n vertices and n−2 edge, and this contradicts the fact that a connected
graph with n vertices must have at least n− 1 edges. Thus G is cycle-free and hence a tree.
2

3. A rooted tree is a tree in which a particular vertex is designated as the root.

The terminology for trees has botanical and genealogical origins – parent, child, sibilings,
ancestors and descendants.

4. An rooted tree is called an m-ary tree if every internal vertex has no more than m children.

The tree is called a full m-ary tree if every internal vertex has exactly m children.

An m-ary tree with m = 2 is called a binary tree.

5. A binary search tree T is a binary tree in which data are associated with vertices. Furthermore,
the data are assigned so that for each vertex v in T , each data items in the left of v is less
than the data item in v, and each item in the right subtree of v is greater than the data item
in v.

• Construct a binary search tree T .

Example: form a binary search tree for the following words using alphabetical order:

mathematics, physics, geography, zoology, meterology, psychology, chemistry

• Searching data in a binary search tree T .

• Complexity of the worst-case adding and searching of a binary search tree: if T has n
vertices, then adding or searching a data item requires no more than dlog ne comparisons.
For example, if n = 1, 000, 000, then dlog ne = 21.
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