
ECS231 Handout
Subspace projection methods for Solving Large-Scale Eigenvalue Problems

Part I: Review of basic theory of eigenvalue problems

1. Let A ∈ Cn×n.

(a) A scalar λ is an eigenvalue of an n×n A and a nonzero vector x ∈ Cn is a corresponding
right eigenvector if

Ax = λx.

A nonzero vector y such that yHA = λyH is a left eigenvector.

(b) pA(λ)
def
= det(λI −A), a polynomial of degree n, is called characteristic polynomial of A.

(c) The set λ(A)
def
= {λ : pA(λ) = 0} is called the spectrum of A.

(d) LA,λ
def
= {x : Ax = λx} is an eigenspace of A corresponding to the eigenvalue λ.

2. The following is a list of basic properties straightforwardly from the definition

(a) λ is A’s eigenvalue ⇔ λI −A is singular ⇔ det(λI −A) = 0 ⇔ pA(λ) = 0.

(b) There is at least one eigenvector x associated with A’s eigenvalue λ; in the other word,
the dimension dim(LA,λ) ≥ 1.

(c) LA,λ is a subspace, i.e., it has the following two properties:

(1) x ∈ LA,λ ⇒ αx ∈ LA,λ for all α ∈ C.

(2) x1, x2 ∈ LA,λ ⇒ x1 + x2 ∈ LA,λ.

(d) When A ∈ Rn×n, λ is A’s eigenvalue ⇔ conjugate λ̄ is also A’s eigenvalue.

(e) A is singular ⇔ 0 is A’s eigenvalue.

(f) If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

3. A ∈ Cn×n is simple if it has n linearly independent eigenvectors; otherwise it is defective.

Examples:

(a) I and any diagonal matrices is simple. e1, e2, . . . , en are n linearly independent eigen-
vectors.

(b)

(
1 2
4 3

)
is simple. It has two different eigenvalues −1 and 5. By the fact that each

eigenvalue corresponds to at least one eigenvector, it must have 2 linearly independent
eigenvectors.

(c) If A ∈ Cn×n has n different eigenvalues, then A is simple.

(d)

(
2 1
0 2

)
is defective. It has two repeated eigenvalues 2, but only one eigenvector

e1 = (1, 0)T .

4. Let Axi = λixi for i = 1, 2, . . . k, and λi 6= λj for i 6= j. Then x1, x2, . . . , xk are linearly
independent (proof by induction)
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5. Let λ1, λ2, . . . , λn be the eigenvalues of A, and x1, x2, . . . , xn be a set of corresponding eigen-
vectors, then

AX = XΛ

where X = [x1, x2, . . . , xn] and Λ = diag(λ1, λ2, . . . , λn).

If A is simple, namely the eigenvectors are linearly independent, then X−1 exists and

A = XΛX−1.

This is known as the eigenvalue decomposition of the matrix A.

6. An invariant subspace of A is a subspace V of Cn, with the property that v ∈ V implies that
Av ∈ V. We also write this as AV ⊆ V.

Examples:

(1) The simplest, one-dimensional invariant subspace is the set span(x) of all scalar multiples
of an eigenvector x.

(2) Let x1, x2, . . . , xm be any set of independent eigenvectors with eigenvalues λ1, λ2, . . . , λm.
Then X = span({x1, x2, . . . , xm}) is an invariant subspace.

7. Let A be n-by-n, let V = [v1, v2, . . . , vm] be any n-by-m matrix with linearly independent
columns, and let V = span(V ), the m-dimensional space spanned by the columns of V . Then
V is an invariant subspace if and only if there is an m-by-m matrix B such that

AV = V B.

In this case the m eigenvalues of B are also eigenvalues of A.

8. Similarity transformations: n × n matrices A and B are similar if there is an n × n non-
singular matrix P such that B = P−1AP . We also say A is similar to B, and likewise B is
similar to A; P is a similarity transformation. A is unitarily similar to B if P is unitary.

9. Suppose that A and B are similar: B = P−1AP .

(a) A and B have the same eigenvalues. In fact pA(λ) ≡ pB(λ).

(b) Ax = λx⇒ B(P−1x) = λ(P−1x).

(c) Bw = λw ⇒ A(Pw) = λ(Pw).

10. Schur decomposition. Let A be of order n. Then there is an n×n unitary matrix U (UHU = I)
such that

A = UTUH ,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which are the
diagonal elements of T , may be made to appear in any order.

11. Real Schur Decomposition. If A is real, there is an orthogonal matrix Q such that

A = QTQT ,

where T is block triangular with 1 × 1 and 2 × 2 blocks on its diagonal. The 1 × 1 blocks
contain the real eigenvalues of A, and the eigenvalues of the 2× 2 blocks are pairs of complex
conjugate eigenvalues.
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Part II. Basic algorithms

1. The power method is based on the following simple analysis:

Assume that A is simple and has the eigenvalue decomposition

A = XΛX−1

with X = [x1, x2, . . . , xn] and Λ = diag(λ1, λ2, . . . , λn), and assume that eigenvalues λj are
ordered such that

|λ1| > |λ2| ≥ . . . ≥ |λn|.

Let u0 be a vector such that

u0 = γ1x1 + γ2x2 + · · ·+ γnxn and γ1 6= 0.

Then by simple algebraic manipulation, we can show that

(a) uj = Aju0
‖Aju0‖ → ±

x1
‖x1‖ as j →∞.

(b) θj = uHj Auj → λ1 as j →∞.

(c) |λ2||λ1| is the rate of convergence.

2. Pseudocode:

Select an initial vector u0
for j = 1, 2, . . . until convergence

w = Auj−1
uj = w/‖w‖2
θj = uHj Auj

3. Example. Let

A =

 −261 209 −49
−530 422 −98
−800 631 −144


Then λ(A) = {λ1, λ2, λ3} = {10, 4, 3}. Let u0 = e1, by the power method, we have

i 1 2 3 · · · 10

θi 994.49 13.0606 10.07191 · · · 10.0002

4. The drawback of the power method is that if |λ2||λ1| is close to 1, then the power method could
be very slow convergent or doesn’t converge at all.

5. The method of Inverse iteration has two purposes:

(a) overcome the drawbacks of the power method (slow convergence).

(b) find an eigenvalue closest to a particular given number σ, referred to as a shift).

6. Spectral transformation: if λ is an eigenvalue of A, then

(a) λ− σ is an eigenvalue of A− σI,

(b) 1
λ−σ is an eigenvalue of (A− σI)−1.

This is referred to as shift-and-invert spectral transformation.
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The following plot illustrates the transformation of eigenvalues:

1/(\lambda-\sigma)

\sigma

7. By applying the power method to the shift-and-invert eigenvalue problem

(A− σ)−1x = µx,

we derive the follow algorithm, which is referred to as the inverse iteration:

Given an initial vector u0 and a shift σ
for j = 1, 2, . . . until convergence

w = (A− σI)−1uj−1
uj = w

‖w‖2 (approximate eigenvector)

µj = uHj Auj (approximate eigenvalue)

end for
Return approximate eigenpair (θj , σ + 1

µj
)

8. Assume λk is the eigenvalue cloest to the shift σ. It can be shown that

(a) uj converges to xk/‖xk‖, where sk = Sek j →∞.

(b) θj converges to λk as j →∞.

(c) maxj 6=k
|λk−σ|
|λj−σ| is the convergence rate.

9. The advantages of inverse iteration over the power method is the ability to converge to any
desired eigenvalue (the one nearest to the shift σ). By choosing σ very close to a desired
eigenvalue, the method converges very quickly and thus not be as limited by the proximity
of nearby eigenvalues as is the power method. The method is particularly effective when we
have a good approximation to an eigenvalue and want only its corresponding eigenvector.

However, the inverse iteration is expensive in general. It requires solving (A − σI)w = jj
for u. One (sparse) LU factorization of A− σI is required, which could be very expensive in
memory requirements.
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Part III. Subspace projection method framework (Rayleigh-Ritz procedure)

1. Rayleigh-Ritz procedure is a framework of the orthogonal projection methods for solving large
scale eigenvalue problems

Let A be an n × n real matrix and K be an m-dimensional subspace of Rn. An orthogonal
projection technique seeks an approximate eigenpair

(λ̃, ũ) with λ̃ ∈ C and ũ ∈ K.

by imposing the following so-called Galerkin condition:

Aũ− λ̃ũ ⊥ K , (1)

or, equivalently,
vT (Aũ− λ̃ũ) = 0, ∀ v ∈ K. (2)

2. To translate into a matrix problem, assume that an orthonormal basis {v1, v2, . . . , vm} of K
is available. Denote V = [v1, v2, . . . , vm], and let ũ = V y. Then, equation (2) becomes

V T (AV y − λ̃V y) = 0

Therefore, y and λ̃ must satisfy the following reduced eigenvalue problem:

Bmy = λ̃y (3)

with Bm = V HAV . The eigenvalues λ̃i of Bm are called Ritz value values, and the vectors
V yi are called Ritz vector.

3. This procedure is known as the Rayleigh-Ritz procedure:

(a) Compute an orthonormal basis {vi}i=1:m of the subspace K.

(b) Compute Bm = V TAV , where V = [v1, v2, . . . , vm].

(c) Compute the eigenvalues of Bm and select the k desired ones λ̃i, i = 1 : k,
where k ≤ m.

(d) Compute the eigenvectors yi of Bm associated with λ̃i.

(e) return (λi, ũi = V yi) as approximate eigenvectors of A.

The numerical solution of the m×m eigenvalue problem in steps (c) and (d) can be treated by
standard algorithms for solving small dense eigenvalue problems. An important note is that
in step (d) one can replace eigenvectors by Schur vectors to get approximate Schur vectors
ũi instead of approximate eigenvectors. Schur vectors yi can be obtained in a numerically
stable way and, in general, eigenvectors are more sensitive to rounding errors than are Schur
vectors.

4. Further reading

Here we provide a justification that the Ritz values and Ritz vectors are optimal approxima-
tions of eigenvalues and eigenvectors of a symmetrix matrix.

Consider the case where A is real and symmetric. Let Q = [Qk, Qu] be any n-by-n orthogonal
matrix, where Qk is n-by-k, and Qu is n-by-(n − k). In practice, the column of Qk will be
computed by the Lanczos algorithm and span a Krylov subspace (to be discussed in Part IV
of this handout). But for now, we do not care where we get Q. Let

T = QTAQ = [Qk, Qu]TA[Qk, Qu] =

[
QTkAQk QTkAQu
QTuAQk QTuAQu

]
≡
[
Tk Tuk
Tku Tu

]
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When k = 1, Tk is just called the Rayleigh quotient. So far k > 1, Tk is called a generalization
of the Rayleigh quotient.

The Rayleigh-Ritz procedure is to approximate the eigenvalues of A by the eigenvalues of
Tk = QTkAQk. The Ritz values and Ritz vectors are considered optimal approximations to
the eigenvalues and eigenvectors of A as justified by the following theorem.

Theorem. The minimum of ‖AQk−QkR‖2 over all k-by-k symmetric matrices R is attained
by R = Tk, in which case, ‖AQk −QkTk‖2 = ‖Tku‖2.

Proof. Let R = Tk + Z, to proof the theorem, we just want to show that ‖AQk − QkR‖2 is
minimized when Z = 0. This is shown by the following sequence of derivation:

‖AQk −QkR‖22 = λmax

[
(AQk −QkR)T (AQk −QkR)

]
= λmax

[
(AQk −Qk(Tk + Z))T (AQk −Qk(Tk + Z))

]
= λmax

[
(AQk −QkTk)T (AQk −QkTk)− ((AQk −QkTk)T (QkZ)

−(QkZ)T (AQk −QkTk) + (QkZ)T (QkZ)
]

= λmax

[
(AQk −QkTk)T (AQk −QkTk)− (QTkAQk − Tk)Z
−ZT (QTkAQk − Tk) + ZTZ

]
= λmax

[
(AQk −QkTk)T (AQk −QkTk) + ZTZ

]
≥ λmax

[
(AQk −QkTk)T (AQk −QkTk)

]
= ‖AQk −QkTk‖22

Furthermore, it is easy to compute the minimum value

‖AQk −QkTk‖2 = ‖(QkTk +QuTku)−QkTk‖2 = ‖QuTku‖2 = ‖Tku‖2.

Corollary. Let Tk = Y ΛY T be the eigendecomposition of Tk. The minimum of ‖APk−PkD‖
over all n-by-k orthogonal matrices Pk where span(Pk) = span(Qk) and over all diagonal D
is also ‖Tku‖2 and is attained by Pk = QkY and D = Λ.

Proof. If we replace Qk with QkU in the above proof, where U is another orthogonal matrix,
then the columns of Qk and QkU span the same space, and

‖AQk −QkR‖2 = ‖AQkU −QkRU‖2 = ‖A(QkU)− (QkU)(UTRU)‖2.

These quantities are still minimized when R = Tk, and by choosing U = Y so that UTTkU is
diagonal.
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Part IV. Symmetric Lanczos algorithm

1. The symmetric Lanczos algorithm combines the Lanczos process for building a Krylov sub-
space with the Raleigh-Ritz procedure for finding a few eigenpairs of a symmetric matrix
A.

Let us recall that the Lanczos process will generate an orthonormal basis of a Krylov subspace:

Kk(A, v)
def
= span{v,Av, . . . , Ak−1v} = span{q1, q2, . . . , qk},

and yield a fundamental relation

AQk = QkTk + βkqk+1e
T
k , (4)

where
Tk = QTkAQk = tridiag(βj , αj , βj+1).

Let µ be an eigenvalue of Tk and y be a corresponding eigenvector y, i.e.,

Tky = µy, ‖y‖2 = 1.

Apply y to the right of (4) to get

A(Qky) = QkTky + fk(e
T
k y) = µ(Qky) + βkqk+1(e

T
k y).

The scalars {µ} are Ritz values, and {Qky} are Ritz vectors.

2. Convergence

• If βkqk+1(e
T
k y) = 0 for some k, then the associated Ritz value µ is an eigenvalue of A

with the corresponding eigenvector Qky.

• In general, βkqk+1(e
T
k y) 6= 0, but we hope that the residual norm ‖βkqk+1(e

T
k y)‖2 may

be small; and when this happens we expect that µ is going to be a good approximate to
A’s eigenvalue. Indeed, we have

Lemma 1. Let H be real and symmetric, and Hz − µz = r and z 6= 0. Then

min
λ∈λ(H)

|λ− µ| ≤ ‖r‖2/‖z‖2.

Proof. Let H = UΛUT be the eigenvalue decomposition of H. Then Hz−µz = r yields

(H − µI)z = r ⇒ U(Λ− µI)UT z = r ⇒ (Λ− µI)(UT z) = UT r.

Notice that Λ− µI is diagonal. Thus

‖r‖2 = ‖UT r‖2 = ‖(Λ− µI)(UT z)‖2 ≥ min
λ∈λ(H)

|λ− µ| ‖UT z‖2 = min
λ∈λ(H)

|λ− µ|‖z‖2,

as expected.

The following corollary is a consequence of above Lemma 1.

Corollary 1. There is an eigenvalue λ of A such that

|λ− µ| ≤ ‖βkqk+1(e
T
k y)‖2 = |βk| · |eTk y|.
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3. In summary, we have the following Lanczos algorithm in the simplest form for finding eigen-
values and eigenvectors of a symmetric matrix A:

Lanczos Algorithm

1. q1 = v/‖v‖2, β0 = 0; q0 = 0;
2. for j = 1 to k, do
3. w = Aqj ;
4. αj = qTj w;

5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖2;
7. if βj = 0, quit;
8. qj+1 = w/βj ;
9. compute eigenvalues and eigenvectors of Tj
10. test for convergence
11. endfor

4. We illustrate the Lanczos algorithm by a running an example, a 1000-by-1000 diagonal matrix
A, most of whose eigenvalues were chosen randomly from a normal Gaussian distribution. To
make the plot easy to understand, we have also sorted the diagonal entries of A from largest
to smallest, so λi(A) = aii with the corresponding eigenvector ei. There are a few extreme
eigenvalues, and the rest cluster near the center of the spectrum. The starting Lanczos vector
v has all equal entries.

There is no loss in generality in experimenting with a diagonal matrix, since running the
Lanczos algorithm on A with starting vector q1 = v/‖v‖2 is equivalent to running the Lanczos
algorithm on QTAQ with starting vector QT q1.

The following figure illustrates convergence of the Lanczos algorithm for computing the eigen-
values of A. In this figure, the eigenvalues of each Tk are shown plotted in column k, for
k = 1, 2, 3, . . . , 30, with the eigenvalues of A plotted in an extra column at the rightmost
column. The column k has k “+”s, one marking each eigenvalues of Tk.
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We observe that:

• Extreme eigenvalues, i.e., the largest and smallest ones, converge first, and the interior
eigenvalues converge last.

• Convergence is monotonic, with the ith largest (smallest) eigenvalues of Tk increasing
(decreasing) to the ith laregst (smallest) eigenvalue of A, provided that the Lanczos
algorithm does not stop prematurely with some βk = 0.

5. All the discussion in this lecture is under the assumption of exact arithmetic. In the presence
of finite precision arithmetic, the numerical behaviors of the Lanczos algorithm could be
significantly different. For example, in finite precision arithmetic, the orthogonality of the
computed Lanczos vectors {qj} is lost when j is as small as 10 or 20. The simplest remedy
(and also the most expensive one) is to implement the the full reorthogonalization, namely
after the step 5, do

w = w −
j−1∑
i=1

(wT qi)qi.

This is called the Lanczos algorithm with full reorthogonalization. (Sometimes, it may be
needed to execute twice). A more elaborate scheme, necessary when convergence is slow and
several eigenvalues are sought, is to use the selective orthogonalization.

6. An excellent reference to study the observation in theory is the book by B. N. Parlett, “The
Symmetric Eigenvalue Problem”, reprinted by SIAM, 1998.
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Part V. Arnoldi algorithm

1. The power method is the simplest algorithm suitable for computing just the largest eigenvalue
in absolute value, along with its eigenvector. Starting with a given x0, k iterations of the
power method produce a sequence of vectors x0, x1, x2, . . .. It is easy to see that these vectors
span a Krylov Subspace:

span{x0, x1, x2, . . . , xm} = Km+1(A, x0) = span{x0, Ax0, A2x0, . . . , A
mx0}.

Now, rather than taking xm as out approximate eigenvector, it is natural to ask for the “best”
approximate eigenvector in Km+1(A, x0) using the Rayleigh-Ritz procedure. We will see that
the eigenvector (and eigenvalue) approximations from Km+1(A, x0) are much better than xm
alone.

The Arnoldi algorithm for finding a few eigenpairs of a large scale matrix A combines the
Arnoldi process for building a Krylov subspace with the Raleigh-Ritz procedure.

2. Let us recall that the following Arnoldi process generates an orthonormal basis of a Krylov
subspace Km(A, v):

[Vm+1, Ĥm] = arnoldi(A, v,m)
1. v1 = v/‖v‖2
2. for j = 1, 2, . . . ,m
3. compute w = Avj
4. for i = 1, 2, . . . , j
5. hij = vTi w
6. w := w − hijvi
7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, stop
10. vj+1 = w/hj+1,j

11. endfor

The Arnoldi process yields the fundamental relation, referred to as an Arnoldi decomposition
of length k:

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1Ĥm, (5)

where V H
m Vm = I, V H

m vm+1 = 0, Hm is Hessenberg:

Hm =


h11 h12 · · · h1,m−1 h1m
h21 h22 · · · h2,m−1 h2m

h32
. . . h3,m−1 h3m
. . .

...
...

hm,m−1 hm,m

 ,

and Vm+1 = [Vm vm+1] and Ĥm =

[
Hm

hm+1,me
T
m

]
.

If Ĥm is unreduced, i.e., hi+1,i 6= 0 for i = 1, 2, . . . ,m, the decomposition is uniquely deter-
mined by the starting vector v (This is commonly called implicit Q-Theorem).
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3. Since V H
m vm+1 = 0, we have

Hm = V T
mAVm.

Let µ be an eigenvalue of Hm and y be a corresponding eigenvector y, i.e.,

Hmy = µy.

Then the corresponding Ritz pair is (µ, Vmy). Applying y to the right of (5), the residual
vector of (µ, Vmy) is given by

A(Vky)− µ(Vky) = hm+1,mvm+1(e
T
my).

Using the backward error interpretation, we know that (µ, Vmy) is an exact eigenpair of A+E,
where ‖E‖2 = |hm+1,m| · |eTmy|.

4. This gives us a criterion for accepting the Ritz pair (µ, Vky) as approximate eigenpair1 of A.

Arnoldi’s Algorithm
1. Choose a starting vector v
2. Generate the Arnoldi decomposition of length m by the Arnoldi process
3. Compute the Ritz pairs and decide which are acceptable
4. If necessary, increase m and repeat

5. We illustrate the above Arnoldi algorithm by a running a 100-by-100 random sparse matrix A
with approximately 1000 normally distributed nonzero entries, A = sprandn(100,100,0.1).
All entries of the starting vector v are 1. The following figure illustrates typical convergence
behavior of the Arnoldi algorithm for computing the eigenvalues. In the figure, “+” are the
eigenvalues of matrix A (computed by eig(full(A))). and the “◦′′ are the eigenvalues of
upper Hessenberg matrix H30 (computed by eig(H30)).
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1Note that because of non-symmetry of A, we generally do not have the nice forward error estimation as discussed
in the Lanczos algorithm for symmetric eigenproblem. But a similar error bound involving the condition number of
the corresponding eigenvalue exists.
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We observe that exterior eigenvalues converge first. This is the typical convergence phe-
nomenon of the Arnoldi algorithm (in fact, all Krylov subspace based methods). There is a
general theory for the convergence analysis of the Arnoldi algorithm.

6. The Arnoldi algorithm has two nice aspects:

(a) The matrix Hm is already in Hessenberg form, so that we can immediately apply the
QR algorithm to find its eigenvalues.

(b) After we increase m, say m + p, we only have to orthogonalize p vectors to compute
the (m+ p)th Arnoldi decomposition. The work we have done previously is not thrown
away.

Unfortunately, the algorithm has its drawbacks:

• If A is large we cannot increase m indefinitely, since Vm requires n×m memory locations
to store.

• We have little control over which eigenpairs the algorithm finds. In a given application,
we will be interested in a certain set of eigenpairs. For example, eigenvalues lying near
the imaginary axis. There is nothing in the algorithm to force desired eigenvectors into
the subspace or the discard undesired ones.

7. These issues have been successfully addressed to some extent by a so-called implicitly restart
Arnoldi method, see

• D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., Vol. 13, pp.357–385, 1992.

• Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, editors, Templates for
the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia,
2000 Available at http://www.cs.ucdavis.edu/∼bai/ET/contents.html

The Matlab’s function eigs is an implementation of the implicitly restart Arnoldi method.
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