
ECS231 Handout Fast Solvers

In this part, we use Poisson’s equation as a model problem to show structure of problems arising
in practice, and how to exploit the structure to develop fast algorithms.

Part I. Model problem.

1. Poisson’s equation is a differential equation of elliptic type with broad utility in physical models
that include gravitation, temperature distribution, electromagnetism, elasticity and inviscid fluid
mechanics. It is also used as a physical model for data clustering using spectral methods.

2. One-dimensional model Poisson’s equation takes the form

−d
2v(x)

dx2
= f(x), 0 < x < 1 (1)

with Dirichlet boundary conditions:

v(0) = v(1) = 0, (2)

where f(x) is a given function and v(x) is the unknown function to be computed.

3. Let us discretize Poisson’s equation by trying to compute an approximate solution N + 2 evenly
spaced point xi between 0 and 1:

0 = x0 < x1 < x2 < · · · < xN < xN+1 = 1

and

xi = x0 + ih = ih, h =
1

N + 1
.

The points x0 and xN+1 are called boundary points and are known. xi for i = 1, 2, . . . , N are
called interior points and are unknown. h is called “mesh” size.

Denoting vi = v(xi) and fi = f(xi) and using the 3-point centered difference approximation, at
x = xi, we have

−d
2v(x)

dx2
=
−vi−1 + 2vi − vi+1

h2
+ τi,

where the truncation error τi = O(h2) (assuming v(x) is smooth enough). Therefore at x = xi,
0 < i < N + 1, we have

−vi−1 + 2vi − vi+1 = h2fi + h2τi

and v0 = vN+1 = 0.

4. In matrix notation, let

v =


v1
v2
...
vN

 , τ̄ =


τ1
τ2
...
τN

 and TN =


2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2

 ,

1

then we have
TN v = h2f + h2τ̄ (3)

To solve this equation, let us ignore τ̄ , since it is expected to be small compared to f , then we
have the linear system of equations

TN v̂ = h2f, (4)

where v̂ is an approximation of v.

5. The tridiagonal matrix TN = tridiag(−1, 2,−1) has the following explicit eigenvalue decomposi-
tion

TN = ZNΛNZ
T
N ,

where ZN = [z1, z2, . . . , zN] and ΛN = diag(λ1, λ2, . . . , λN),

• The eigenvalues of TN are

λj = 2(1− cos
πj

N + 1
) for j = 1, 2, . . . , N

• Since λj > 0 for all j, TN is symmetric positive definite.

• zj are the eigenvectors for j = 1, 2, . . . , N . The kth entry of zj is given by

zj(k) =

√
2

N + 1
sin(

πkj

N + 1
) for k = 1, 2, . . . , N.

• Z is orthogonal.

The following plot shows the eigenvectors corresponding to the first four eigenvaluesgskip

−0.2

0

0.2

λ
1

First Four Eigenmodes of Poisson’s Operator

−0.2

0

0.2

λ
2

−0.2

0

0.2

λ
3

−0.2

0

0.2

λ
4

The smallest eigenvalue λ1 is

λ1 = 2(1− cos
π

N + 1
) ≈ 2

(
1−

(
1− π2

2(N + 1)2

))
=

π2

(N + 1)2
for large N,

and the largest eigenvalue of TN λN is

λN = 2(1− cos
Nπ

N + 1
) ≈ 4 for large N,

Therefore, the condition number of TN is

cond(TN) = ‖TN‖2‖T−1N ‖2 =
λN
λ1
≈ 4(N + 1)2

π2
= O(h−2) for large N.

2

6. Let us bound the error v − v̂. Subtracting equation (4) from equation (3), we have

v − v̂ = h2T−1N τ̄ .

By taking norm and assuming that v is sufficient smooth (the required derivatives are bounded),
we have

‖v − v̂‖2 ≤ h2‖T−1N ‖2‖τ̄‖2 ≈ h
2 (N + 1)2

π2
‖τ̄‖2 = O(‖τ̄‖2) = O(h2).

This indicates that when we solve algebraic system (4), it is not necessary to impose the accuracy
more than O(h2).

In the rest of this note, we will not distinguish between v and its approximation v̂ and so will
simplify notation by letting

TN v = h2f.

7. Two-dimensional model Poisson’s equation takes the form

−∇2v(x, y) = f(x, y) for (x, y) ∈ Ω,
v(x, y) = φ(x, y) for (x, y) ∈ ∂Ω,

where ∇2 is the Laplace operator (sometimes, also denoted as ∆): ∇2 = ∂2

∂x2
+ ∂2

∂y2
, the domain

Ω is the unit sqaure Ω = (0, 1) × (0, 1), the unit square and ∂Ω is its boundary. f and φ are
given functions.

Example. consider Poisson’s equation

−∆v(x, y) = f(x, y), (x, y) ∈ (0, 1)× (0, 1)

with the boundary condition

v(x, y) =


0 x = 0
0 x = 1
sin(2πx) y = 0
sin(2πx) y = 1

If the right-hand-side function is

f(x, y) = 4π sin(2πx)(π cos(2πy2)(1 + 4y2) + sin(2πy2)),

then the analytical solution v(x, y) is

v(x, y) = sin(2πx) cos(2πy2).

8. To discretize the differential equation, the domain Ω is covered with a grid of mesh size h =
1/(N + 1) as follows.

3

w
m
m
m
m
m
w

w
m
m
m
m
m
w

w
m
m
m
m
m
w

w
m
m
m
m
m
w

w
m
m
m
m
m
w

w w
w w
w w
w w
w w

w w

w w
This is an example grid
with N = 5. The values
v(x, y) at the boundary
grid points w is given
by φ(x, y), and the val-
ues v(x, y) at interior

grid points m are
to be sought.

Each grid point (xi, yj) have the representation

xi = ih and yj = jh for i, j = 0, 1, . . . , N + 1.

Those points with one of i and j being i = 0 or N + 1 are the boundary grid points; all other
points are the interior grid points. We seek approximations to v(xi, yj) for all the interior grid
points. Write

vij = v(xi, yj), fij = f(xi, yj), and φij = φ(xi, yj).

To this end, we do approximately at each interior grid point:

−∂
2v

∂x2

∣∣∣∣
at (xi, yj)

≈ −vi−1 j + 2vij − vi+1 j

h2
,

−∂
2v

∂y2

∣∣∣∣
at (xi, yj)

≈ −vi j−1 + 2vij − vi j+1

h2
.

Adding these approximations we have

−∂
2v

∂x2
− ∂2v

∂y2

∣∣∣∣
at (xi, yj)

=
−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1

h2
+ τij

where τij is a truncation error. By Taylor expansion, it is easy to show that it is at the order of
h2, O(h2). Ignoring the truncation errors, we arrive at the linear equations in the unknowns vij ,

−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1 = h2fij , (5)

for 1 ≤ i, j ≤ N . The left-hand side of which is 4 times the v at the point subtracting the v at
the four neighbor points. This is called 5-point centered difference or 5-point stencil.

Notice that the boundary points

v0j = φ0j , v0N+1 = φ0N+1, vi0 = φi0, viN+1 = φiN+1

are known and the unknowns are for 0 < i, j < N + 1; so there are N2 of them. By collecting
all vij to form an N ×N matrix V whose (i, j)th entry is vij :

V = (vij)

4

and define an N ×N matrix F̃ by

h2(F̃)ij =



h2fij , for 2 ≤ i, j ≤ N − 1,
h2fij + φi j−1, for 2 ≤ i ≤ N − 1 and j = 1,
h2fij + φi j+1, for 2 ≤ i ≤ N − 1 and j = N,
h2fij + φi−1 j , for i = 1 and 2 ≤ j ≤ N − 1,
h2fij + φi+1 j , for i = N and 2 ≤ j ≤ N − 1,
h2fij + φi j−1 + φi−1 j , for (i, j) = (1, 1),
h2fij + φi j−1 + φi+1 j , for (i, j) = (N, 1),
h2fij + φi−1 j + φi j+1, for (i, j) = (1, N),
h2fij + φi j+1 + φi+1 j , for (i, j) = (N,N).

then it can be verified that the equation (5) becomes

TN · V + V · TN = h2F̃ , (6)

where TN = tridiag(−1, 2,−1). Note that care should be taken for the grid points that are
neighbors of boundary grid points.

9. Lexicographic (natural) ordering: the system (6) is not in the familiar form “Ax = b” of linear
system of equations because all the unknowns are compactly stored into a matrix. To reorganize
equations (5) in a way that leads to the Ax = b form, we need to arrange vij into a column
vector. A natural way would be arranging one column of V on top of another, i.e., defining a
N2-dimensional vector v as (in MATLAB-like notation)

v = [V (:, 1);V (:, 2); . . . ;V (:, N)] ≡ vec(V).

Such an ordering of vij is best described by the following picture in the case of N = 5.

w
m
m
m
m
m
w

1

2

3

4

5

w
m
m
m
m
m
w

6

7

8

9

10

w
m
m
m
m
m
w

11

12

13

14

15

w
m
m
m
m
m
w

16

17

18

19

20

w
m
m
m
m
m
w

21

22

23

24

25

w w
w w
w w
w w
w w

w w

w w

Define also N2-dimensional vector f̃ from the matrix F̃ analogously. The system (6) becomes

Av = h2f̃ , (7)

where

A =


TN + 2IN −IN
−IN TN + 2IN −IN

. . .
. . .

. . .

−IN TN + 2IN −IN
−IN TN + 2IN

 .

5

In fact, using the notion of the Kronecker product ⊗, the matrix A be written as

A = IN ⊗ TN + TN ⊗ IN ≡ TN×N .

10. Kronecker product

(a) Let A = (aij) be m× n and B = (bij) be p× q, then the Kronecker product of A and B are
defined as

A⊗B = (aijB) =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

Note that A⊗B is a (mp)× (nq) matrix.

(b) Kronecker product has the following basic properties:

• (A⊗B)T = AT ⊗BT

• If A and B are invertible, (A⊗B)−1 = A−1 ⊗B−1.
• Assume AC and BD are well defined, then (A⊗B) · (C ⊗D) = (AC)⊗ (BD)

(c) Let vec(X) be defined to be a column vector of length m · n made of the columns of an
m× n matrix X stacked atop one another from left to right, i.e.,

vec(X) = vec([x1, x2, . . . , xn]) =


x1
x2
· · ·
xn

 ,
then we have

• vec(AX) = (In ⊗A) · vec(X)

• vec(XB) = (BT ⊗ Im) · vec(X)

11. Using the Kronecker product and the eigenvalue decomposition of the tridiagonal matrix TN , we
immediately derive the eigenvalue decomposition of the matrix TN×N :

Let TN = ZNΛNZ
T
N be the eigendecomposition of the tridiagonal matrix TN . Then the eigen-

decomposition of TN×N is given by

TN×N = IN ⊗ TN + TN ⊗ IN
= (ZN ⊗ ZN)(IN ⊗ ΛN + ΛN ⊗ IN)(ZN ⊗ ZN)T .

By the eigenvalue decomposition of TN×N , we know that eigenvalues λij of the Poisson matrix
TN×N are given by

λi j
def
= λi + λj = 2(2− cos iπh− cos jπh) (8)

i, j = 1, 2, . . . , N , where λi and λj are the eigenvalues of TN . Note that h = 1/(N + 1).

12. Red-black ordering: first color all nodes by either red or black in such a way that no neighbor
nodes share the same color; and then enumerate all nodes with one color and then all nodes
with the other. Such an ordering of vij is best described by the following picture in the case of
N = 5.

6

w
m
m
m
m
m
w

r

b

r

b

r

w
m
m
m
m
m
w

b

r

b

r

b

w
m
m
m
m
m
w

r

b

r

b

r

w
m
m
m
m
m
w

b

r

b

r

b

w
m
m
m
m
m
w

r

b

r

b

r

w w
w w
w w
w w
w w

w w

w w

w
m
m
m
m
m
w

1

14

2

15

3

w
m
m
m
m
m
w

16

4

17

5

18

w
m
m
m
m
m
w

6

19

7

20

8

w
m
m
m
m
m
w

21

9

22

10

23

w
m
m
m
m
m
w

11

24

12

25

13

w w
w w
w w
w w
w w

w w

w w

Let vrb and f̃rb be the N2-dimensional vectors obtained from V and F̃ with this red-black
ordering. The system (6) becomes

Arbvrb = h2f̃rb, Arb =

(
Dr B
BT Db

)
, (9)

both Dr and Db are diagonal matrices with all diagonal entries being 4. B is a sparse matrix
with nonzero entries −1 (the details of the structure of B is not important for us now).

Notice that Arb is consistently ordered and has eigenvalues given by (8).

13. Three-dimensional model Poisson’s equation takes the form

−∇2v(x, y, z) = = f(x, y, z) for (x, y, z) ∈ Ω,
v(x, y, z) = φ(x, y, z) for (x, y, z) ∈ ∂Ω,

where the Laplace operator ∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, the domain Ω is the unit cubic Ω = (0, 1)×

(0, 1)× (0, 1), and is the boundary of Ω, f and φ are given functions.

14. Using a 7-point centered finite difference on a cubic grid of mesh size h = 1/(N+1), with natural
ordering, it leads to the linear system of equations Av = b, where the coefficient matrix

A = TN×N×N = TN ⊗ IN ⊗ IN + IN ⊗ TN ⊗ IN + IN ⊗ IN ⊗ TN

It can be shown that A’s eigenvalues are all possible triple sum of the eigenvalues of TN and the
eigenvector matrix is ZN ⊗ ZN ⊗ ZN .

7

Part II. Block cyclic reduction

1. Block cyclic reduction (BCR) is a fast method for the Poisson model problem. Recall 2-D
Poisson’s model problem is given by

(IN ⊗ TN + TN ⊗ IN)︸ ︷︷ ︸
TN×N

vec(V) = vec(h2F).

Write it as the standard form of the linear system of equations, we have
A(0) −I

−I A(0) . . .
. . .

. . . −I
−I A(0)



x1
x2
...
xN

 =


b1
b2
...
bN

 ,

where A(0) = TN + 2I and I is an N ×N identity matrix. xi and bi are N -vectors.

For simplicity we assume that N is odd. We use block Gaussian elimination to combine three
consecutive sets of equations

[−xj−2 +A(0)xj−1 −xj = bj−1]

+A [−xj−1 +A(0)xj −xj+1 = bj]

+ [−xj +A(0)xj+1 −xj+2 = bj+1]

Thus eliminating xj−1 and xj+1

−xj−2 + ((A(0))2 − 2I)xj − xj+2 = bj−1 +A(0)bj + bj+1.

Doing this for every set of three consecutive equations yields two sets of equations:

• one for the xj with j even
A(1) −I

−I A(1) . . .
. . .

. . . −I
−I A(1)




x2
x4
...

xN−1

 =


b1 +Ab2 + b3
b3 +Ab4 + b5

...
bN−2 +AbN−1 + bN

 , (10)

where

A(1) =
(
A(0)

)2
− 2I.

• one set of equations for the xj with j odd,
A

A
. . .

A



x1
x3
...
xN

 =


b1 + x2

b3 + x2 + x4
...

bN + xN−1

 . (11)

This set of equations can be solved directly after solving the equation (10) for xj with j
even.

8

Note that equation (10) has the same form as the original problem, so we may repeat this process
recursively. For example, at the next step we get

A(2) −I

−I A(2) . . .
. . .

. . . −I
−I A(2)



x4
x8
...
...

 =


...
...
...
...

 , (12)

where

A(2) =
(
A(1)

)2
− 2I,

and 
A(1)

A(1)

. . .

A(1)



x2
x6
...
...

 =


...
...
...
...

 . (13)

We repeat this until only one equation is left, which we solve another way.

2. In summary, assume that N = 2k+1−1, the BCR algorithm consists of the following three steps:

(a) Block reduction (see equations (10) and (12))

(b) Solve A(k)x(k) = b(k)

(c) Back solve (see equations (11) and (13))

Complexlity: O(N2 log2N)

3. The simple BCR approach has two drawbacks:

(a) It is numerically unstable because A(r) grows quickly:

‖A(r)‖ ∼ ‖A(r−1)‖2 ≈ 42
r
,

so in computing b
(r+1)
j , the b

(r)
2j±1 are lost in roundoff.

(b) A(r) has bandwidth 2r + 1 if A(0) = A is tridiagonal, so it can be dense and thus more
expensive to multiply or solve.

4. Here we described a simple but numerically unstable version of the BCR algorithm. A stable
implementation are described in [B. Buzbee, G. Golub and C. Nielson , On the direct method
for solving Poisson’s equation, SIAM J. Numer. Anal. Vol. 7, pp.627–656, 1970.]

Fastest algorithms on vector and parallel computers are often a hybrid of block cyclic reduction
and FFT. BCR has also be extendned to solve many other types of structured matrix compu-
tation problems. A survey of the cyclic reduction can be found in [W. Gander and G.H. Golub,
Cyclic Reduction - History and Applications, Proceedings of the Workshop on Scientific Com-
puting: 10-12 March, 1997, edited by F. T. Luk, R. Plemmons. Springer Verlag, New York,
1997. Also appeared as Technical Report SCCM 97-02, Stanford University, 1997.]

9

Part III. FFT (Fast Fourier Transform) method

1. Let us learn how to solve the 2D Poisson’s model problem using the matrix-matrix multiplications
involving the eigenvector matrix of TN . A straightforward implementation of the matrix-matrix
would cost O(N3). We will show how this multiplication can be implemented using the fast
Fourier transform (FFT) in only O(N2log2N) operation. Note that if N = 220 = 1, 048, 576,
then log2N = 20.

2. Recall that in the matrix equation form, 2D Poisson’s equation is

TN · V + V · TN = h2F.

Let TN = ZΛZT be the eigenvalue decomposition of TN . Then the previous equation becomes

Λ · Ṽ + Ṽ · Λ = h2F̃ .

where Ṽ = ZTV Z and F̃ = ZTFZ. It is easy to see that the (j, k) entry of this equation is

λj ṽjk + ṽjkλk = h2f̃jk,

which can be solved for ṽjk to get

ṽjk =
h2f̃jk
λj + λk

.

This yields the first version of the algorithm to solve the Poisson’s equation via matrix-matrix
multiplications:

(a) Compute F̃ = ZTFZ

(b) For all j and k, compute ṽjk =
h2f̃jk
λj+λk

(c) Compute V = ZṼ ZT

The cost of steps (a) and (b) is four matrix-matrix multiplications by Z and ZT (= Z), which
is 8N3 using a conventional algorithm. The cost of step (b) is 3N2. Therefore the total cost is
about 8N3.

In the following, we show how multiplication by Z is essentially the same as computing a discrete
Fourier transform, which can be done in O(N2log2N) operation.

3. Using the Kronecker product, we have

v = vec(V) = (TN×N)−1 · vec(h2F)

=
(
(ZN ⊗ ZN)(IN ⊗ ΛN + ΛN ⊗ IN)(ZN ⊗ ZN)T

)−1 · vec(h2F)

= (ZN ⊗ ZN) (IN ⊗ ΛN + ΛN ⊗ IN)−1 (ZTN ⊗ ZTN) · vec(h2F)

It is easy to see that doing the indicated matrix-vector multiplications from right to left is
mathematically the same as the algorithm described in Item 1. This also shows how to extend
the algorithm to Poisson’s equation in higher dimension.

10

4. The Discrete Fourier Transform (DFT) of an N -vector a is the vector

b = Φa,

where Φ = (φjk) is N -by-N matrix defined as follows:

φjk = ωj×k, for j, k = 0, 1, . . . , N − 1

where ω is the principal Nth root of unity equation ωN = 1, i.e.,

ω = exp

(
−2πi

N

)
= cos

2π

N
− i sin

2π

N
,

and i =
√
−1.

The Inverse Discrete Fourier Transform (IDFT) of b is the vector

a = Φ−1b.

By the definitions, we see that both the DFT and IDFT are just matrix-vector multiplications
and they can be straightforwardly implemented in 2N2 operations.

5. Properties of DFT:

(a) 1√
N
Φ is a complex symmetric and unitary matrix, i.e.,

Φ−1 =
1

N
ΦH =

1

N
Φ̄.

(Exercise: verify that ΦH = (Φ̄)T = Φ̄ and 1
NΦ · Φ

H = I.)

(b) Let a = [a0, a1, . . . , aN−1], then the kth component of the DFT b = Φa is

bk =

N−1∑
j=0

ajω
kj .

Therefore, bk can be viewed as the value of the polynomial pa(x) =
∑N−1

j=0 ajx
j at x = ωk:

bk = (Φa)k = pa(ω
k).

In other words,

the DFT is polynomial evaluation at the points ω0, ω1, . . . , ωN−1.

Conversely,

the IDFT is polynomial interpolation, producing the coefficients of a polynomial
given its values at ω0, ω1, . . . , ωN−1.

(c) If a = [a0, . . . , aN−1, 0, . . . , 0]T and b = [b0, . . . , bN−1, 0, . . . , 0]T are 2N -vectors, then the
discrete convolution of a and b, denoted as a ∗ b, is defined as

a ∗ b ≡ c = [c0, c1, . . . , c2N−1]
T ,

where ck =
∑k

j=0 ajbk−j .

11

To illustrate the use of the discrete convolution, consider the polynomial multiplication.
Let pa(x) =

∑N−1
k=0 akx

k and pb(x) =
∑N−1

k=0 bkx
k be degree-(N − 1) polynomials. Then

their product

pa(x) · pb(x) =
2N−1∑
k=0

ckx
k ≡ pc(x),

where the coefficients ck are given by the discrete convolution.

One purpose of the Fourier transform is to convert the convolution into multiplication.

Theorem 1. Let a = [a0, . . . , aN−1, 0, . . . , 0]T and b = [b0, . . . , bN−1, 0, . . . , 0]T be vectors
of dimension 2N , and let c = a ∗ b = [c0, . . . , c2N−1]

T . Then

(Φc)k = (Φa)k · (Φb)k.

Proof. Recall the property (b), if ã = Φa, then the kth entries of ã is ãk =
∑2N−1

j=0 ajω
kj ,

the value of the polynomial pa(x) =
∑N−1

j=0 ajx
j at x = ωk, i.e.,

ãk = pa(ω
k).

Similarly, b̃ = Φb means that b̃k =
∑N−1

j=0 bjω
kj = pb(ω

k), and c̃ = Φc means that c̃k =∑2N−1
j=0 cjω

kj = pc(ω
k). Therefore

(Φa)k · (Φb)k = ãk · b̃k = pa(ω
k) · pb(ωk) = pc(ω

k) = c̃k = (Φc)k.

6. Fast Fourier Transform (FFT) is a fast way to multiply a given vector a by the Fourier matrix
Φ. Instead of 2N2, it will require only about 3N

2 · log2N operations.

We now derive the FFT via its interpretation as polynomial evaluation. Recall that the goal is
to evaluate pa(x) =

∑N−1
k=0 akx

k at x = ωj for 0 ≤ j ≤ N − 1. For simplicity we will assume
N = 2m. The FFT algorithm is based on the following two critical observations:

(a) By writing

pa(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

= (a0 + a2x
2 + a4x

4 + · · ·) + (a1x+ a3x
3 + a5x

5 + · · ·)
= (a0 + a2x

2 + a4x
4 + · · ·) + x(a1 + a3x

2 + a5x
4 + · · ·)

= paeven(x2) + xpaodd(x2),

we see that the evaluation of pa(x) is divided into evaluating two polynomials paeven and
paodd of degree N

2 − 1 at (ωj)2, 0 ≤ j ≤ N − 1.

(b) Since ωN = 1,

ω2j = ω2(j+N
2
).

Therefore, there are really just N
2 points ω2j for j = 0, 1, . . . , N2 − 1.

By these two observations, we see that evaluating a polynomial of degree N − 1 = 2m − 1 at all
N points ωj (0 ≤ j ≤ N − 1) is the same as evaluating two polynomials of degree N

2 − 1 at all
N
2 points,1, and then combining the results with N multiplications and additions. This can be
done recursively as shown by the following pseudo-code:

1those are the N
2
th roots of the unity.

12

function ã = FFT(a,N)
if N = 1

return ã = a
else

ãeven = FFT(aeven, N/2)
ãodd = FFT(aodd, N/2)

ω = e−2πi/N

z = [ω0, ω1, . . . , ωN/2−1]
return ã = [ãeven + z. ∗ ãodd, ãeven − z. ∗ ãodd]

end if

where .∗ means componentwise multiplication of arrays (as in MATLAB), and have used the
fact that ωj+N/2 = −ωj .

7. Matlab script of textbook FFT.

function y = ffttx(x)

%FFTTX Textbook Fast Finite Fourier Transform.

% FFTTX(X) computes the same finite Fourier transform as FFT(X).

% The code uses a recursive divide and conquer algorithm for

% even order and straight matrix-vector multiplication otherwise.

% If length(X) is m*p where m is odd and p is a power of 2, the

% computational complexity of this approach is O(m^2)*O(p*log2(p)).

% by Cleve Moler

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer

u = ffttx(x(1:2:n-1));

v = ffttx(x(2:2:n));

k = (0:n/2-1)’;

w = omega .^ k;

y = [u+w.*v; u-w.*v];

else

% The Fourier matrix.

j = 0:n-1;

k = j’;

F = omega .^ (k*j);

y = F*x;

end

8. Let the cost of this algorithm be denoted C(N). Then we see that

C(N) = 2 · C
(
N

2

)
+

3N

2
,

13

assuming that the powers if ω are precomputed and stored in tables. This recurrence can be
solved as the following:

C(N) = 2 · C
(
N

2

)
+

3N

2

= 22 · C
(
N

4

)
+ 2 · 2N

2

= 23 · C
(
N

8

)
+ 3 · 2N

2
= · · ·

= (log2N) · 3N

2
.

Note that C(1) = 0.

In conclusion, to compute the FFTs of columns (or rows) of an N -by-N matrix the total costs
N · (log2N) · 3N2 = 3

2N
2 log2N , which is the complexity of the FFT method for solving the 2D

Poisson’s model problem.

9. We have seen that to solve the discrete Poisson’s model problem by the eigenvalue decomposition
of TN requires the ability to multiply by the N -by-N matrix Z, whose the (j, k) entry is

zjk =

√
2

N + 1
sin

(
π(k + 1)(j + 1)

N + 1

)
,

where for the convenient of notation, we number rows and columns from 0 to N − 1 starting
now.

Now consider the (2N + 2)-by-(2N + 2) DFT matrix Φ, whose j, k entry is

exp

(
−2πijk

2N + 2

)
= exp

(
−πijk
N + 1

)
= cos

πjk

N + 1
− i sin

πjk

N + 1
.

Thus the N -by-N matrix Z consists of −
√

2
N+1 times the imaginary part of the second through

(N + 1)st rows and columns of Φ. So if we can multiply efficiently by Φ using the FFT, then
we can multiply efficiently by Z. In practice, we can modify the FFT to multiply by Z directly.
This is called the Fast Sine Transform (FST).

10. Classical references:

• C. Van Loan, Computational Framework for the Fast Fourier Transform, SIAM Press, 1992

• A. Edelman, P. McCorquodale, and S. Toledo. The future fast fourier transform? SIAM
Journal on Scientific Computing, Vol.20, pp.1094-1114, 1999.

14

