
ECS231 Handout Computer Arithmetic

I: Floating-point numbers and representations

1. Floating-point representation of numbers (scientific notation) has four components: sign,
significand (mantissa), base and exponent

For example

− 3.1416× 101

↑
sign

↑
significand

↑
base

← exponent

2. Computers use binary representation of numbers. The floating-point representation of a
nonzero binary number x is of the form

x = ± b0.b1b2 · · · bp−1 × 2E . (1)

(a) It is normalized, i.e., b0 = 1 (the hidden bit)

(b) Precision (= p) is the number of bits in the significand (mantissa) (including the hidden
bit).

(c) Machine epsilon ε = 2−(p−1), the gap between the number 1 and the smallest floating-
point number that is greater than 1.

(d) The unit in the last place, ulp(x) = 2−(p−1) × 2E = ε× 2E .

• If x > 0, then ulp(x) is the gap between x and the next larger floating-point number.

• If x < 0, then ulp(x) is the gap between x and the smaller floating-point number
(larger in absolute value).

3. Special numbers: 0, −0, ∞, −∞, NaN(=“Not a Number”).

4. All computers designed since 1985 use the IEEE Standard for Binary Floating-Point Arith-
metic (ANSI/IEEE Std 754-1985) represent each number as a binary number and use binary
arithmetic. Essentials of the IEEE standard:

• consistent representation of floating-point numbers by all machines adopting the stan-
dard;

• correctly rounded floating-point operations, using various rounding modes;

• consistent treatment of exceptional situation such as division by zero.

5. IEEE single format takes 32 bits (=4 bytes) long:

s E f

sign exponent

t
binary point fraction

←− −→8 ←− −→23

• It represents the number
(−1)s · (1.f)× 2E−127

1

• The leading 1 in the fraction need not be stored explicitly, because it is always 1. This
hidden bit accounts for the “1.” here.

• The “E − 127” in the exponent is to avoid the need for storage of a sign bit. E is a
normalized number, and Emin = (00000001)2 = (1)10, Emax = (11111110)2 = (254)10.

• The range of positive normalized numbers is from

Nmin = 1.00 · · · 0× 2Emin−127 = 2−126 ≈ 1.2× 10−38

to
Nmax = 1.11 · · · 1× 2Emax−127 = (2− 2−23)× 2127 ≈ 2128 ≈ 3.4× 1038.

• Special repsentations for 0, ±∞ and NaN:

zero = ± 00000000 00000000000000000000000

±∞ = ± 11111111 00000000000000000000000

NaN = ± 11111111 otherwise

6. IEEE double format takes 64 bits (= 8 bytes) long:

s E f

sign exponent

t
binary point fraction

←− −→11 ←− −→52

• It represents the numer
(−1)s · (1.f)× 2E−1023

• The range of positive normalized numbers is from

Nmin = 2−1022 ≈ 2.2× 10−308

to
Nmax = 1.11 · · · 1× 21023 ≈ 21024 ≈ 1.8× 10308.

• Special repsentations for 0, ±∞ and NaN.

7. IEEE extended format, with at least 15 bits available for the exponent and at least 63 bits
for the fractional part of the significant. (Pentium has 80-bit extended format)

8. Precision and machine epsilon of the IEEE formats

Format Precision p Machine epsilon ε = 2−p−1

single 24 ε = 2−23 ≈ 1.2× 10−7

double 53 ε = 2−52 ≈ 2.2× 10−16

extended 64 ε = 2−63 ≈ 1.1× 10−19

2

9. Rounding

Let a positive real number x be in the normalized range, i.e., Nmin ≤ x ≤ Nmax, and be
written in the normalized form

x = (1.b1b2 · · · bp−1bpbp+1 . . .)× 2E ,

Then the closest floating-point number less than or equal to x is

x− = 1.b1b2 · · · bp−1 × 2E ,

i.e., x− is obtained by truncating. The next floating-point number bigger than x− is

x+ = ((1.b1b2 · · · bp−1) + (0.00 · · · 01))× 2E ,

therefore, also the next one that bigger than x.

If x is negative, the situtation is reversed.

Correctly rounding modes:

• round down: round(x) = x−;

• round up: round(x) = x+;

• round towards zero: round(x) = x− of x ≥ 0; round(x) = x+ of x ≤ 0;

• round to nearest: round(x) = x− or x+, whichever is nearer to x, except that if x > Nmax,
round(x) = ∞, and if x < −Nmax, round(x) = −∞. In the case of tie, i.e., x− and x+

are the same distance from x, the one with its least significant bit equal to zero is chosen

When the round to nearest (IEEE default rounding mode) is in effect,

abserr(x) = |round(x)− x| ≤ 1

2
ulp(x)

and

relerr(x) =
|round(x)− x|

|x|
≤ 1

2
ε.

Therefore, we have

the max. rel. representation error =

1
2 · 2

1−24 = 2−24 ≈ 5.96 · 10−8

1
2 · 2

−52 ≈ 1.11× 10−16.

II: Floating point arithmetic

1. IEEE rules for correctly rounded floating-point operations:

if x and y are correctly rounded floating-point numbers, then

fl(x+ y) = round(x+ y) = (x+ y)(1 + δ)

fl(x− y) = round(x− y) = (x− y)(1 + δ)

fl(x× y) = round(x× y) = (x× y)(1 + δ)

fl(x/y) = round(x/y) = (x/y)(1 + δ)

where |δ| ≤ 1
2ε for the round to nearest,

IEEE standard also requires that correctly rounded remainder and square root operations be
provided.

3

2. IEEE standard response to exceptions

Event Example Set result to

Invalid operation 0/0, 0×∞ NaN
Division by zero Finite nonzero/0 ±∞
Overflow |x| > Nmax ±∞ or ±Nmax

underflow x 6= 0, |x| < Nmin ±0, ±Nmin or subnormal
Inexact whenever fl(x ◦ y) 6= x ◦ y correctly rounded value

3. Let x̂ and ŷ be the floating-point numbers and that

x̂ = x(1 + τ1) and ŷ = y(1 + τ2), for |τi| ≤ τ � 1

where τi could be the relative errors in the process of “collecting/getting” the data from the
original source or the previous operations.

Question: how do the four basic arithmetic operations behave?

4. Addition and subtraction

fl(x̂+ ŷ) = (x̂+ ŷ)(1 + δ), |δ| ≤ 1

2
ε

= x(1 + τ1)(1 + δ) + y(1 + τ2)(1 + δ)

= x+ y + x(τ1 + δ +O(τε)) + y(τ2 + δ +O(τε))

= (x+ y)

(
1 +

x

x+ y
(τ1 + δ +O(τε)) +

y

x+ y
(τ2 + δ +O(τε))

)
≡ (x+ y)(1 + δ̂),

where δ̂ can be bounded as follows:

|δ̂| ≤ |x|+ |y|
|x+ y|

(
τ +

1

2
ε+O(τε)

)
.

Three possible cases:

(a) If x and y have the same sign, i.e., xy > 0, then |x+ y| = |x|+ |y|; this implies

|δ̂| ≤ τ +
1

2
ε+O(τε)� 1.

Thus fl(x̂+ ŷ) approximates x+ y well.

(b) If x ≈ −y ⇒ |x+y| ≈ 0, then (|x|+ |y|)/|x+y| � 1; this implies that |δ̂| could be nearly
or much bigger than 1. Thus fl(x̂+ ŷ) may turn out to have nothing to do with the true
x + y. This is so called catastrophic cancellation which happens when a floating-point
number is subtracted from another nearly equal floating-point number. Cancellation
causes relative errors or uncertainties already presented in x̂ and ŷ to be magnified.

(c) In general, if (|x| + |y|)/|x + y| is not too big, fl(x̂ + ŷ) provides a good approximation
to x+ y.

5. Examples of catastrophic cancellation

Example 1. Computing
√
n+ 1 −

√
n straightforward causes substantial loss of significant

digits for large n

4

n fl(
√
n + 1) fl(

√
n) fl(fl(

√
n + 1)− fl(

√
n)

1.00e+10 1.00000000004999994e+05 1.00000000000000000e+05 4.99999441672116518e-06

1.00e+11 3.16227766018419061e+05 3.16227766016837908e+05 1.58115290105342865e-06

1.00e+12 1.00000000000050000e+06 1.00000000000000000e+06 5.00003807246685028e-07

1.00e+13 3.16227766016853740e+06 3.16227766016837955e+06 1.57859176397323608e-07

1.00e+14 1.00000000000000503e+07 1.00000000000000000e+07 5.02914190292358398e-08

1.00e+15 3.16227766016838104e+07 3.16227766016837917e+07 1.86264514923095703e-08

1.00e+16 1.00000000000000000e+08 1.00000000000000000e+08 0.00000000000000000e+00

Catastrophic cancellation can sometimes be avoided if a formula is properly reformulated. In
the present case, one can compute

√
n+ 1−

√
n almost to full precision by using the equality

√
n+ 1−

√
n =

1√
n+ 1 +

√
n
.

Consequently, the computed results are

n fl(1/(
√
n + 1 +

√
n))

1.00e+10 4.999999999875000e-06

1.00e+11 1.581138830080237e-06

1.00e+12 4.999999999998749e-07

1.00e+13 1.581138830084150e-07

1.00e+14 4.999999999999987e-08

1.00e+15 1.581138830084189e-08

1.00e+16 5.000000000000000e-09

In fact, one can show that fl(1/(
√
n+ 1+

√
n)) = (

√
n+ 1−

√
n)(1+δ), where |δ| ≤ 5ε+O(ε2)

(try it!)

Example 2. Consider the function

f(x) =
1− cosx

x2
=

1

2

(
sin(x/2)

x/2

)2

.

Note that
0 ≤ f(x) < 1/2 for all x 6= 0.

Compare the computed values for x = 1.2 × 10−5 using the above two expressions (assume
that the value of cosx rounded to 10 significant figures).

6. Multiplication and Division:

fl(x̂× ŷ) = (x̂× ŷ)(1 + δ) = xy(1 + τ1)(1 + τ2)(1 + δ) ≡ xy(1 + δ̂×),

fl(x̂/ŷ) = (x̂/ŷ)(1 + δ) = (x/y)(1 + τ1)(1 + τ2)−1(1 + δ) ≡ xy(1 + δ̂÷),

where
δ̂× = τ1 + τ2 + δ +O(τε), δ̂÷ = τ1 − τ2 + δ +O(τε).

Thus

|δ̂×| ≤ 2τ +
1

2
ε+O(τε)

|δ̂÷| ≤ 2τ +
1

2
ε+O(τε).

Therefore, multiplication and Division are very well-behaved!

5

III: Floating point error analysis

1. Forward and backward error analysis

We illustrate the basic idea through a simple example. Consider the computation of an inner
product of two vector x, y ∈ R3

xT y
def
= x1y1 + x2y2 + x3y3,

assuming already xi’s and yj ’s are floating-point numbers. It is likely that fl(x ·y) is computed
in the following order.

fl(xT y) = fl
(

fl(fl(x1y1) + fl(x2y2)) + fl(x3y3)
)
.

Adopting the floating-point arithmetic model, we have

fl(xT y) = fl
(

fl(x1y1(1 + ε1) + x2y2(1 + ε2)) + x3y3(1 + ε3)
)

= fl
(

(x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3)
)

=
(

(x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3)
)
(1 + δ2)

= x1y1(1 + ε1)(1 + δ1)(1 + δ2) + x2y2(1 + ε2)(1 + δ1)(1 + δ2)

+x3y3(1 + ε3)(1 + δ2),

where |εi| ≤ 1
2ε and |δj | ≤ 1

2ε.

Now there are two ways to interpret the errors in the computed fl(xT y):

(a) We have
fl(xT y) = xT y + E,

where E = x1y1(ε1 + δ1 + δ2) +x2y2(ε2 + δ1 + δ2) +x3y3(ε3 + δ2) +O(ε2). It implies that

|E| ≤ 1

2
ε(3|x1y1|+ 3|x2y2|+ 2|x3y3|) +O(ε2) ≤ 3

2
ε · |x|T |y|+O(ε2).

This bound on E tells the worst case difference between the exact xT y and its computed
value. Such an error analysis is so-called Forward Error Analysis.

(b) We can also write
fl(xT y) = x̂T ŷ = (x+∆x)T (y +∆y),

where1

x̂1 = x1(1 + ε1), ŷ1 = y1(1 + δ1)(1 + δ2) ≡ y1(1 + δ̂1),

x̂2 = x2(1 + ε2), ŷ2 = y2(1 + δ1)(1 + δ2) ≡ y2(1 + δ̂2),

x̂3 = x3(1 + ε3), ŷ3 = y3(1 + δ2) ≡ y3(1 + δ̂3).

It can be seen that |δ̂1| = |δ̂2| ≤ ε+O(ε2) and |δ̂3| ≤ 1
2ε. This says the computed value

fl(xT y) is the exact inner product of a slightly perturbed x̂ and ŷ. Such an error analysis
is so-called Backward Error Analysis.

1There are many ways to distribute factors (1 + εi) and (1 + δj) to xi and yj . In this case it is even possible to
make either x̂ ≡ x or ŷ ≡ y.

6

V: Further reading

1. The following article based on lecture notes of Prof. W. Kahan of the University of California
at Berkeley provides an excellent review of IEEE float point arithmetics.

D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 18(1):5–48, 1991.

2. The following book gives a broad overview of numerical computing, with special focus on the
IEEE standard for binary floating-point arithmetic.

M. Overton. Numerical computing with IEEE floating-point arithemetic. SIAM, Philadel-
phia, 2001.

3. The following lecture by N. Higham presents the latest development on low precision and
multiprecision arithmetic.

• http://bit.ly/kacov18

4. Websites for discussion of numerical disasters:

• T. Huckle, Collection of software bugs

http://www5.in.tum.de/∼huckle/bugse.html

Recent book: “Bits and Bugs: A Scientific and Historical Review of Software Failures
in Computational Science” by T. Huckle and T. Neckel, SIAM, March 2019.

• K. Vuik, Some disasters caused by numerical errors

http://ta.twi.tudelft.nl/nw/users/vuik/wi211/disasters.html

• D. Arnold, Some disasters attributable to bad numerical computing

http://www.ima.umn.edu/∼arnold/disasters/disasters.html

7

