### ECS231 Handout

# **Computer Arithmetic**

#### I: Floating-point numbers and representations

1. Floating-point representation of numbers (scientific notation) has four components: sign, significand (mantissa), base and exponent

For example

$$\begin{array}{ccc} - & 3.1416 \times 10^{1 \, \leftarrow \, \mathrm{exponent}} \\ \uparrow & \uparrow & \uparrow \\ \mathrm{sign} & \mathrm{significand \, base} \end{array}$$

2. Computers use binary representation of numbers. The floating-point representation of a nonzero **binary** number x is of the form

$$x = \pm b_0 . b_1 b_2 \cdots b_{p-1} \times 2^E.$$
 (1)

- (a) It is *normalized*, i.e.,  $b_0 = 1$  (the hidden bit)
- (b) Precision (= p) is the number of bits in the significand (mantissa) (including the hidden bit).
- (c) Machine epsilon  $\epsilon = 2^{-(p-1)}$ , the gap between the number 1 and the smallest floating-point number that is greater than 1.
- (d) The unit in the last place,  $ulp(x) = 2^{-(p-1)} \times 2^E = \epsilon \times 2^E$ .
  - If x > 0, then ulp(x) is the gap between x and the next larger floating-point number.
  - If x < 0, then ulp(x) is the gap between x and the smaller floating-point number (larger in absolute value).
- 3. Special numbers:  $0, -0, \infty, -\infty, \text{NaN}(=$  "Not a Number").
- 4. All computers designed since 1985 use the *IEEE Standard for Binary Floating-Point Arithmetic* (ANSI/IEEE Std 754-1985) represent each number as a binary number and use binary arithmetic. Essentials of the IEEE standard:
  - consistent representation of floating-point numbers by all machines adopting the standard;
  - correctly rounded floating-point operations, using various rounding modes;
  - consistent treatment of exceptional situation such as division by zero.
- 5. IEEE single format takes 32 bits (=4 bytes) long:

|      | $\leftarrow 8$ - | $\rightarrow$   $\leftarrow$ | 23       | $\longrightarrow$ |
|------|------------------|------------------------------|----------|-------------------|
| s    | E                | •                            | f        |                   |
| sign | exponent         | binary point                 | fraction |                   |

• It represents the number

$$(-1)^s \cdot (1.f) \times 2^{E-127}$$

- The leading 1 in the fraction need not be stored explicitly, because it is always 1. This hidden bit accounts for the "1." here.
- The "E 127" in the exponent is to avoid the need for storage of a sign bit. E is a normalized number, and  $E_{\min} = (00000001)_2 = (1)_{10}, E_{\max} = (1111110)_2 = (254)_{10}$ .
- The range of positive normalized numbers is from

$$N_{\min} = 1.00 \cdots 0 \times 2^{E_{\min} - 127} = 2^{-126} \approx 1.2 \times 10^{-38}$$

 $\operatorname{to}$ 

$$N_{\rm max} = 1.11 \cdots 1 \times 2^{E_{\rm max} - 127} = (2 - 2^{-23}) \times 2^{127} \approx 2^{128} \approx 3.4 \times 10^{38}.$$

• Special repsentations for 0,  $\pm \infty$  and NaN:



6. IEEE **double** format takes 64 bits (= 8 bytes) long:

|      | $\leftarrow$ 11 - | $\rightarrow \mid \longleftarrow$ | 52       | $\longrightarrow$ |
|------|-------------------|-----------------------------------|----------|-------------------|
| s    | E                 | •                                 | f        |                   |
| sign | exponent          | binary point                      | fraction |                   |

• It represents the numer

$$(-1)^{s} \cdot (1.f) \times 2^{E-1023}$$

• The range of positive normalized numbers is from

(

$$N_{\rm min} = 2^{-1022} \approx 2.2 \times 10^{-308}$$

 $\operatorname{to}$ 

$$N_{\rm max} = 1.11 \cdots 1 \times 2^{1023} \approx 2^{1024} \approx 1.8 \times 10^{308}.$$

- Special representations for  $0, \pm \infty$  and NaN.
- 7. IEEE **extended** format, with at least 15 bits available for the exponent and at least 63 bits for the fractional part of the significant. (Pentium has 80-bit extended format)
- 8. Precision and machine epsilon of the IEEE formats

| Format   | Precision $p$ | Machine epsilon $\epsilon = 2^{-p-1}$            |
|----------|---------------|--------------------------------------------------|
| single   | 24            | $\epsilon = 2^{-23} \approx 1.2 \times 10^{-7}$  |
| double   | 53            | $\epsilon = 2^{-52} \approx 2.2 \times 10^{-16}$ |
| extended | 64            | $\epsilon = 2^{-63} \approx 1.1 \times 10^{-19}$ |

### 9. Rounding

Let a positive real number x be in the normalized range, i.e.,  $N_{\min} \leq x \leq N_{\max}$ , and be written in the normalized form

$$x = (1.b_1b_2\cdots b_{p-1}b_pb_{p+1}\ldots) \times 2^E,$$

Then the closest floating-point number less than or equal to x is

$$x_- = 1.b_1b_2\cdots b_{p-1} \times 2^E,$$

i.e.,  $x_{-}$  is obtained by *truncating*. The next floating-point number bigger than  $x_{-}$  is

$$x_{+} = ((1.b_1b_2\cdots b_{p-1}) + (0.00\cdots 01)) \times 2^E,$$

therefore, also the next one that bigger than x.

If x is negative, the situation is reversed.

Correctly rounding modes:

- round down: round(x) =  $x_{-}$ ;
- round up: round $(x) = x_+;$
- round towards zero: round(x) =  $x_{-}$  of  $x \ge 0$ ; round(x) =  $x_{+}$  of  $x \le 0$ ;
- round to nearest: round(x) =  $x_{-}$  or  $x_{+}$ , whichever is nearer to x, except that if  $x > N_{\max}$ , round(x) =  $\infty$ , and if  $x < -N_{\max}$ , round(x) =  $-\infty$ . In the case of tie, i.e.,  $x_{-}$  and  $x_{+}$  are the same distance from x, the one with its least significant bit equal to zero is chosen

When the round to nearest (IEEE default rounding mode) is in effect,

$$\operatorname{abserr}(x) = |\operatorname{round}(x) - x| \le \frac{1}{2} \operatorname{ulp}(x)$$

and

relerr
$$(x) = \frac{|\operatorname{round}(x) - x|}{|x|} \le \frac{1}{2}\epsilon.$$

Therefore, we have

the max. rel. representation error = 
$$\begin{cases} \frac{1}{2} \cdot 2^{1-24} = 2^{-24} \approx 5.96 \cdot 10^{-8} \\ \\ \frac{1}{2} \cdot 2^{-52} \approx 1.11 \times 10^{-16}. \end{cases}$$

## **II:** Floating point arithmetic

1. IEEE rules for correctly rounded floating-point operations:

if x and y are correctly rounded floating-point numbers, then

$$fl(x+y) = round(x+y) = (x+y)(1+\delta)$$
  

$$fl(x-y) = round(x-y) = (x-y)(1+\delta)$$
  

$$fl(x \times y) = round(x \times y) = (x \times y)(1+\delta)$$
  

$$fl(x/y) = round(x/y) = (x/y)(1+\delta)$$

where  $|\delta| \leq \frac{1}{2}\epsilon$  for the round to nearest,

IEEE standard also requires that correctly rounded remainder and square root operations be provided.

2. IEEE standard response to exceptions

| Event             | Example                                 | Set result to                      |
|-------------------|-----------------------------------------|------------------------------------|
| Invalid operation | $0/0, 0 	imes \infty$                   | NaN                                |
| Division by zero  | Finite nonzero/0                        | $\pm\infty$                        |
| Overflow          | $ x  > N_{\max}$                        | $\pm \infty$ or $\pm N_{\rm max}$  |
| underflow         | $x \neq 0,  x  < N_{\min}$              | $\pm 0, \pm N_{\min}$ or subnormal |
| Inexact           | whenever $fl(x \circ y) \neq x \circ y$ | correctly rounded value            |

3. Let  $\hat{x}$  and  $\hat{y}$  be the floating-point numbers and that

$$\hat{x} = x(1+\tau_1)$$
 and  $\hat{y} = y(1+\tau_2)$ , for  $|\tau_i| \le \tau \ll 1$ 

where  $\tau_i$  could be the relative errors in the process of "collecting/getting" the data from the original source or the previous operations.

Question: how do the four basic arithmetic operations behave?

4. Addition and subtraction

$$\begin{aligned} \mathrm{fl}(\hat{x} + \hat{y}) &= (\hat{x} + \hat{y})(1 + \delta), & |\delta| \leq \frac{1}{2}\epsilon \\ &= x(1 + \tau_1)(1 + \delta) + y(1 + \tau_2)(1 + \delta) \\ &= x + y + x(\tau_1 + \delta + O(\tau\epsilon)) + y(\tau_2 + \delta + O(\tau\epsilon)) \\ &= (x + y)\left(1 + \frac{x}{x + y}(\tau_1 + \delta + O(\tau\epsilon)) + \frac{y}{x + y}(\tau_2 + \delta + O(\tau\epsilon))\right) \\ &\equiv (x + y)(1 + \hat{\delta}), \end{aligned}$$

where  $\hat{\delta}$  can be bounded as follows:

$$|\hat{\delta}| \leq \frac{|x| + |y|}{|x + y|} \left(\tau + \frac{1}{2}\epsilon + O(\tau\epsilon)\right).$$

Three possible cases:

(a) If x and y have the same sign, i.e., xy > 0, then |x + y| = |x| + |y|; this implies

$$|\hat{\delta}| \le \tau + \frac{1}{2}\epsilon + O(\tau\epsilon) \ll 1.$$

Thus  $fl(\hat{x} + \hat{y})$  approximates x + y well.

- (b) If  $x \approx -y \Rightarrow |x+y| \approx 0$ , then  $(|x|+|y|)/|x+y| \gg 1$ ; this implies that  $|\hat{\delta}|$  could be nearly or much bigger than 1. Thus  $fl(\hat{x}+\hat{y})$  may turn out to have nothing to do with the true x+y. This is so called *catastrophic cancellation* which happens when a floating-point number is subtracted from another nearly equal floating-point number. Cancellation causes relative errors or uncertainties already presented in  $\hat{x}$  and  $\hat{y}$  to be magnified.
- (c) In general, if (|x| + |y|)/|x + y| is not too big,  $f(\hat{x} + \hat{y})$  provides a good approximation to x + y.

# 5. Examples of catastrophic cancellation

EXAMPLE 1. Computing  $\sqrt{n+1} - \sqrt{n}$  straightforward causes substantial loss of significant digits for large n

| n        | $fl(\sqrt{n+1})$             | $fl(\sqrt{n})$                         | $\mathrm{fl}(\mathrm{fl}(\sqrt{n+1}) - \mathrm{fl}(\sqrt{n})$ |
|----------|------------------------------|----------------------------------------|---------------------------------------------------------------|
| 1.00e+10 | 1.0000000004999994e+05       | 1.000000000000000000000000000000000000 | 4.99999441672116518e-06                                       |
| 1.00e+11 | 3.16227766018419061e+05      | 3.16227766016837908e+05                | 1.58115290105342865e-06                                       |
| 1.00e+12 | 1.0000000000050000e+06       | 1.000000000000000000000000000000000000 | 5.00003807246685028e-07                                       |
| 1.00e+13 | 3.16227766016853740e+06      | 3.16227766016837955e+06                | 1.57859176397323608e-07                                       |
| 1.00e+14 | 1.0000000000000503e+07       | 1.000000000000000000000000000000000000 | 5.02914190292358398e-08                                       |
| 1.00e+15 | 3.16227766016838104e+07      | 3.16227766016837917e+07                | 1.86264514923095703e-08                                       |
| 1.00e+16 | 1.0000000000000000000000e+08 | 1.0000000000000000000000e+08           | 0.00000000000000000000e+00                                    |

Catastrophic cancellation can sometimes be avoided if a formula is properly reformulated. In the present case, one can compute  $\sqrt{n+1} - \sqrt{n}$  almost to full precision by using the equality

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$

Consequently, the computed results are

| n        | $\mathrm{fl}(1/(\sqrt{n+1}+\sqrt{n}))$ |
|----------|----------------------------------------|
| 1.00e+10 | 4.999999999875000e-06                  |
| 1.00e+11 | 1.581138830080237e-06                  |
| 1.00e+12 | 4.999999999998749e-07                  |
| 1.00e+13 | 1.581138830084150e-07                  |
| 1.00e+14 | 4.999999999999987e-08                  |
| 1.00e+15 | 1.581138830084189e-08                  |
| 1.00e+16 | 5.000000000000000e-09                  |

In fact, one can show that  $fl(1/(\sqrt{n+1}+\sqrt{n})) = (\sqrt{n+1}-\sqrt{n})(1+\delta)$ , where  $|\delta| \le 5\epsilon + O(\epsilon^2)$  (try it!)

EXAMPLE 2. Consider the function

$$f(x) = \frac{1 - \cos x}{x^2} = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2.$$

Note that

$$0 \le f(x) < 1/2$$
 for all  $x \ne 0$ .

Compare the computed values for  $x = 1.2 \times 10^{-5}$  using the above two expressions (assume that the value of  $\cos x$  rounded to 10 significant figures).

6. Multiplication and Division:

$$\begin{aligned} \mathrm{fl}(\hat{x} \times \hat{y}) &= (\hat{x} \times \hat{y})(1+\delta) = xy(1+\tau_1)(1+\tau_2)(1+\delta) \equiv xy(1+\hat{\delta}_{\times}), \\ \mathrm{fl}(\hat{x}/\hat{y}) &= (\hat{x}/\hat{y})(1+\delta) = (x/y)(1+\tau_1)(1+\tau_2)^{-1}(1+\delta) \equiv xy(1+\hat{\delta}_{\div}), \end{aligned}$$

where

$$\hat{\delta}_{\times} = \tau_1 + \tau_2 + \delta + O(\tau\epsilon), \quad \hat{\delta}_{\div} = \tau_1 - \tau_2 + \delta + O(\tau\epsilon).$$

Thus

$$\begin{aligned} |\hat{\delta}_{\times}| &\leq 2\tau + \frac{1}{2}\epsilon + O(\tau\epsilon) \\ |\hat{\delta}_{\div}| &\leq 2\tau + \frac{1}{2}\epsilon + O(\tau\epsilon). \end{aligned}$$

Therefore, multiplication and Division are very well-behaved!

#### III: Floating point error analysis

1. Forward and backward error analysis

We illustrate the basic idea through a simple example. Consider the computation of an inner product of two vector  $x, y \in \mathbb{R}^3$ 

$$x^T y \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + x_3 y_3$$

assuming already  $x_i$ 's and  $y_j$ 's are floating-point numbers. It is likely that  $fl(x \cdot y)$  is computed in the following order.

$$fl(x^T y) = fl(fl(fl(x_1y_1) + fl(x_2y_2)) + fl(x_3y_3)).$$

Adopting the floating-point arithmetic model, we have

$$\begin{aligned} ff(x^T y) &= fl(fl(x_1y_1(1+\epsilon_1)+x_2y_2(1+\epsilon_2))+x_3y_3(1+\epsilon_3)) \\ &= fl((x_1y_1(1+\epsilon_1)+x_2y_2(1+\epsilon_2))(1+\delta_1)+x_3y_3(1+\epsilon_3)) \\ &= ((x_1y_1(1+\epsilon_1)+x_2y_2(1+\epsilon_2))(1+\delta_1)+x_3y_3(1+\epsilon_3))(1+\delta_2) \\ &= x_1y_1(1+\epsilon_1)(1+\delta_1)(1+\delta_2)+x_2y_2(1+\epsilon_2)(1+\delta_1)(1+\delta_2) \\ &+x_3y_3(1+\epsilon_3)(1+\delta_2), \end{aligned}$$

where  $|\epsilon_i| \leq \frac{1}{2}\epsilon$  and  $|\delta_j| \leq \frac{1}{2}\epsilon$ .

Now there are two ways to interpret the errors in the computed  $f(x^T y)$ :

(a) We have

$$fl(x^T y) = x^T y + E,$$

where  $E = x_1 y_1(\epsilon_1 + \delta_1 + \delta_2) + x_2 y_2(\epsilon_2 + \delta_1 + \delta_2) + x_3 y_3(\epsilon_3 + \delta_2) + O(\epsilon^2)$ . It implies that

$$|E| \le \frac{1}{2}\epsilon(3|x_1y_1| + 3|x_2y_2| + 2|x_3y_3|) + O(\epsilon^2) \le \frac{3}{2}\epsilon \cdot |x|^T|y| + O(\epsilon^2).$$

This bound on E tells the worst case difference between the exact  $x^T y$  and its computed value. Such an error analysis is so-called *Forward Error Analysis*.

(b) We can also write

$$fl(x^T y) = \hat{x}^T \hat{y} = (x + \Delta x)^T (y + \Delta y)$$

where<sup>1</sup>

$$\begin{array}{rcl} \hat{x}_1 &=& x_1(1+\epsilon_1), & \hat{y}_1 &=& y_1(1+\delta_1)(1+\delta_2) &\equiv& y_1(1+\hat{\delta}_1), \\ \hat{x}_2 &=& x_2(1+\epsilon_2), & \hat{y}_2 &=& y_2(1+\delta_1)(1+\delta_2) &\equiv& y_2(1+\hat{\delta}_2), \\ \hat{x}_3 &=& x_3(1+\epsilon_3), & \hat{y}_3 &=& y_3(1+\delta_2) &\equiv& y_3(1+\hat{\delta}_3). \end{array}$$

It can be seen that  $|\hat{\delta}_1| = |\hat{\delta}_2| \le \epsilon + O(\epsilon^2)$  and  $|\hat{\delta}_3| \le \frac{1}{2}\epsilon$ . This says the computed value  $fl(x^Ty)$  is the *exact* inner product of a slightly perturbed  $\hat{x}$  and  $\hat{y}$ . Such an error analysis is so-called *Backward Error Analysis*.

<sup>&</sup>lt;sup>1</sup>There are many ways to distribute factors  $(1 + \epsilon_i)$  and  $(1 + \delta_j)$  to  $x_i$  and  $y_j$ . In this case it is even possible to make either  $\hat{x} \equiv x$  or  $\hat{y} \equiv y$ .

# V: Further reading

- 1. The following article based on lecture notes of Prof. W. Kahan of the University of California at Berkeley provides an excellent review of IEEE float point arithmetics.
  - D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 18(1):5–48, 1991.
- 2. The following book gives a broad overview of numerical computing, with special focus on the IEEE standard for binary floating-point arithmetic.
  - M. Overton. Numerical computing with IEEE floating-point arithemetic. SIAM, Philadel-phia, 2001.
- 3. The following lecture by N. Higham presents the latest development on low precision and multiprecision arithmetic.
  - http://bit.ly/kacov18
- 4. Websites for discussion of numerical disasters:
  - T. Huckle, Collection of software bugs http://www5.in.tum.de/~huckle/bugse.html
     Recent book: "Bits and Bugs: A Scientific and Historical Review of Software Failures in Computational Science" by T. Huckle and T. Neckel, SIAM, March 2019.
  - K. Vuik, Some disasters caused by numerical errors http://ta.twi.tudelft.nl/nw/users/vuik/wi211/disasters.html
  - D. Arnold, Some disasters attributable to bad numerical computing http://www.ima.umn.edu/~arnold/disasters/disasters.html