
ECS231 Handout
Subspace Projection Methods for Solving Large-Scale Linear System

Part I. Basics

1. The landscape of solvers for linear systems of equations

Ax = b,

where A is an n× n nonsingular matrix and b is an n-vector, x ∈ Rn is the unknown.

more robust ← −−− → less storage

Direct Iterative
(u = Av)

Nonsymmetric A LU GMRES

Symmetric positive definite A Cholesky CG

more general
↑
|
|
|
↓

more robust

2. A framework for subspace projection methods.

The basic idea of subspace projection technique is to extract an approximate solution x̃ from
a subspace of Rn. It is a technique of dimension reduction. Let W and V be two m-
dimensional subspaces of Rn, and x0 is an initial guess of the solution, then the subspace
projection technique is to

find x̃ ∈ x0 + z, z ∈W such that b−Ax̃⊥V. (1)

Define initial residual r0 = b − Ax0, we have b − Ax̃ = b − A(x0 + z) = r0 − Az. Therefore,
the formulation (1) is equivalent to

find z ∈W such that r0 −Az⊥V. (1a)

If W = V, then it is called an orthogonal projection method and the corresponding or-
thogonality constraints in (1a) is known as the Galerkin condition. Otherwise, if W 6= V, it
is called an oblique projection method and the corresponding orthogonality constraints in
(1a) is known as the Petrov-Galerkin condition.

3. In matrix notation, let V = [v1, v2, . . . , vm] be an n×m matrix whose columns form a basis
of V, and similarly W = [w1, w2, . . . , wm] an n×m matrix whose columns form a basis of W.
Then any approximation solutions in x0 + W can be written as

x̃ = x0 + z = x0 +Wy

and the orthogonality condition (1a) implies

V T (r0 −Az) = 0.

Thus we have
V TAWy = V T r0.

1

Consequently, if V TAW is invertible, then

y = (V TAW)−1V T r0.

Putting all together, a new approximate solution x̃ is then given by

x̃ = x0 +W (V TAW)−1V T r0.

4. What we described here is a basic one projection step. The practical implementations (and
algorithms we will learn) use a succession of such projections. Typically, a new projection
step uses a “new” pair of subspaces W and V (updated from the previous step) and an initial
guess x0 equal to the most recent approximation. This leads to an iterative (refinement)
procedure, and is a common technique in scientific computing.

5. Now, we have a prototype iterative subspace projection technique:

Prototype Projection Method:
0. Let x0 be an initial approximation
1. Iterate until convergence:
2. Select a pair of subspaces V and W of Rn

3. Generate basis matrices V and W for V and W

4. r0 ← b−Ax0
5. y ← (V TAW)−1V T r0
6. x0 ← x0 +Wy

Two remarks are in order:

1. In many practical algorithms, the matrix V TAW does not have to be formed explicitly.
It is available as a by-product of Steps 2 and 3.

2. The method is defined only when V TAW is nonsingular, which is not guaranteed to
be true. There are two important special cases where the nonsingularity of V TAW is
guaranteed:

(a) If A is symmetric positive definite (SPD) and W = V, then V TAW = W TAW is
also SPD (and nonsingular).

(b) If A is nonsingular, and V = AW, then V TAW = W TATAW , which is SPD (and
nonsingular).

6. A one-dimensional subspace projection process is defined when

W = span{w} and V = span{v},

where w and v are two vectors. In this case, the new approximation takes form

x0 ← x0 + z = x0 + αw

and the orthogonality condition (1a) implies vT (r0 −Az) = vT (r0 − αAw) = 0, and thus

α =
vT r0
vTAw

.

7. Steepest Descent (SD) method

When A is SPD, at each step, take

v = w = r0 = b−Ax0

This yields

2

Steepest Descent (SD) Algorithm:
1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk
4. αk =

rTk rk
rTk Ark

5. xk+1 = xk + αkrk

Remarks:

(1) Since A is SPD, rTk Ark > 0 except rk = 0. Therefore, SD does not breakdown.

(2) Let x∗ = A−1b, then k-th step of the SD iteration minimizes

f(x)
def
=

1

2
‖x∗ − x‖2A =

1

2
(x∗ − x)TA(x∗ − x), x∗ = A−1b

over all vectors of the form xk − α(∇f(xk)), known as line search. This is equivalent to the
optimization problem

αk = argminαf (xk−1 − α · ∇f(xk)) ,

where ∇f(xk) = b − Axk is the gradient of f at xk. Recall that from Calculus, we learned
that the negative of the gradient direction is locally the direction that yields the fastest rate
of decrease for f .

8. Minimal Residual (MR) Iteration.

For a general nonsingular matrix A, at each step, let

w = r0 and v = Ar0,

It yields

Minimal Residual (MR) Algorithm:
1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk
4. αk =

rTk A
T rk

rTk A
TArk

5. xk+1 = xk + αkrk

Remark: each step of the MR iteration minimizes

f(x)
def
= ‖r‖22 = ‖b−Ax‖22

over all vectors of the form xk−αrk, namely line search, which is equivalent to solve the least
squares problem

min
α
‖b−A(xk − αrk)‖2.

9. Further reading: theoretical results

(a) Optimality for orthogonal projection.

Theorem 1. Assume that A is SPD and that V = W. Then a vector x̃ is the result of
(1) if and only if

‖x∗ − x̃‖A = min
x∈x0+W

‖x∗ − x‖A,

where ‖x∗ − x‖A =
√

(x∗ − x)TA(x∗ − x), and x∗ is the exact solution to Ax = b.

3

�
�
�
�
�
�
�
�
�
�
�3

-

6

x0 x̃

x∗

x0 + W

Proof: Notice that (A(·), ·) is an inner product on Rn. Thus ‖x∗−x‖A over all possible
x ∈ x0 + W is minimized at x̃ if and only if x∗ − x̃⊥AW, i.e.,

(A(x∗ − x̃), w) = (b−Ax̃,w) = 0 for any w ∈W = V.

This is (1).

(b) The steepest descent (SD) method and conjugate gradient (CG) method (to be discussed
later) are the corresponding implementations for solving large scale symmetric definite
linear system of equations.

(c) Convergence of the SD algorithm: Let A be SPD, and let λmin and λmax be its smallest
and largest eigenvalues respectively. Then for the SD Algorithm

‖x∗ − xk+1‖A ≤
(
λmax − λmin

λmax + λmin

)
‖x∗ − xk‖A =

(
κ(A)− 1

κ(A) + 1

)
‖x∗ − xk‖A,

where x∗ is the exact solution to Ax = b. κ(A) = λmax/λmin is the condition number of
A.1

(d) The SD converges for any initial guess. However, if κ(A) is large and κ(A)−1
κ(A)+1 ≈ 1, the

convergence could be extremely slow. The simple SD becomes impractical.

(e) Optimality for oblique projection.

Theorem 2. Let A be an arbitrary square matrix and assume V = AW. Then a vector
x̃ is the result of (1) if and only if

‖b−Ax̃‖2 = min
x∈x0+W

‖b−Ax‖2.

�
�
�
�
�
�
�
�
�
�
�3

-

6

Ax0 Ax̃

b

Ax0 +AW

Proof: ‖b−Ax‖2 over all possible x ∈ x0+W is minimized at x̃ if and only if b−Ax̃⊥AW,
i.e.,

(b−Ax̃, v) = 0 for any v ∈ AW = V.

This is (1).

(f) The minimal residual residual (MR) method and generalized minimal residual (GMRES)
method (to be studied next) are the corresponding implementations for solving large scale
nonsymmetric linear systems of equations.

1For a proof, see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM, 2003]

4

(g) Convergence theorem of MR algorithm: Assume that A + AT is SPD ,2, and let µ =

λmin

(
A+AT

2

)
, and σ = ‖A‖2. Then for the MR iteration3

‖rk+1‖2 ≤
(

1− µ2

σ2

)1/2

‖rk‖2.

(h) For any positive definite (not necessarily symmetric) linear systems, the MR iteration
converges for any initial guess. However, if µ

σ ≈ 0, the convergence becomes extremely
slow and the MR is not a practical method.

Part II: Krylov subspace and GMRES

1. Krylov subspace is defined as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v},

where A is an n× n matrix, and v is a column vector of length n.

Note that if x ∈ Km(A, v), then x = p(A)v, where p(A) is a polynomial of degree not exceeding
m− 1.

2. Arnoldi procedure is an algorithm for building an orthogonal basis {v1, v2, . . . , vm} of the
Krylov subspace Km(A, v) using a modified Gram-Schmidt orthogonalization process.

1. v1 = v/‖v‖2
2. for j = 1, 2, . . . ,m
3. compute w = Avj
4. for i = 1, 2, . . . , j
5. hij = vTi w
6. w := w − hijvi
7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, stop
10. vj+1 = w/hj+1,j

11. endfor

Proposition 1. Assume that hj+1,j 6= 0 for j = 1, 2, . . . ,m, then the vectors {v1, v2, . . . , vm}
form an orthonormal basis of the Krylov subspace Km(A, v):

span{v1, v2, . . . , vm} = Km(A, v).

Proof. By induction.

3. Let

Vm = [v1, v2, . . . , vm] and Hm =


h11 h12 · · · h1,m−1 h1m
h21 h22 · · · h2,m−1 h2m

h32
. . . h3,m−1 h3m
. . .

...
...

hm,m−1 hm,m

 ,
2This is equivalent to say that A is positive definite. A real matrix A said to be positive definite if uTAu > 0

for any 0 6= u ∈ R. It can be shown that if A is real positive definite, then A is nonsingular, in addition, uTAu ≥
λmin

(
1
2
(A+AT)

)
uTu.

3For a proof, see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM, 2003]

5

where Hm is called an upper Hessenberg matrix. Then in the matrix form, the Arnoldi
procedure can be expressed by the following relations:

AVm = VmHm + hm+1,mvm+1e
T
m (2)

and V T
mVm = Im, V T

mvm+1 = 0 and ‖vm+1‖2 = 1.

If we denote

Vm+1 = [Vm vm+1] and Ĥm =

[
Hm

hm+1,me
T
m

]
,

where Ĥm is a m+ 1 by m upper triangular matrix, then the order-m Arnoldi decomposition
(2) can also be written in the following compact form

AVm = Vm+1Ĥm. (3)

The expressions (2) (and (3)) is referred to as an order-m Arnoldi decomposition.

4. Remarks:

• Note that the matrix A is only referenced via the matrix-vector multiplication Avj .
Therefore, it is ideal for large sparse or dense structure matrices. Any sparsity or struc-
ture of a matrix can be exploited in the matrix-vector multiplication.

• The main storage requirement is n(m+1) for storing Arnoldi vectors {vi} plus the storage
requirement for the matrix A in question or the required matrix-vector multiplication.

• The primary arithmetic cost of the procedure is the cost of m matrix-vector products plus
2m2n for the rest. It is common that the matrix-vector multiplication is the dominant
cost.

• The Arnoldi procedure breaks down when hj+1,j = 0 for some j. It is easy to see that
if the Arnoldi procedure breaks down at step j (i.e. hj+1,j = 0), we have

AVj = VjHj .

This indicates that Kj is an invariant subspace of A.

• Some care must be taken to insure that the vectors vj remain orthogonal to working
accuracy in the presence of rounding error. The usual technique is called reorthogonal-
ization.

5. The Generalized Minimum Residual (GMRES) method4 is a generalization of the one-dimensional
MR iteration. GMRES uses the following pair of Krylov subspaces as pair of projection sub-
spaces:

W = Km(A, r0) and V = AW = AKm(A, r0).

and can be derived under the framework of the subspace projection technique.

Specifically, let
x ∈ x0 + W = x0 + Vmy.

Then by the orthogonality condition (1), we have

V T
mA

T (b−Ax) = 0.

i.e.,
V T
mA

T (r0 −AVmy) = 0.

4Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal RESidual algorithm for solving nonsymmetric linear
systems, SIAM Journal on Scientific and Statistical Computing, Vol.7, pp.856–869, 1986.

6

which is equivalent to
V T
mA

TAVmy = V T
mA

T r0

Then by order-m Arnoldi decomposition, we have

ĤT
mĤmy = ĤT

mV
T
m+1r0 = ĤT

m(βe1)

This is equivalent to solve the least squares problem

min
y
‖βe1 − Ĥmy‖2.

for y.

6. Alternatively, we can also derive the GMRES method by exploitng the optimality property.
Note that any vector x in x0 + Km can be written as x = x0 + Vmy, where y is an m-vector.
Define

J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy)‖2 (4)

Then using the Arnoldi decomposition (3), we have

b−Ax = b−A(x0 + Vmy) = r0 −AVmy
= βv1 − Vm+1Ĥmy = Vm+1(βe1 − Ĥmy).

Since the column vectors of Vm+1 are orthonormal, then

J(y) = ‖b−A(x0 + Vmy)‖2 = ‖βe1 − Ĥmy‖2.

Therefore, the GMRES approximation xm is the unique vector

xm = x0 + Vmy,

where y the solution of the least squares problem

min
y
‖βe1 − Ĥmy‖2.

This least squares problem is inexpensive to compute since m is typically small.

7. Restarting GMRES method. As m increases, the computational cost increases at least as
O(m2n). The memory cost increases as O(mn). For large n this limits the largest value of m
that can be used. The popular remedy is to restart the algorithm periodically for a fixed m.

Restarted GMRES:
1. compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β
2. call Arnoldi procedure with A, v1 and m

3. solve miny ‖βe1 − Ĥmy‖2
. 4. xm = x0 + Vmym

5. test for convergence, if satisfied, then stop
6. set x0 := xm and go to 1.

8. Breakdown of GMRES: Since the least squares problem always has solution, the only possi-
bility of the breakdown of the GMRES is in the Arnoldi procedure when hj+1,j at some step
j. However, in this case, the residual norm of xj is zero, b−Axj = 0. xj is the exact solution
of the linear system Ax = b. This is called lucky breakdown. In fact, we have

7

Proposition 2. Let A be a nonsingular matrix. Then the GMRES algorithm breaks down at
step j, i.e., hj+1,j = 0, if and only if xj is an exact solution of Ax = b.

9. Further reading: Convergence of GMRES.

We wish to establish a result to provide an upper bound on the convergence rate of the
GMRES iterates. Unfortunately, because of the complication of non-Hermitian matrices and
their spectral distribution, it is not possible to prove a simple result, but can get pretty close
for practical use. First, we have the following lemma to characterize the approximate solution
by the GMRES method:

Proposition 3. Let xm be the approximate solution obtained from the m-th step of the GM-
RES algorithm, and let rm = b−Axm. Then xm is of the form

xm = x0 + qm(A)r0

and
‖rm‖2 = ‖(I −Aqm(A))r0‖2 = min

q∈Pm−1

‖(I −Aq(A))r0‖2.

Proof: This is true because xm minimizes the 2-norm of the residual in the affine subspace
x0 + Km, the optimality property of the projection technique. Recall that Km is the set of
all vectors of the form x0 + q(A)r0, where q is a polynomial of degree ≤ m− 1.

Proposition 4. Assume that A is diagonalizable matrix and let A = V ΛV −1 where Λ =
diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues. Define

ε(m) = min
p∈Pm,p(0)=1

max
1≤i≤n

|p(λi)|.

Then the residual norm satisfies the inequality

‖rm‖2 ≤ κ2(V)ε(m)‖r0‖2.

where κ2(V) = ‖V ‖2‖V −1‖2.

Proof: see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

The results of approximation theory on near-optimal Chebyshev polynomials in the complex
plane can now be used to obtain an upper bound for ε(m). This is stated in the following
corollary.

Corollary 1. Assume that all the eigenvalues of A are located in the ellipse E(c, d, a) which
excludes the origin. Then

‖rm‖2 <∼ κ2(V)

(
a+
√
a2 − d2

c+
√
c2 − d2

)m
‖r0‖2.

Proof: see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

The follow plots show the spectrum of A is contained in the ellipses E(c, d, a) with center c,
focal distance d and major semi axis a. The left plot is for the case of real d and the right
plot is for the case of purely imaginary d.

8

c

c+a

c
c+dc-d

c+d

c-d

c-a

c+a
c+a

Re

Im

Re

Im

Since the condition number κ2(V) is typically not known and can be very large, results are of
limited practical interest. They can be useful one when it is known that the matrix is nearly
normal, in which case, κ2(V) ≈ 1.

Part III. Lanczos process, Conjugate Gradient method

1. The Lanczos procedure can be regarded as a simplification of Arnoldi’s procedure when A is
symmetric.

By an order-m Arnoldi decomposition, we know that

Hm = V T
mAVm.

If A is symmetric, then Hm becomes symmetric tridiagonal. This simple observation leads to
the following procedure to compute an orthonormal basis Vm of Krylov subspace Km(A, v)
when A is symmetric5:

1. v1 = v/‖v‖2, set β1 = 0, v0 = 0
2. for j = 1, 2, . . . ,m
3. w = Avj − βjvj−1
4. αj = vTj w

5. w := w − αjvj
8. βj+1 = ‖w‖2
9. If βj+1 = 0, then stop
10. vj+1 = w/βj+1

11. endfor

Remarks:

• Only three vectors must be saved in the inner loop of the procedure. This is referred to
as a three-term recurrence.

• The computed Lanczos vectors {vi} are orthogonal in exact arithmetic. In the presence
of finite precision, it could start losing such orthogonality rapidly with the increase of j.
(The same phenomenon is also observed in the Arnoldi procedure, but it’s not as severe

5Note that we change the notation αj = hjj and βj+1 = hj−1,j , comparing with the Arnoldi procedure.

9

as in the Lanczos procedure). There has been much research devoted to understanding
the effect of loss of the orthogonality, and finding ways to either recover the orthogonality,
or to at last diminish its effects. An excellent reference on the subject is [B. N. Parlett,
The Symmetric Eigenvalue Problem, SIAM Press, 1998].

2. In the matrix form, the Lanczos procedure can be expressed in the following governing equa-
tions, referred to as an order−m Lanczos decomposition:

AVm = VmTm + βm+1vm+1e
T
m

= Vm+1T̂m

where Vm = [v1, v2, . . . , vm], Vm+1 = [Vm, vm+1], and

Tm =



α1 β2

β2 α2
. . .

β3
. . . βm−1
. . . αm−1 βm

βm αm


and T̂m =

[
Tm

βm+1e
T
m

]
.

By the orthogonlity properties V T
mVm = I and V T

mvm+1 = 0, we have V T
mAVm = Tm.

3. The Conjugate Gradient (CG) method is the best known iterative technique for solving
large scale SPD linear systems Ax = b, first published in 1952 by Hestenes and Stiefel.6

There are several ways to derive the CG method. In terms of our familiar subspace projection
technique, we can describe the CG method in one sentence:

The CG method is a realization of an orthogonal projection technique onto the
Krylov subspace Km(A, r0), where r0 = b−Ax0 with initial guess x0.

In this note, we provide a derivation of the CG method under this algorithmic framework.

There are many different derivations of the CG method, for example, see the following paper

• Jonathan Shewchuk, An Introduction to Conjugate Gradient Method Without the Ago-
nizing Pain. 1994 (64 pages) (pdf file is available at the class website)

4. Before we derive the CG method, we first derive a so-called direct Lanczos method.

Using the subspace projection technique, with an initial guess x0, the approximate solution
obtained from an orthogonal projection method onto x0 + Km(A, r0) is given by

xm = x0 + Vmym, (5)

where ym is the solution of the tridiagonal system

Tmym = ‖r0‖2e1. (6)

5. Now, let’s try to compute the solution of the tridiagonal system (6) progressively along with
the Lanczos procedure. For doing so, let’s write the LU factorization of Tm as

Tm = LmUm,

6M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.
Standards, 49:409–436, 1952.

10

i.e. the Gaussian elimination without pivoting:

Tm = LmUm =


1
λ2 1

λ3 1
. . .

. . .

λm 1




η1 β2

η2 β3
. . .

. . .

ηm−1 βm
ηm

 ,
where η1 = α1, and for j = 2, 3, . . . ,m,

λj = βj/ηj−1, ηj = αj − λjβj .

Then xm is given by

xm = x0 + VmU
−1
m L−1m (‖r0‖2e1)

≡ x0 + Pmzm.

where Pm = VmU
−1
m and zm = L−1m (‖r0‖2e1).

The following two observations connect Pm and zm of the mth step with Pm−1 and zm−1 of
the previous step.

Observation A. Let us write Pm = [Pm−1 pm], where pm is the last column of Pm, then we
have

Pm = [Pm−1 pm] = VmU
−1
m =

[
Vm−1 vm

] [Um−1 βmem−1
ηm

]−1
=

[
Vm−1 vm

] [U−1m−1 −U−1m−1(βmem−1)η−1m
η−1m

]
=

[
Vm−1U

−1
m−1 −Vm−1U−1m−1(βmem−1)η−1m + vmη

−1
m

]
=

[
Pm−1 −Pm−1(βmem−1)η−1m + vmη

−1
m

]
=

[
Pm−1 η−1m (vm − βmpm−1)

]
Therefore, we see that the vector pm can be computed from previous pm−1 and vm by
the simple update

pm = η−1m (vm − βmpm−1), (7)

Observation B. By the definition of the vector zm, we have

zm = L−1m (‖r0‖2e1) =

[
L−1m−1

−λmeTm−1L
−1
m−1 1

] [
‖r0‖2e1

0

]
=

[
L−1m−1(‖r0‖2e1)

−λmeTm−1L
−1
m−1(‖r0‖2e1)

]
≡
[
zm−1
ζm

]
where ζm = −λmζm−1 (here we use the definition that ζm is the last component of zm).

As a result of these two observations, xm can be written in an updated form

xm = x0 + Pmzm

= x0 + [Pm−1 pm]

[
zm−1
ζm

]
= x0 + Pm−1zm−1 + ζmpm

= xm−1 + ζmpm. (8)

This gives the following direct Lanczos algorithm:

11

Direct Lanczos Method
1. compute r0 = b−Ax0, ζ1 = ‖r0‖2, and v=r0/ζ1
2. set λ1 = β1 = 0, p0 = 0
3. for m = 1, 2, . . . ,
4. w := Avm − βmvm−1 and αm = vTmw
5. If m > 1 then compute λm = βm/ηm−1 and ζm = −λmζm−1
6. ηm = αm − λmβm
7. pm = η−1m (vm − βmpm−1)
8. xm = xm−1 + ζmpm
9. If xm has converged, then Stop
10. w := w − αmvm
11. βm+1 = ‖w‖2 and vm+1 = w/βm+1

12. endfor

6. Toward the CG method, let us examine the residual vector rm of the approximate solution
xm,

rm = b−Axm = b−A(x0 + Vmym) = r0 −AVmym
= r0 − (VmTm + βm+1vm+1e

T
m)ym

= r0 − VmTmym − βm+1vm+1(e
T
mym)

= −βm+1(e
T
mym)vm+1.

Therefore, we see that the residual vector rm is in the direction of vm+1. Since {vi} are
orthogonal, we conclude that

the residual vectors {ri} are orthogonal, i.e., rTj ri = 0 for i 6= j. (9)

7. Next we note that P TmAPm is a diagonal matrix. In fact,

P TmAPm = U−Tm V T
mAVmU

−1
m = U−Tm TmU

−1
m = U−Tm LmUmU

−1
m = U−Tm Lm.

Note that U−TLm is a lower triangular which is also symmetric. Therefore it must be a
diagonal matrix. By the fact that P TmAPm is diagonal, we conclude that

the vectors {pi} are A-conjugate, i.e., pTj Api = 0 for i 6= j. (10)

8. A consequence of the orthogonality condition (9) and conjugacy condition (10) is that a
version of the algorithm can be derived by directly imposing the conditions (9) and (10).
This gives us the Conjugate Gradient (CG) algorithm.

We now drive this. By the relation (8), let us express the j + 1-th approximate vector xj+1

as
xj+1 = xj + θjpj ,

Then the corresponding residual vector satisfies

rj+1 = b−Axj+1 = b−A(xj + θjpj) = rj − θjApj . (11)

Since the rj ’s are orthogonal, i.e., rTj rj+1 = 0, then it gives

θj =
rTj rj

rTj Apj
(12)

12

By the relation (7) and noting that vj is in the direction of rj+1, it is known that the next
search direction pj+1 is a linear combination of rj+1 and pj . Therefore, we can write

pj+1 = rj+1 + τjpj .

Thus a first consequence of the above relation is that

rTj Apj = (pj − τj−1pj−1)TApj = pTj Apj .

Therefore the scalar θj in (12) can be rewritten as

θj =
rTj rj

pTj Apj
.

The second consequence is that by imposing A-conjugacy pTj+1Apj = 0, we have

τj = −
pTj Arj+1

pTj Apj

Note that from (11), Apj = − 1
θj

(rj+1 − rj) and therefore we have the following simplified

expression for the scalar τj :

τj =
1

θj

(rj+1 − rj)T rj+1

pTj Apj
=
rTj+1rj+1

rTj rj

Putting these relations together gives the following CG algorithm

Conjugate Gradient (CG) Method
1. select initial approximation x0, compute r0 = b−Ax0 and set p0 := r0
2. for j = 0, 1, 2, . . . , until convergence do
3. θj = rTj rj/(p

T
j Apj)

4. xj+1 = xj + θjpj
5. rj+1 = rj − θjApj
6. τj = rTj+1rj+1/(r

T
j rj)

7. pj+1 = rj+1 + τjpj
8. endfor

Note that in addition to the matrix A, only four vectors of storage (workspace) are required:
x, p,Ap and r.

9. Further reading on convergence analysis of the CG method

(a) From the optimality of the projection technique, we know that the approximate solution
obtained from the m-th step of the CG algorithm minimizes the A-norm of the error
in the affine subspace x0 + Km(A, r0). Since Km is the set of all vectors of the form
x0+q(A)r0, where q is a polynomial of degree ≤ m−1, we conclude the following lemma
which characterizes the approximate solution xm:

Lemma 1. Let xm be the approximate solution obtained from the m-th step of the CG
algorithm, and let dm = x∗ − xm where x∗ is the exact solution of Ax = b. Then xm is
of the form

xm = x0 + qm(A)r0

where qm is a polynomial of degree m− 1 such that

‖(I −Aqm(A))d0‖A = min
q∈Pm−1

‖(I −Aq(A))d0‖A

13

(b) From Lemma 1, we have the following theorem.

Theorem 3. Let xm be the approximate solution obtained from the m-th step of the CG
algorithm, and x∗ is the exact solution of Ax = b. Then,

‖x∗ − xm‖A ≤
1

Tm(1 + 2η)
‖x∗ − x0‖A, (13)

where Tm is the Chebyshev polynomial of degree m, and η = λmin/(λmax − λmin). λmax

and λmin are the largest and smallest eigenvalues of A.

A slightly different formulation of inequality can be derived. Using the relation

Tm(t) =
1

2

[(
t+
√
t2 − 1

)m
+
(
t+

√
t2 − 1

)−m]
≥ 1

2

(
t+

√
t2 − 1

)m
.

Then

Tm(1 + 2η) ≥ 1

2

(
1 + 2η +

√
(1 + 2η)2 − 1

)m
=

1

2

(
1 + 2η + 2

√
η(η + 1)

)m
.

Now notice that

1 + 2η + 2
√
η(η + 1) = (

√
η +

√
η + 1)2 =

(
√
λmin +

√
λmax)2

λmax − λmin

=

√
λmax +

√
λmin√

λmax −
√
λmin

=

√
κ+ 1√
κ− 1

where κ is the condition number of A, κ = λmax
λmin

. Substituting into the inequality (13)
yields

‖x∗ − xm‖A ≤ 2

(√
κ− 1√
κ+ 1

)m
‖x∗ − x0‖A.

This bound is similar to that of the steepest descent algorithm except that the condition
number of A is now replaced by its square root. CG method could be of order of
magnitudes faster than the steepest descent algorithm. For example, let κ = 103, if one
wants (

k − 1

k + 1

)m1

=

(√
k − 1√
k + 1

)m2

= 10−2

then it means that the steepest descent algorithm needs to take m1 ≈ 2300 iterations to
reach the same level of accuracy as m2 ≈ 73 iterations of the CG method.

(c) The above analysis using the condition number may not explain all the convergence
behavior of CG. In fact, the entire distribution of eigenvalues of A is important, not just
the ratio of the largest to the smallest one. If the largest and smallest eigenvalues of
A are few in number (or clustered closely together), then CG will converge much more
quickly than the above analysis based just on A’s condition number would indicate.
Any important fact is that the behavior of CG in floating point arithmetic can differ
significantly from its behavior in exact arithmetic7.

7A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
H. van der Vorst, Iterative methods for large linear systems, Cambridge University Press, 2003

14

Part IV. Preconditioning techniques

1. By the convergence analysis of CG and GMRES algorithms, we learn that the convergence
rate strongly depends on the condition number of the coefficient matrix A of the linear system
Ax = b, and the distribution of A’s eigenvalues. Other Krylov subspace methods share the
similar property.

2. Preconditioning means replacing the system Ax = b with the modified systems

M−1Ax = M−1b. (14)

or
AM−1x̂ = b, x = M−1x̂. (15)

These are referred to as left and right preconditioning, respectively.

If the preconditioner M is SPD, then one can precondition symmetrically and solve the
modified linear system

L−1AL−T y = L−1b, x = L−T y, (16)

where M = LLT . The matrix L could be the Cholesky factor of M or any other matrix
satisfying M = LLT .

3. The desired preconditioner M should be chosen so that

(a) M−1A or L−1AL−T is “well-conditioned” or approximates “the identity matrix”,

(b) linear systems with coefficient matrix M are easy to solve.

A careful choice of M can often make the condition number of the modified system much
smaller than the condition number of the original one, and thus accelerate convergence dra-
matically. Indeed, a good preconditioner is often necessary for an iterative method to converge
at all, and much past and current research in iterative methods is directed at finding better
preconditioners.

4. We now show that a preconditioner can be easily incorporated into the CG method, and lead
to a Preconditioned Conjugate Gradient method, PCG for short.

If the CG algorithm is applied directly to the symmetric preconditioned system (16), the
iterative kernels satisfy

yj+1 = yj + α̂j p̂j

r̂j+1 = r̂j − α̂jL−1AL−T p̂j
p̂j+1 = r̂j+1 + β̂j p̂j

with

α̂j =
r̂Tj r̂j

p̂Tj L
−1AL−T p̂j

and β̂j =
r̂Tj+1r̂j+1

r̂Tj r̂j
.

Defining
xj = L−T yj , rj = Lr̂j , pj = L−T p̂j .

The iterative kernels become

xj+1 = xj + αjpj

rj+1 = rj − αjApj
pj+1 = M−1rj+1 + βjpj

15

with

αj =
rTj M

−1rj

pTj Apj
and βj =

rTj+1M
−1rj+1

rTj M
−1rj

.

We obtained the following preconditioned CG algorithm for solving Ax = b using the precon-
ditioner M = LLT .

Preconditioned Conjugate Gradient (PCG)
1. compute r0 = b−Ax0, solve Mz0 = r0 and p0 := z0
2. for j = 0, 1, 2, . . . , until convergence do
3. αj = (rTj zj)/(p

T
j Apj)

4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. solve Mzj+1 = rj+1

7. βj = (rTj+1zj+1)/(r
T
j zj)

8. pj+1 = zj+1 + βjpj
9. endfor

5. Similarly, a preconditioner can be easily incorporated into the GMRES method, and lead to
a Preconditioned GMRES method, PGMRES for short.

Preconditioned GMRES
1. compute r0 = M−1(b−Ax0), β = ‖r0‖2 and v1 := r0/β
2. for j = 0, 1, 2, . . . ,m do
3. solve Mw = Avj
4. for i = 1, 2, . . . , j do
5. hij = vTi w
6. w := w − hijwi
7. end do
8. compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. end do

10. let ym be the solution of miny ‖βe1 − Ĥmy‖2
11. xm = x0 + Vmym
12. If satisfied, Stop, else set x0 := xm and go to 1.

Note that in the above algorithm, Vm = [v1, v2, . . . , vm] and Ĥm is a (m + 1) × m upper
triangular matrix with the entries hij computed at steps 4 and 8.

6. Commonly used preconditioners

The reliability and robustness of iterative techniques, when dealing with various applications,
often depends much more on the quality of the preconditioner than on the particular Krylov
subspace methods used. Finding a good preconditioner to solve a given sparse linear system
is oftne viewed as a combination of art and science. Preconditioners can be divided roughly
into three categories:

I. Preconditioners designed for general classes of matrices; e.g. Jacobi, Gauss-Seidel, SOR,
incomplete LU factorization, incomplete Cholesky decomposition, approximate inverse.

II. Preconditioners designed for broad classes of underlying problems; e.g. elliptic partial
differential equations (such as Poisson equation). Examples are multigrid and domain
decomposition preconditioners.

16

III. Preconditioners designed for a specific matrix or underlying problem; e.g. for the trans-
port equation.

The best choice of a preconditioner is generally application problem-dependent, and also
depends on the iterative method being used.

• For CG and related methods to solve a symmetric positive definite system, one would
like the condition number of the symmetrically preconditioned matrix L−1AL−T to be
close to one, in order for the error bound based on the Chebyshev polynomial to be
small, or alternatively, has few extreme eigenvalues.

• For GMRES, a preconditioned matrix that is close to normal and whose eigenvalues
are tightly clustered around some point away from the origin would be good, but other
properties might also suffice to define a good preconditioner.

7. ILU Factorization Preconditioners.

Except for diagonal matrices, the solution of the linear system with coefficient matrix M
requires that we have a suitable decomposition of M . In many instances this will be an LU
decomposition. The idea of an incomplete LU preconditioner is to perform an abbreviated
(sparse) form of Gaussian elimination of A and to declare the production of the resulting
factors to be M . Since M is by construction already factorized, system involving M will be
easy to solve.

Let us first introduce a sparsity set Z to control the patterns of zeros. Specifically, let Z be
a set of ordered pairs of integers from {1, 2, . . . , n} containing no pairs of the form (i, i). An
incomplete LU factorization of A is a decomposition of the form

A = LU + E, (17)

where L is unit lower triangular, and U is upper triangular, and L, U and E have the following
properties

(a) If (i, j) ∈ Z with i > j, then `ij = 0,

(b) If (i, j) ∈ Z with i < j, then uij = 0,

(c) If (i, j) /∈ Z, then eij = 0.

In other words, the elements of L and U are zero on the sparsity set Z, and off the sparsity
set the decomposition reproduces A.

It is instructive to consider two extreme cases. (1) If the sparsity Z set is empty, we get
the LU decomposition of A, i.e., we are using A as a preconditioner. (2) If Z is everything
except diagonal pairs of the form (i, i), then we are effectively using the diagonal of A as a
preconditioner.

Let us consider an ILU algorithm to generate L and U rowwise. Suppose we have computed
the first k − 1 rows of L and U , and we wish to compute the kth row. Write the first k rows
of (17) in the form[

A11 A1k

aTk1 aTkk

]
=

[
L11 0
lT1k 1

] [
U11 U1k

0 uTkk

]
+

[
E11 E1k

eTk1 eTkk

]
.

we need to compute lT1k and uTkk. Multiplying out, we find that

lT1kU11 + eTk1 = aTk1 (18)

17

and
uTkk + eTkk = aTkk − lT1kU1k

We then can solve these two systems in order:

`k1, `k2, . . . , `k,k−1︸ ︷︷ ︸
lT1k

, νkk, νk,k+1, . . . , νk,n︸ ︷︷ ︸
uTkk

.

Suppose that we have computed `k1, `k2, . . . , `k,j−1. If (k, j) ∈ Z, then set `kj = 0. If
(k, j) /∈ Z, then ekj = 0, and the equation (18) gives

αkj =
k−1∑
i=1

`kiνij + `kjνjj ,

from which we get

`kj =
αkj −

∑k−1
i=1 `kiνij
νjj

.

The key observation here is that it does not matter how the values of the preceding `’s and ν’s
were determined. If `kj is defined in this way, then when we compute LU , its (k, j)-element
will be αkj . Thus we set `’s and ν’s to zero on the sparsity set without interfering with
the values of LU off the sparsity set. A similar procedure applies to the determination of
νkk, νk,k+1, . . . , νk,n.

Incomplete LU Factorization(A,Z)
1. for k = 1 to n
2. for j = 1 to k − 1
3. if ((k, j) ∈ Z)
4. L(k, j) = 0
5. else
6. L(k, j) = (A(k, j)− L(k, 1 : j − 1) ∗ U(1 : j − 1, j))/U(j, j)
7. end if
8. end for j
9. for j = k to n
10. if ((k, j) ∈ Z)
11. U(k, j) = 0
12. else
13. U(k, j) = (A(k, j)− L(k, 1 : k − 1) ∗ U(1 : k − 1, j)
14. end if
15. end for j
16. end for k

The algorithm can be carried to completion provided the quantities U(j, j) are all nonzero, in
which case the decomposition is unique. Whether or not the U(j, j) are nonzero will depend
on the matrix in question.

The following figure compares the sparsity of LU and ILU factorizations of a sparse 20 by 20
matrix

18

The sparsity of LU

0 5 10 15 20

0

5

10

15

20

nz = 72

matrix A

0 5 10 15 20

0

5

10

15

20

nz = 93

matrix L ("dense LU")

0 5 10 15 20

0

5

10

15

20

nz = 82

matrix U ("dense LU")

The sparsity of ILU and E-factor

0 5 10 15 20

0

5

10

15

20

nz = 72

matrix A

0 5 10 15 20

0

5

10

15

20

nz = 42

matrix L ("sparse LU")

0 5 10 15 20

0

5

10

15

20

nz = 50

matrix U ("sparse LU")

0 5 10 15 20

0

5

10

15

20

nz = 44

matrix A − LU

8. Not all matrices can have an ILU factorization. The following two classes of matrices, the
algorithm always works.

(a) If A is nonsingular diagonally dominant matrix, then A has an incomplete LU factoriza-
tion for any sparsity set Z.

Note: A matrix A of order n is diagonally dominant if

|aii| ≥
n∑

j=1,j 6=i
|aij |, for i = 1, 2, . . . , n.

It is strictly diagonally dominant if strictly inequality holds for all j.

It can be shown that A strictly diagonally dominant matrix is nonsingular. Be aware
that diagonal dominance alone does not imply either nonsingularity or singularity. For
examples, let

A =

 2 −1 0
−1 2 −1
0 −1 2

 , B =

 1 1 0
1 2 1
0 1 1

 .

Then A is nonsingular. On the other hand, B is singular.

(b) The incomplete LU factorization also exists for any M-matrix.

Note: A matrix is said to be an M-matrix if it satisfies the following properties:

(1) aii > 0 for i = 1, . . . n,

(2) aij ≤ 0 for i 6= j, i, j = 1, . . . n,

(3) A is nonsingular and

(4) A−1 is a nonnegative matrix (all entries are nonnegative).

9. Block preconditioner is a popular technique for block-tridiagonal matrices arising from the
discretization of elliptic problems, such as Poisson’s equation. It can be also be generalized to
other sparse matrices. For example, the matrix arises in the solution of 2D Poisson’s equation
has the form

A =


T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T



19

where T is a symmetric tridiagonal matrix, with diagonal entres all 4, and off diagonal entries
all −1. In this case, a natural preconditioner is

M = diag(T, T, . . . , T).

10. The following figure shows the convergence history of GMRES with and without precon-
ditioning for solving a linear system of equations arising from a discretization of a model
convection-diffusion equation. The preconditioner used here is ILU(0), i.e., ILU factorization
with the same sparsity pattern of A.

0 10 20 30 40 50 60 70 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

number of iteration

lo
g
 o

f
re

s
id

u
a
l
n
o
rm

GMRES (x−) vs. P−GMRES (o−), no restarting

11. Iterative methods in Matlab

functions methods

pcg Preconditioned Conjugate Gradients Method.
gmres Generalized Minimum Residual Method.

bicg BiConjugate Gradients Method.
bicgstab BiConjugate Gradients Stabilized Method.
cgs Conjugate Gradients Squared Method.
minres Minimum Residual Method.
qmr Quasi-Minimal Residual Method.
symmlq Symmetric LQ Method.

Preconditioners

functions preconditioners

luinc Incomplete LU factorization.
cholinc Incomplete Cholesky factorization.

12. Further Reading

• Yousef Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003

• H. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Univ.
Press, 2003

• R. Barrett et al, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, SIAM, 1994

20

