
ECS231 Handout Frequently used matrix decompositions

1. LU decomposition (Gaussian elimination in matrix form). If A is a square nonsingular
matrix, then there exist a permutation matrix P , a unit lower triangular matrix L, and a
upper triangular matrix U such that

PA = LU.

Special cases:

(a) Cholesky decomposition. A matrix A is symmetric positive definite if and only if
there exists a unique nonsingular upper triangular matrix R, with positive diagonal
entries, such that

A = RTR.

(b) LDLT factorization. If AT = A is nonsingular, then there exists a permutation P , a
unit lower triangular matrix L, and a block diagonal matrix D with 1-by-1 and 2-by-2
blocks such that

PAP T = LDLT .

Applications:

• Solve Ax = b.

• Compute det(A).

• Compute A−1, if really necessary.

2. QR decomposition. Let A be m-by-n with m ≥ n. Suppose that A has full column rank.
Then there exist a unique m-by-n orthogonal matrix Q (i.e. QTQ = I) and a unique n-by-n
upper triangular matrix R with positive diagonal rii > 0 such that

A = QR.

Applications:

• Find an orthonormal basis of the subspace spanned by the columns of A (the Gram-
Schmidt orthogonalization process)

• Solve the linear least squares problem minx ‖Ax− b‖2.

3. Schur decomposition, eigenvalue decomposition and spectral decomposition. Let
A be of order n. Then

(a) there is an n× n unitary matrix U (i.e. UHU = I) such that

A = UTUH ,

where T is upper triangular. This is called a Schur decomposition.

(b) The eigenvalue decomposition, if exists, is given by

A = XΛX−1,

where Λ is a diagonal matrix.
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(c) When A is Hermitian, AH = A, we have the spectral decomposition

A = QλQH ,

where Λ is real and diagonal.

Applications:

• The eigenvalues of A are the diagonal elements of T . By appropriate choice of U , the
eigenvalues of A, which are the diagonal elements of T , may be made to appear in any
order.

• Compute matrix functions f(A) = Uf(T )UH .

4. Singular Value Decomposition (SVD). Let A be an m-by-n matrix with m ≥ n. Then
we can write

A = UΣV T ,

where U is m-by-m orthogonal matrix (i.e. UTU = Im) and V is n-by-n orthogonal matrix
(i.e. V TV = In), and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

If m < n, the SVD can be defined by considering AT .

The columns u1, u2, . . . , un of U are called left singular vectors of A. The columns v1, v2, . . . , vn
of V are called right singular vectors. The σ1, σ2, . . . , σn are called singular values.

Applications:

• Suppose that A is m-by-n with m ≥ n and has full rank, with A = UΣV T being A’s
SVD. Then the pseudo-inverse can also be written as

A† ≡ (ATA)−1AT = V Σ−1UT .

If m < n, then A† = AT (AAT )−1.

• Suppose that
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

Then the rank of A is r. The range space of A is span(u1, u2, · · · , ur). and the null space
of A is span(vr+1, vr+2, . . . , vn).

• ‖A‖2 = σ1(≡ σmax)

• Let A be m× n with m ≥ n. Then

(a) eigenvalues of ATA are σ2i , i = 1, 2, . . . , n. The corresponding eigenvectors are the
right singular vectors vi, i = 1, 2, . . . , n.

(b) eigenvalues of AAT are σ2i , i = 1, 2, . . . , n and m−n zeros. The left singular vectors
ui, i = 1, 2, . . . , n are corresponding eigenvectors for the eigenvalues σ2i . One can take any
m− n other orthogonal vectors that are orthogonal to u1, u2, . . . , un as the eigenvectors
for the eigenvalues 0.

• Principal components. The SVD of A can be rewritten as

A = E1 + E2 + · · ·+ Ep

where p = min(m,n), and Ek is a rank-one matrix of the form

Ek = σkukv
T
k ,

Ek are referred to as component matrices, and are orthogonal to each other in the sense
that

EjE
T
k = 0, j 6= k.

Since ‖Ek‖2 = σk, the contribution each Ek makes to reproduce A is determined by the
size of the singular value σk.
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• Optimal rank-k approximation:

min
B : m× n

rank(B) = k

‖A−B‖2 = ‖A−Ak‖2 = σk+1,

where
Ak = UΣkV

T ,= E1 + E2 + · · ·+ Ek,

and Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0) 1

• Data compression. Note that the optimal rank-k approximation Ak can be written in a
compact form as

Ak = UkΣ̂kV
T
k ,

where Uk and Vk are the first k columns of U and V , respectively, Σ̂k = diag(σ1, σ2, . . . , σk).
Therefore, Ak is represented by mk+ k+ nk = (m+ n+ 1)k elements, in contrast, A is
represented by mn elements.

compression ratio =
(m+ n+ 1)k

mn

The following plots show the original image, and three compressed ones with different
compression ratios:

original image compression ratio = 0.08

compression ratio = 0.16 compression ratio = 0.24

1In [Golub, Hoffman and Stewart, LAA, vol.88/89, pp.317-327, 1987], it is shown how to obtain a best approxi-
mation of lower rank in which a specified set of columns of the matrix A remains fixed.
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