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Outline

Multiprecision arithmetic: floating point arithmetic
supporting multiple, possibly arbitrary, precisions.

Applications of & support for low precision.

Applications of & support for high precision.

How to exploit different precisions to achieve faster algs
with higher accuracy.

Focus on
iterative refinement for Ax = b,
matrix logarithm.

Download these slides from http://bit.ly/kacov18
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Lecture 1

Floating-point arithmetic.
Hardware landscape.
Low precision arithmetic.
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https://sinews.siam.org/Details-Page/a-multiprecision-world


Floating Point Number System

Floating point number system F ⊂ R:

y = ±m × βe−t , 0 ≤ m ≤ βt − 1.

Base β (β = 2 in practice),
precision t ,
exponent range emin ≤ e ≤ emax.

Assume normalized: m ≥ βt−1.

Floating point numbers are not equally spaced.

If β = 2, t = 3, emin = −1, and emax = 3:

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Subnormal Numbers

0 6= y ∈ F is normalized if m ≥ βt−1. Unique representation.

Subnormal numbers have minimum exponent and not
normalized:

y = ±m × βemin−t , 0 < m < βt−1,

Fewer digits of precision than the normalized numbers.

Subnormal numbers fill the gap between βemin−1 and 0 and
are equally spaced. Including subnormals in our toy system:

.

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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IEEE Standard 754-1985 and 2008 Revision

Type Size Range u = 2−t

half 16 bits 10±5 2−11 ≈ 4.9× 10−4

single 32 bits 10±38 2−24 ≈ 6.0× 10−8

double 64 bits 10±308 2−53 ≈ 1.1× 10−16

quadruple 128 bits 10±4932 2−113 ≈ 9.6× 10−35

Arithmetic ops (+,−, ∗, /,√) performed as if first
calculated to infinite precision, then rounded.
Default: round to nearest, round to even in case of tie.
Half precision is a storage format only.
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Relative Error

If x̂ ≈ x ∈ Rn the relative error is

‖x − x̂‖
‖x‖

.

The absolute error ‖x − x̂‖ is scale dependent.

Common error not to normalize errors and residuals.
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Rounding

For x ∈ R, fl(x) is an element of F nearest to x , and the
transformation x → fl(x) is called rounding (to nearest).

Theorem
If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| ≤ u.

u := 1
2β

1−t is the unit roundoff, or machine precision.

The machine epsilon, εM = β1−t is the spacing between 1
and the next larger floating point number (eps in MATLAB).

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Model vs Correctly Rounded Result
y = x(1 + δ), with |δ| ≤ u does not imply y = fl(x).

β = 10,
t = 2

x y |x − y |/x u = 1
2101−t

9.185 8.7 5.28e-2 5.00e-2
9.185 8.8 4.19e-2 5.00e-2
9.185 8.9 3.10e-2 5.00e-2
9.185 9.0 2.01e-2 5.00e-2
9.185 9.1 9.25e-3 5.00e-2
9.185 9.2 1.63e-3 5.00e-2
9.185 9.3 1.25e-2 5.00e-2
9.185 9.4 2.34e-2 5.00e-2
9.185 9.5 3.43e-2 5.00e-2
9.185 9.6 4.52e-2 5.00e-2
9.185 9.7 5.61e-2 5.00e-2
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Model for Rounding Error Analysis

For x , y ∈ F

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /.

Also for op =
√

.

Sometimes more convenient to use

fl(x op y) =
x op y
1 + δ

, |δ| ≤ u, op = +,−, ∗, /.

Model is weaker than fl(x op y) being correctly rounded.
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Precision versus Accuracy

fl(abc) = ab(1 + δ1) · c(1 + δ2) |δi | ≤ u,
= abc(1 + δ1)(1 + δ2)

≈ abc(1 + δ1 + δ2).

Precision = u.
Accuracy ≈ 2u.

Accuracy is not limited by precision
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Fused Multiply-Add Instruction

A multiply-add instruction with just one rounding error:

fl(x + y ∗ z) = (x + y ∗ z)(1 + δ), |δ| ≤ u.

With an FMA:

Inner product xT y can be computed with half the
rounding errors.

In the IEEE 2008 standard.

Supported by much hardware, including NVIDIA Volta
architecture (P100, V100) at FP16.
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Fused Multiply-Add Instruction (cont.)

The algorithm of Kahan

1 w = b ∗ c
2 e = w − b ∗ c
3 x = (a ∗ d − w) + e

computes x = det(
[a

c
b
d

]
) with high relative accuracy

But

What does a*d + c*b mean?
The product

(x + iy)∗(x + iy) = x2 + y2 + i(xy − yx)

may evaluate to non-real with an FMA.
b2 − 4ac can evaluate negative even when b2 ≥ 4ac.
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References for Floating-Point

Handbook 
of Floating-Point 
Arithmetic

Jean-Michel Muller
Nicolas Brunie
Florent de Dinechin 
Claude-Pierre Jeannerod
Mioara Joldes
Vincent Lefèvre
Guillaume Melquiond
Nathalie Revol 
Serge Torres

Second Edition
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ARM NEON

Nick Higham Multiprecision Algorithms 17 / 95



NVIDIA Tesla P100 (2016), V100 (2017)

“The Tesla P100 is the world’s first accelerator built for
deep learning, and has native hardware ISA support for
FP16 arithmetic”
V100 tensor cores do 4× 4 mat mult in one clock cycle.

TFLOPS
double single half/ tensor

P100 4.7 9.3 18.7
V100 7 14 112
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AMD Radeon Instinct MI25 GPU (2017)

“24.6 TFLOPS FP16 or 12.3 TFLOPS FP32 peak GPU
compute performance on a single board . . . Up to 82
GFLOPS/watt FP16 or 41 GFLOPS/watt FP32 peak GPU
compute performance”
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Low Precision in Machine Learning
Widespread use of low precision, for training and inference:

single precision (fp32) 32 bits
half precision (fp16) 16 bits

integer (INT8) 8 bits
ternary {−1,0,1}
binary {0,1}

plus other newly-proposed floating-point formats.

“We find that very low precision is sufficient not just for
running trained networks but also for training them.”
Courbariaux, Benji & David (2015)

No rigorous rounding error analysis exists (yet).

Papers usually experimental, using particular data sets.
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Why Does Low Precision Work in ML?

We’re solving the wrong problem (Scheinberg, 2016),
so don’t need an accurate solution.

Low precision provides regularization.

Low precision encourages flat minima to be found.
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Deep Learning for Java
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Climate Modelling

T. Palmer, More reliable forecasts with less precise
computations: a fast-track route to cloud-resolved
weather and climate simulators?, Phil. Trans. R.
Soc. A, 2014:

“Is there merit in representing variables at
sufficiently high wavenumbers using half
or even quarter precision floating-point
numbers?”

T. Palmer, Build imprecise supercomputers, Nature,
2015.
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Fp16 for Communication Reduction

ResNet-50 training on ImageNet.

Solved in 60 mins on 256 TESLA P100s at Facebook
(2017).
Solved in 15 mins on 1024 TESLA P100s at Preferred
Networks, Inc. (2017) using ChainerMN (Takuya
Akiba, SIAM PP18):

“While computation was generally done in single
precision, in order to reduce the communication
overhead during all-reduce operations, we used
half-precision floats . . . In our preliminary
experiments, we observed that the effect from using
half-precision in communication on the final model
accuracy was relatively small.”
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Preconditioning with Adaptive Precision

Anzt, Dongarra, Flegar, H & Quintana-Ortí (2018):

For sparse A and iterative Ax = b solver, execution
time and energy dominated by data movement.

Block Jacobi preconditioning: D = diag(Di), where
Di = Aii . Solve D−1Ax = D−1b.

All computations are at fp64.

Compute D−1 and store D−1
i in fp16, fp32 or fp64,

depending on κ(Di).

Simulations and energy modelling show can
outperform fixed precision preconditioner.
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Range Parameters

r (s)min = smallest positive (subnormal) number,
rmin = smallest normalized positive number,
rmax = largest finite number.

r (s)min rmin rmax

fp16 5.96× 10−8 6.10× 10−5 65504
fp32 1.40× 10−45 1.18× 10−38 3.4× 1038

fp64 4.94× 10−324 2.22× 10−308 1.80× 10308
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Example: Vector 2-Norm in fp16

Evaluate ‖x‖2 for

x =

[
α
α

]
as
√

x2
1 + x2

2 in fp16.

Recall uh = 4.88× 10−4, rmin = 6.10× 10−5.

α Relative error Comment
10−4 1 Underflow to 0

3.3× 10−4 4.7× 10−2 Subnormal range.
5.5× 10−4 7.1× 10−3 Subnormal range.
1.1× 10−2 1.4× 10−4 Perfect rel. err.
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A Simple Loop

x = pi; i = 0;
while x/2 > 0

x = x/2; i = i+1;
end
for k = 1:i

x = 2*x;
end

Precision i |x − π|
Double 1076 0.858
Single 151 0.858
Half 26 0.858

Why these large errors?
Why the same error for each precision?
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Error Analysis in Low Precision (1)

For inner product xT y of n-vectors standard error bound is

| fl(xT y)− xT y | ≤ γn|x |T |y |, γn =
nu

1− nu
, nu < 1.

Can also be written as

| fl(xT y)− xT y | ≤ nu|x |T |y |+ O(u2).

In half precision, u ≈ 4.9× 10−4, so nu = 1 for n = 2048 .

What happens when nu > 1?

Nick Higham Multiprecision Algorithms 29 / 95



Error Analysis in Low Precision (1)

For inner product xT y of n-vectors standard error bound is

| fl(xT y)− xT y | ≤ γn|x |T |y |, γn =
nu

1− nu
, nu < 1.

Can also be written as

| fl(xT y)− xT y | ≤ nu|x |T |y |+ O(u2).

In half precision, u ≈ 4.9× 10−4, so nu = 1 for n = 2048 .

What happens when nu > 1?

Nick Higham Multiprecision Algorithms 29 / 95



Error Analysis in Low Precision (2)

Rump & Jeannerod (2014) prove that in a number of
standard rounding error bounds, γn = nu/(1− nu) can be
replaced by nu provided that round to nearest is used.

Analysis nontrivial. Only a few core algs have been
analyzed.

Be’rr bound for Ax = b is now (3n − 2)u + (n2 − n)u2

instead of γ3n.

Cannot replace γn by nu in all algs (e.g., pairwise
summation).

Once nu ≥ 1 bounds cannot guarantee any accuracy,
maybe not even a correct exponent!
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Simulating fp16 Arithmetic

Simulation 1.
Converting operands to fp32 or fp64, carry out the
operation in fp32 or fp64, then round the result back to
fp16.
Simulation 2.
Scalar fp16 operations as in Simulation 1. Carry out
matrix multiplication and matrix factorization in fp32 or
fp64 then round the result back to fp16.
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MATLAB fp16 Class (Moler)
Cleve Laboratory fp16 class uses Simulation 2 for
mtimes (called in lu) and mldivide.
http://mathworks.com/matlabcentral/
fileexchange/59085-cleve-laboratory

function z = plus(x,y)
z = fp16(double(x) + double(y));

end
function z = mtimes(x,y)

z = fp16(double(x) * double(y));
end
function z = mldivide(x,y)

z = fp16(double(x) \ double(y));
end
function [L,U,p] = lu(A)

[L,U,p] = lutx(A);
end
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Is Simulation 2 Too Accurate?

For matrix mult, standard error bound is

|C − Ĉ| ≤ γn|A||B|, γn = nu/(1− nu).

Error bound for Simulation 2 has no n factor.

For triangular solves, Tx = b, error should be bounded
by cond(T , x)γn, but we actually get error of order u.

Simulation 1 preferable. but too slow unless the
problem is fairly small.
Large operator overloading overheads in any language.
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