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Multiprecision arithmetic: floating point arithmetic
supporting multiple, possibly arbitrary, precisions. J

m Applications of & support for low precision.
m Applications of & support for high precision.

m How to exploit different precisions to achieve faster algs
with higher accuracy.

m Focus on

m iterative refinement for Ax = b,
m matrix logarithm.

Download these slides from http://bit.ly/kacovl8
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http://bit.ly/kacov18

= Floating-point arithmetic.
= Hardware landscape.
= Low precision arithmetic.
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A Multiprecision World

By Nicholas Higham

Traditionally, floating-point arithmetic has come in two precisions: single and double. But with the
introduction of support for other precisions, thanks in part to the influence of applications, the floating-
point landscape has become much richer in recent yeare.

WHEN HIGH PRECISION BECOMES the NEW NORMAL

Abird in the hand is
Oh, some news from the worth at least 2.4
White House ©vat- X _
Elliptical Office. Asstitch in time saves
5 at least 9.36 other
stitches at some later time.



https://sinews.siam.org/Details-Page/a-multiprecision-world

Floating Point Number System

Floating point number system F C R:
y=+mx Bt 0<m< g —1.

m Base (8 = 2 in practice),

m precision t,

m exponent range €min < € < emax-
Assume normalized: m > g1,
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Floating Point Number System

Floating point number system F C R:
y=4mx et o<m<pt—1.

m Base (8 = 2 in practice),
m precision t,
m exponent range emin < € < €max-
Assume normalized: m > g1,
Floating point numbers are not equally spaced.

If/B:2, t:3, emin:_1,and emaXZS:

|
[
0 051.0 2.0 3.0 4.0 5.0 6.0 7.0
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Subnormal Numbers

0 +# y € Fis normalized if m > 8!=1. Unique representation.

Subnormal numbers have minimum exponent and not
normalized:

y = +m x pémn—t, 0<m<pt,

Fewer digits of precision than the normalized numbers.

Subnormal numbers fill the gap between é»~" and 0 and
are equally spaced. Including subnormals in our toy system:
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IEEE Standard 754-1985 and 2008 Revision

Type Size Range u=2"
half 16 bits | 10*° 2=~ 49 x10*
single 32 bits | 10*38 2724~ 6.0 x 1078

double 64 bits | 10308 | 273 ~ 11 x 10716
quadruple | 128 bits | 10%4932 | 2-113 x 9.6 x 1073°

= Arithmetic ops (+, —, *, /, /) performed as iffirst
calculated to infinite precision, then rounded.

m Default: round to nearest, round to even in case of tie.
m Half precision is a storage format only.
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Relative Error

If X ~ x € R” the relative error is

The absolute error || x — || is scale dependent.

Common error not to normalize errors and residuals.

NA Nick Higham Multiprecision Algorithms 8/95



For x € R, fl(x) is an element of F nearest to x, and the
transformation x — fl(x) is called rounding (to nearest).

If x € R lies in the range of F then

fl(x) = x(1+9), 6] < u.

u := 13'"is the unit roundoff, or machine precision.

The machine epsilon, ¢, = '~ is the spacing between 1
and the next larger floating point number (eps in MATLAB).

eHHHH———H———+— | | |

|
|
0 051.0 2.0 3.0 4.0 5.0 6.0 7.0
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Model vs Correctly Rounded Result

y = x(1+90), with |§| < u does not imply y = fl(x).
X y |x—yl/x u=110""

9.185 8.7 5.28e-2  5.00e-2
9.185 8.8 4.19e-2  5.00e-2

9.185 89 3.10e-2  5.00e-2

9.185 9.0 2.01e-2  5.00e-2

10, 9.185 9.1 9.25e-3  5.00e-2
=2 9.185 9.2 1.63e-3  5.00e-2
9.185 9.3 1.25e-2  5.00e-2

9.185 9.4 234e-2  5.00e-2

9.185 9.5 3.43e-2  5.00e-2

9.185 9.6 4.52e-2  5.00e-2

9.185 9.7 5.61e-2  5.00e-2
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Model for Rounding Error Analysis

Forx,y € F
fl(x op y) = (xop y)(1+9), 0] <u, op=+4,—,%,/.

Also for op = /.
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Model for Rounding Error Analysis

Forx,y € F
filxopy)=(xopy)(1+4), [6<u, op=+—x/
Also for op = /.

Sometimes more convenient to use

xopy
149"

fiixopy) = 6| <u, op=+,—,x%,/.

Model is weaker than fl(x op y) being correctly rounded. |
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Precision versus Accuracy

fl(abc) = ab(1 + d1) - c(1 + d2) 19i] < u,
= abC(1 = 51)(1 S 52)
~ abc(1 + 61 + o).

m Precision = u.
m Accuracy =~ 2u.
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Precision versus Accuracy

fl(abc) = ab(1 + d1) - c(1 + d2) 19i] < u,
= abC(1 = 51)(1 S 52)
~ abc(1 + 61 + o).

m Precision = u.

m Accuracy =~ 2u.

Accuracy is not limited by precision
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Fused Multiply-Add Instruction

A multiply-add instruction with just one rounding error:
filx+y+2)=(x+y=2)(1+8), | <u.

With an FMA:

m Inner product x"y can be computed with half the
rounding errors.

m In the IEEE 2008 standard.

m Supported by much hardware, including NVIDIA Volta
architecture (P100, V100) at FP16.
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Fused Multiply-Add Instruction (cont.)

m The algorithm of Kahan

1w=bxc
2 e=w-—-bxc
3 x=(axd—w)+e

computes x = det([25]) with high relative accuracy
But

m What does axd + cxb mean?
m The product

(X +iy)*(x + iy) = X2 + y? + i(xy — yx)

may evaluate to non-real with an FMA.
m b? — 4ac can evaluate negative even when b? > 4ac.
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References for Floating-Point
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ARM NEON

ARM Developer hd Products Markets Technologies Support Q l
Overview big LITTLE NEON DSP¥  DynamiQ Graphics Technologies ¥ TrustZone ¥  Compute Library Floating Point
Overview SIMD Architecture
The NEON technology is a packed SIMD architecture. NEON registers are considered Instruction stream Parallel data streams
as vectors of elements of the same data type. Multiple data types are supported by the L)
technology. The following table describes data types as supported by the architecture
version.
ARMv7-A/R ARMvS-A/R ARMvS8-A
AArch32 AArch64
Floating- ) ) ) ) ) )
point 32-bit 16-bit*/32-bit 16-bit*/32-bit/64-bit Results
8-bit/16-bit/32- 8-bit/16-bit/32-bit/64- 8-bit/16-bit/32-bit/64-
Integer - : -

NA

bit bit bit

The NEON instructions perform the same operations in all lanes of the vectors. The
number of operations performed depends on the data types. NEON instructions allow
up to:

o 16x8-bit, 8x16-bit, 4x32-bit, 2x64-bit integer operations
o 8x16-bit*, 4x32-bit, 2x64-bit** floating-point operations

The implementation on NEON technology can also support issue of multiple

instructions in parallel.
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NVIDIA Tesla P100 (2016), V100 (2017)

m “The Tesla P100 is the world’s first accelerator built for
deep learning, and has native hardware ISA support for
FP16 arithmetic”

m V100 tensor cores do 4 x 4 mat mult in one clock cycle.

TFLOPS
double single half/ tensor
P100 4.7 9.3 18.7
V100 7 14 112
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AMD Radeon Instinct MI25 GPU (2017)

RADEONINSTINCT

RADEON
INSTINCT MI25

vanced GPU Memory Architecture and Next-Generation Compute Engine

“24.6 TFLOPS FP16 or 12.3 TFLOPS FP32 peak GPU
compute performance on a single board ... Up to 82
GFLOPS/watt FP16 or 41 GFLOPS/watt FP32 peak GPU
compute performance”
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Low Precision in Machine Learning

Widespread use of low precision, for training and inference:

single precision (fp32) 32 bits
half precision (fp16) 16 bits
integer (INT8) 8 bits
ternary {-1,0,1}
binary {0,1}

plus other newly-proposed floating-point formats.

m “We find that very low precision is sufficient not just for
running trained networks but also for training them.”
Courbariaux, Benji & David (2015)

m No rigorous rounding error analysis exists (yet).

m Papers usually experimental, using particular data sets.
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Why Does Low Precision Work in ML?

m We’re solving the wrong problem (Scheinberg, 2016),
so don’t need an accurate solution.

m Low precision provides regularization.

m Low precision encourages flat minima to be found.
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Deep Learning

%l DL4
HALF Datatype

Deep Learning Textbook
If your app can afford using half-precision math (typically neural nets can afford this), you can

Download SKIL Community enable this as data type for your app, and you'll see following benefits:

Edition ® 2xless GPU ram used
® up to 200% performance gains on memory-intensive operations, though the actual

performance boost depends on the task and hardware used.

Request Corporate Training

DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF);
Getting Started

Place this call as the first line of your app, so that all subsequent allocations/calculations will
Tutorials - be done using the HALF data type.

R BT & However you should be aware: HALF data type offers way smaller precision then FLOAT or
duction to De: >

DOUBLE, thus neural net tuning might become way harder.

Neural Networks > On top of that, at this moment we don't offer full LAPACK support for HALF data type.

Data & ETL
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Climate Modelling

m T. Palmer, More reliable forecasts with less precise
computations: a fast-track route to cloud-resolved
weather and climate simulators?, Phil. Trans. R.
Soc. A, 2014:

“Is there merit in representing variables at
sufficiently high wavenumbers using half
or even quarter precision floating-point
numbers?”

m T. Palmer, Build imprecise supercomputers, Nature,
2015.
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Fp16 for Communication Reduction

ResNet-50 training on ImageNet.
m Solved in 60 mins on 256 TESLA P100s at Facebook
(2017).

m Solved in 15 mins on 1024 TESLA P100s at Preferred
Networks, Inc. (2017) using ChainerMN (Takuya
Akiba, SIAM PP18):
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Fp16 for Communication Reduction

ResNet-50 training on ImageNet.

m Solved in 60 mins on 256 TESLA P100s at Facebook
(2017).

m Solved in 15 mins on 1024 TESLA P100s at Preferred
Networks, Inc. (2017) using ChainerMN (Takuya
Akiba, SIAM PP18):

“While computation was generally done in single
precision, in order to reduce the communication
overhead during all-reduce operations, we used
half-precision floats ... In our preliminary
experiments, we observed that the effect from using
half-precision in communication on the final model
accuracy was relatively small”
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Preconditioning with Adaptive Precision

Anzt, Dongarra, Flegar, H & Quintana-Orti (2018):

m For sparse A and iterative Ax = b solver, execution
time and energy dominated by data movement.

m Block Jacobi preconditioning: D = diag(D;), where
D,' = A,','. Solve D 1Ax = D71b.

m All computations are at fp64.

m Compute D~" and store D; ' in fp16, fp32 or fp64,
depending on x(D;).

m Simulations and energy modelling show can
outperform fixed precision preconditioner.
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Range Parameters

r'® — smallest positive (subnormal) number,

I'min = Smallest normalized positive number,
'max = largest finite number.
l}g]s.% I'min I'max
fp16 | 596 x 1078  6.10 x 10~° 65504
fp32 | 140 x 107 118 x10"%® 3.4 x 10%
fp64 | 4.94 x 107324 222 x 1073%® 1.80 x 10%%®
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Example: Vector 2-Norm in fp16

Evaluate || x||, for

as /X2 + x5 in fp16.

Recall up, = 4.88 x 107%, i = 6.10 x 1075,

« Relative error Comment

104 1 Underflow to 0
33x10% 47 x1072  Subnormal range.
55x10* 7.1 x10=%  Subnormal range.
11x1072 14x10°* Perfect rel. err.
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A Simple Loop

NA

X = pi; i
while x%x/2 > 0

X
end
for

X
end

k

x/2;

= 1:
2%x;

= 0;
i =

i

Nick Higham

i+l;

Precision i |x—m|
Double 1076 0.858
Single 151 0.858
Half 26 0.858

Multiprecision Algorithms
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A Simple Loop

x =pi; 1 = 0;

while x/2 > 0 Precision i |x -l
x = x/2; i = i+1; Double 1076 0.858

end Single 151 0.858

for k = 1:1i Half 26 0.858
X = 2%X;

end

m Why these large errors?
m Why the same error for each precision?
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Error Analysis in Low Precision (1)

For inner product x "y of n-vectors standard error bound is

nu
ATy) =Xyl <mlxlTlyl, = g— nu<t.

Can also be written as

[fi(xTy) = xTy| < nulx|"|y| + O(?).

In half precision, u ~ 4.9 x 1074, so nu = 1 for n = 2048 .
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Error Analysis in Low Precision (1)

For inner product x "y of n-vectors standard error bound is

nu
ATy) =Xyl <mlxlTlyl, = g— nu<t.

Can also be written as

[fi(xTy) = xTy| < nulx|"|y| + O(?).

In half precision, u ~ 4.9 x 1074, so nu = 1 for n = 2048 .

‘What happens when nu > 17? ‘
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Error Analysis in Low Precision (2)

Rump & Jeannerod (2014) prove that in a number of
standard rounding error bounds, ~, = nu/(1 — nu) can be
replaced by nu provided that round to nearest is used.
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Error Analysis in Low Precision (2)

Rump & Jeannerod (2014) prove that in a number of
standard rounding error bounds, ~, = nu/(1 — nu) can be

replaced by nu provided that round to nearest is used.

m Analysis nontrivial. Only a few core algs have been
analyzed.

m Be'rr bound for Ax = b is now (3n — 2)u + (n? — n)u?
instead of ;..

m Cannot replace v, by nuin all algs (e.g., pairwise
summation).

m Once nu > 1 bounds cannot guarantee any accuracy,
maybe not even a correct exponent!

NA Nick Higham Multiprecision Algorithms
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Simulating fp16 Arithmetic

m Simulation 1.
Converting operands to fp32 or fp64, carry out the
operation in fp32 or fp64, then round the result back to
fp16.

m Simulation 2.
Scalar fp16 operations as in Simulation 1. Carry out
matrix multiplication and matrix factorization in fp32 or
fp64 then round the result back to fp16.
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MATLAB fp16 Class (Moler)

Cleve Laboratory fp16 class & uses Simulation 2 for
mtimes (called in 1u) and mldivide.
http://mathworks.com/matlabcentral/
fileexchange/59085-cleve-laboratory

function z = plus(x,y)
z = fpl6(double(x) + double(y));

end
function z = mtimes (x,y)

z = fpl6 (double(x) * double(y));
end

function z = mldivide (x,y)
z = fplé6 (double(x) \ double(y));
end
function [L,U,p] = 1lu(a)
[L,U,p] = lutx(d),;

end
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Is Simulation 2 Too Accurate?

m For matrix mult, standard error bound is
|IC — C| <,|AllBl,  v,=nu/(1—nu).
Error bound for Simulation 2 has no n factor.

m For triangular solves, Tx = b, error should be bounded
by cond(T, x)v,, but we actually get error of order u.

m Simulation 1 preferable. but too slow unless the
problem is fairly small.

m Large operator overloading overheads in any language.
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