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Abstract

Intended for new graduate students whose experience as undergraduates
may have prepared them inadequately to apply norms to numerical error-
analyses and to proofs of convergence, this tutorial surveys norms for
finite-dimensional real spaces in a way that may ease a transition to the
Infinite-dimensional spaces of Functional Analysis. Among the topics
covered are some more useful than is implied by their absence from most
curricula. The notation is mostly standard but interpreted in ways not
always taught to undergraduates, so attendees may prepare for the tutorial
by reading just a few of my lecture notes for Math. H110 posted at

<eecs.berkeley.edu/~wkahan/MathH110/2dspaces.pdf> and
<...pts.pdf> in that order, and afterwards <.../geo.pdf> and
<.../geos.pdf> skimmed lightly.

This tutorial omits proofs; almost all can be found in
<....NORMlite.pdf>, <.../Gllite.pdf>, and a few other places cited.

This tutorial’s pages have been posted at <.../NormOvrv.pdf> .
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What are Norms for?

They provide vector spaces and their linear operators with measures of
size, length and distance
only a little more general than what we already use routinely in everyday life.

“A little more general” L[] more widely applicable than our most familiar notions
but still often conforming to our intuitions about them.

Examples ...

1« A “Backward” Error-Analysis of a computed approximatiénto f(X) :
Y +AY = fX +AX) ; areAY and AX negligible?
Depends upon what we can infer aboWY ||| and {X]]| . vector norms

2+ Convergence Analysis of an Iteration towards a Fixed-Point

Xnep = f&) = A Uxg) - 25 z=f@) ?
Depends upon what we can infer about derivative ...(Z)|f. matrix norm
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Example 1: A “Backward” Error-Analysis

A program FX) is intended to compute vector-valued)f {or vector inputsx .
Actually, computedY := F(X) only approximatesy := fx). HOW WELL?

We deem program F to be “Backward Stable” numericallylfjuste have proved that
[|FX) — f(X)|| is at worst slightly bigger than Kf¢ AX) — f(X)|| can be for some
unknown roundoff-induced perturbatidsX whose [X|| is at worst slightly bigger than
negligible compared with {|| for all inputsX in a region big enough to be useful.

Useful computed ;
our ch DATA results F(X) lie é
ur cnosen norm I I I I q
may exaggerate inside this circl /
uncertainties in ——=> g
and computed results X +4X _ _ / S
whose correlations e.g Matrix Inversion, ('4
the norm disregards. but inappropriate for log, acos, ... 2

NN\

N\

If F is “backward stable” but computedXf(is very wrong, do we blame the victim f for “ill condition” )at?

Error-Analyses tend to excessive pessimism partly because they allow for unlikely conspiracies
among rounding errors, and partly because the chosen norms are often not theitaiolst
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Example 2. Convergence Analysis of an Iteration

Given a smooth map ) of a vector-space to itself, and a starting vestpr let

Xne1 = F0) = F(f&a) = ... = f"(xy) for n=0,1,2,3,... intun.
Does x,, —» z fast enough from every, near enough to a Fixed-Point= f(z) ?

Yes if and only if az exists and everyeigenvalue of f(z)| is sufficiently less than .1

But we don’'t knowz yet, much less the eigenvalues of the derivatig) f Jacobian

Instead we explore conditions upon f easier to test. For instance, maybe f isa ...

Contractive Map: [|f§) — f&)IV|ly —x|| <A <1 whenever distinck andy
lie in somesufficiently largeregion X .

Then either |k,—2||<A™|kg—2]| - 0 so X, - z=f(2) uniquely in X ,
or ultimately x,, escapes fromX , which is too small to hold a fixed-point.

And test the Contractive hypothesis: I8, —XnlVIXn —=Xp_1l <1 ?  until roundoff ...

THE CATCH: All this makes sense only for appropriatelychosen norm ||...]| .
That is the trouble with norms: There are so many of them, apt choice may be hard.
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Part |

Vector Norms
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The trouble with norms is that there are so many of them.

To be a vector norm, ||...|| need satisfy only three requirements ...
o Positivity: oo > |K|| > O for every vectok except §|| =0.
 Homogeneity: AlX|| = N-|k|| for every scalai . Lets keepA real.

° Triangle |nequality: )”"‘ y”S ”X” + ”’” for all x andy . Equality need not imply parallelism.

If [IX|| is anorm, soisX| := [L=1x|| for any fixed invertible linear operatar.

If |IxI| and ||| are norms, so are maxifil[[kI|[}, VKIF+ IKIP) . Ikl + [l

The Unit Ball of a norm §|| is the regionB :={x: |k||[<1}. This turns out to
be closed, bounded, centrally symmetr8 £ -8 ) and convex witho strictly inside.
“Convex” means that, ik andy liein B, so does(:x + (1-{)y for 0s{<1.

Line segment joining “points”™x andy

Conversely,any region 8 closed, bounded, centrally symmetric and convex with
strictly inside is the Unit Ball of the normx|||:= inf (|€] for which x/& liesin B) .

IX||=2/3

Prof. W. Kahan SUBJECT TO CHANGE: Do you have the latest version? Page 9/79



File: NormQOvrv Tutorial Overview of Vector and Matrix Norms Version dated January 30, 2013 11:18 am

The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen?

Scalar value|x|| has to be computable at a tolerable co€omputablefrom what?
Computable from scalacomponentsof a representation x of (abstract?) vector

An applied mathematician’s first challenge is to choose suipal@ameters
(variables, coordinates, basis vectors) ...
to represent his problem’s entitieen(paper, on a blackboard, in his computer). ...

Let B :=[bq, by, by, ...,b,] be aBasis for the (abstract?) space of vectars so each
vector x =B-x =3; b;-¢; is represented by a column-vector Xz Ep; &3; ...; §p] N
MATLAB’S notation. Thus, basiB is an invertible linear map from a space of columns x
to the (abstract?) space of vectars B-x ; eachx has its own column xB™1x .

Then ||| will be computed asf|| := [[x|| from the componentg; of column x .

If a basisB accepted first is unsatisfactory, a new b@sis B-C* can be chosen; here
C is an invertible matrix. And the new representative efB-x =B-x is then column

X = C-x, whence the new formula to complitg| = | x ]| becomes]| x| =]|C"1X| .
Don't Memorizé Re-derivé
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Having chosen (or accepted) a basis in which vextos represented by its column
X=1[&1; &€2; €ai ---; €nl » We can choose a formula by which to compjig :=|[x|| from

the components; . Here are three familiar formulas and their Unit Balls for n=3:

* [Ix[} = max|| - Ball is a solid Cube. Postal box
« |IXlp:=V(Z 5B .  Ballisasolid Sphere. Q Euclidean length!
o |IXIL =2 &l Ball is a solid Octahedron@ Taxicab norm

These norms are unchanged by permutation of the elements of x ; these norms treat eact
element the same as any other. What if some elements need closer scrutiny than others?

Let W be an invertible diagonal matrix; |[|[x||| :=fiW| is a norm too, maybe better.

Let C be an invertible matrix of a change of basis; [||x||[>=4|Cis a norm too.

A change of variables often induces a change of norm. Owisatversa?
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A change of variables often induces a change of norm. Owisatversa?

How should a norm be chosen for error-analysis?
Ideally, an appropriate norm would be what | cBljuitable, i.e., so chosen that ...
All errors of the same norm have roughly equal (in)significance.

This ideal is often not achievable before a computation’s results have been inspected,
and not always achievable afterwards, but always worth attempting.

Example: The control of electric power distribution networks involves voltages of widely
diverse magnitudes, ranging from those on cross-country transmission lines to those in
radio receivers of the microwave transmissions needed to control power generation.

Locations \Voltage Ranges| Better Units
1| Cross-Country Transmission Towers 250,000 - 1,000,000 Megavolts
2 | Substation to Transformers on Telephone Poles 2,000 - 10,000 Kilovolts
3| In-house wall sockets to appliances 110 - 240 \Volts
4| Computer power supplies to transistors 2-12 \olts
5| Transistor circuits’ on-off variations @1 - Q01 Millivolts
6 | Inputs to radio receivers’ antennas 0,001 - M00,01] Microvolts

Changes by .001 Volt are negligible in locations 1 - 4, devastating in the last two.
Changes by .001 Unit are negligible in all locations.
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A change of variables often induces a change of norm. Owisatversa?

How should a norm be chosen for convergence analysis?

Ideally, the norm should be so chosen th&tationary Iteration ...
Xa+1:= f(%) — 2= f(z) converges monotonically in norm.

This ideal is often not achievable, but always worth attempting.

Local Convergence: If 1 >\ >|each eigenvalue of "(z)|, norms ||...|| exist such that
%01 — ZII€ A% — Z][< )\””1-||>@ —z||- O for every ¥ close enoughto z.

In principle such a norm can be constructed by changing to a new basis obtained from the
eigendecomposition of “(z) , but this merely raises hopes for something more practical.

Global Convergence: Rather than by shrinkage of a norm, convergence must be proved
(if true) by shrinkage of &yapunov Functiorwhose Level-lines/surfaces form a nested
family shrinking onto z, and whose shapes need not be centrally symmetric and convex.

Global Convergenceof aNon-Stationary Iteration x,+1 := fn(Xn) — Z = fy(z) forall m

can rarely be proved using norms; rare exceptions are mostly matrix computations like
Conjugate GradientsOther global convergence proofs need some other monotonicity.

E.g.: 86 of <eecs.berkeley.edu/~wkahan/Math128/GnSymEig.pdf> uses a monotonic determinant, not a norm at all.
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And now for something entirely different:

Why are vector spaces like potato chips?

Prof. W. Kahan SUBJECT TO CHANGE: Do you have the latest version? Page 14/ 79



File: NormQOvrv Tutorial Overview of Vector and Matrix Norms Version dated January 30, 2013 11:18 am

Why are vector spaces like potato chips?
Because you cannot have just one.

Each space of vectors comes with itsDual-Spaceof Linear Functionalsw' :

« Scalar Productw'x is a scalar, real for real spaces. Complex: w*-x or wH.x
« w' acts linearly upon vectors andy: WT-QAX +Hy) =AwTx +pw'y .
« x acts linearly uponv' andw! : vl +pwh)x =Aavix +pwlx .

So the linear functionalsv’ form a vector spac®ual or Conjugate to the space of

vectorsx . Each space is dual to the other, and they have the same finite dimension.
But among infinite dimensional spaces, many are properly contained within their dual’s dual.

Since x need not be a columny” need not be a row, much less the “Transpose” of a
vector w . Except forEuclidean and otherlnner-Product spaces, there is no necessary

relation betweerw' andw , justas Miss Carla and Master Carlo need not be related.
CompareContravariant and Covariant Tensors

Distinctions between dual spaces are obscured by other notatiom-folike w':x, wex, <x, w>,
<x|w>, (X, w), ... devised originally forEuclidean and otherinner-Product spaces, each one
Isomorphic to its dual. Many mathematicians expect context to disambiguate those notations.
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E.g: The space dual ta’s contains the derivativet (x) of any scalar functionu(x)
because scalarp@x) = (x)-ox .

The Dual-Space’s Norm

The natural dual norm for functiona¥™ is  N'|| := maxw'x|/|x|| overx#o.

From that follows X|| = max|WT-x|/||va|| overw! zo' . Non-trivial proof in general
Examples of dual norms for rows and columns: ... iIn MATLAB’s notation ...
Say column x =§; &5 &5, ...; &, androw W= [wy, wy, Ws, ..., 0] .

* Dualto |[[x}f := max|g;| IS Wk =3 |ay|

+ Dualto [x:=V(Z ) s W = V(3 1w*)

» Dualto [x|:=3 [§] s W[l = maxje|
Holder's Inequality: [w'x|<|w'||-)k|]| forallw" andx. Cf Cauchy’s for ||..d]
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Vectors and Functionals Dual with respect to the Norm
z andu' are called “Dual w.r.t. the norm” wham'-z=|u'||-[t]| and {T|| = ||| # 0.

This duality relation is also called “Polarity”. Its andu' determine each other
nonlinearly and perhaps nonuniquely in general, but linearly and uniquely only in
Euclidean and in Inner-Product spaces to be described imminently. Examples ...

o Gradu(x) is a vector inx’s space dual to derivative (x) in the dual-space.
From Holder’'s Inequalityp(x) changes fastest in the direction of Guéx) , and [|Grad(X)|| = |k (X)]] .
« Row(s) W = [Wq, Wy, Wy, ..., w,] dual tocolumn X =4§4; &o; &3; -.-; & W.rt. ||X]] :

» For [[xlf : If [&| <[[x|}, thenay:=0
else let sign§) :=signg;) or 0, andy foy| = |[xl, -
This dual W is unique just when only oné&;||= |IX}}; -

» For ||xf): w' = x! (its transposE) uniquely. (Complex conjugate transpose for complex spaces)

» For [|xj]: If ;=0 then choose any;, with |yl < |[x|f
else oy = |[x]}-signg;) -

This dual W is unique just when ever§; # 0 .
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Changing a vector space’s Basis changes the Dual-space’s Basis:
Column x that represents vector=B-x in the basisB := [b4, by, b3, ..., b,] has its

counterpart in row W that represents functiona’ = w'-B™1 in the same basis. This

notation preserves the scalar produef x = w'-x as a matrix product in a natural way.

Just as the “columnsb; of B are basis vectors for the space of vectorsthe “rows”
of B! are basis vectors' (functionals) for the dual-space of linear functionals.

“Evaluation” functionale ' extractsx 's component; =g of column x =B~'x .

Changing basis t@ := B-C ! changes column x representing vector B-x =B-X to

X = C-x, and changes row'wepresentingv' =w'-Bt=wB1 to w =w'-C?.

« When can “..T” be construed as an operator instead of merely a suffix?
When does row W= w'-C1 match the transpose Y= w'-CT of column w= C-w ?

They match only if €= C™ is anOrthogonal matrix. That is what happens when
B and B are Orthonormal bases for a Euclidean space, which is the prototypical
instance of annner-Product Space..
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Real Inner-Product Spaces

A real Inner-Product Space possesses a symmetric scalar pregucyex linear in
each ofx andy separately, and witliex > 0 exceptoeo = 0. Therefore the space is
normed: K| :=Vvxex . Butits Unit Ball is generally ai&llipsoid.  ( Complex xsy =y=x .)

An inner-product space has a natural linear map between it and its dual space. Vector
x =B-x represented by column x maps to linear functiomat x'-M-B~! represented

by row X'-M for somesymmetric positive definiteatrix M = M' , the space¥etric.
M comes from the basis vectorsih:= [bq, by, b3, ..., by] thus: M; =bjeb; . Similarly

we =w'B™! represented by row Wmaps tow = B-M~t-w . Now representative
columns x =B~1x and y =B~Ly figure in the formula to obtairysx = y'-M-x; and
IX|| =V(x"-M-x) but ]| =V(w"-ML-w). Now x andxe are duals w.r.t. [|...|]

A Euclidean space’s metric M is the Identity matrixwhich simplifies everything.

Changing basi8 to B :=B-C changes metric M to MC1".M-C!. Therefore

Every real inner-product space is a Euclidean space
disguised perhaps by a non-orthonormal b&sis

B changes to an orthonormal ba8s=B-C* when C-C =M. ..Gram-Schmidt, Cholesky
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What distinguishes an Inner-Product or Euclidean space
from all other Normed vector spaces?

The Parallelogram Law [k + Y|P + |k —=y|F = 2|KkIF + 2|¥|F. ... Jordan-von Neumann Th'm

And then xsy = (|Kk +y|P - [k —y|P )/4 .

For a proof see <www.eecs.berkeley.edu/~wkahan/MathH110/QF.pdf>

* Every Inner-Product space lisomorphic to its Dual-space.

But every other normed n-space iBIOT Isomorphic to its dual space
except possibly if dimension 2 .

Ledlo o Nl Q

Generally, flat spots on the surface of a normed space’s unit ball match up with vertices of the dual space’s unitvizadhyvensd
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The Derivative of a Vector Norm ( Say dimension n>1.)

It is determined uniquely only where the norm’s unit ball is smooth (no vertex nor edge),
as is an inner-product space’s ellipsoidal unit ball, everywhere lut at

Then di|| =u'-dz/|lz]|] in whichu' is the linear functional dual ta w.r.t. ||...|| .

More generally, di|| is an extremum ofi"-dz/|[z|| over all the linear functionals’ dualtoz w.rt. ||...|| .

The foregoing formula helps to provide a short proof of the most useful special case of ...

Auerbach’s Theorem:Any n-space’s unit balB can be circumscribed by at least one
Parallelepiped P whose 2n faces touc8 at their midpoints.

One suchP is a circumscribing parallelepiped of minimum volume. And if a new basis
P is chosen from just the vectors that jainto the midpoints of®'s faces, then the

column x :=P~1x that represents n-dimensional vectoin this new basi® has
IXIE/n < Ixlk < IKI < [IXlp < n-[Ixls for everyx .

» Therefore any n-dimensional norm ||...|| can be approximated within a fé%lbyl
either ||...{| or ||...{ , each of which costs at most n operations to compute after the

change of basis (whose one-time cost may be of ordJer n
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An Ellipsoid is the level surface of a Positive Definite Quadratic Form; see pp. 62-63.

Fritz John’s Ellipsoid Theorem: (1948)

Any n-dimensional normed space’s unit b&ll can be circumscribed
by an ellipsoid & tightly enough thatvn-B8 OE O B .

One suchE is a circumscribing ellipsoid of minimum volume. And if a new bdsiss

chosen from the principal axes & then the column x :E~1x that represents n-
dimensional vectox in this new basi€ has H|J/vVn< ||x]b< ||| for everyx.

« Thereforeany n-dimensional norm ||...|| can be approximated within a fadtd? n
by ||...l] ata costof order n after the change of basis.

Often a change of basis involving nothing more onerous than choices of suitable units
(recall the voltages’ example on p. 12) allows one of the cheap normsg, |||--{lp or

||...|} to provide adequate error-estimates.

Fritz John’s Ellipsoid Theorem has vastly many other useful implications some of which
are mentioned in my posted lecture notes <.../MathH110/NORMilite.pdf>

However, if dimension n is too big or infinite, different norms may defy comparison.
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Part Il

Matrix Norms
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All the linear operatord. mapping one given normed space of vectort another
constitute a third vector space and therefore can be subjected to any of a vast horde of

norms. We prefer that each subfatrix Norm satisfy thesefour requirements:

« Positivity: o >|L|| >0 foreveryL except {||=0.

« Homogeneity: AIL|| = N-|L|| for every scalai . Let's keep) real.
e Triangle Inequality: Il +K|[<|L]|| + |K|| forallL and K .

. Compatlblllty IL-X||<|LI]|-k|| forallL andx. Subordination

Overloaded Notation

Note that the last requirement involves three norms all written “||...||” . This notation is
heavily overloaded, obliging readers to disambiguate norms by close attention to the
linguistic type and context of each norm’s argument, just as we learned to distinguish

IWT|| from || . A Compatible Matrix norm is compatible with one or two vector norms
and consequently with their dual norms: Compatibility implies’ Ij||< |w'||-|L|| too.

This Compatibility requirement is trifling because it can always be met by scaling up the
norm offered for linear mapk : If p:=(max|Lx||over [||=]k|]|=1)>1 then
replace l|| by a scaled-up norm L||| :=|L|[# to make it compatible.

(Then if identity | maps a space to itself but with a different norhf|, ¢an have any positive valye
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The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen? ... to be computed?

Scalar value lJ|| has to be computable at a tolerable coSomputablefrom what?
Computable from scalacomponentsof a representation L of (abstract?) operdtor

Let B be a basis for vectors in the domain ofL . andE a basis for vectory in the

target-space containing the rangelof Then matrix L :E~1.L-B representd , and
IL|| must be computed from its elemenis. LThese change when bases are changed.

More generally, most of a second college course in linear algebra concerns the question
“What can be inferred about a linear operatorfrom its matrix L given
only the natures of. 's domain- and target-spaces but not their bases?”

If only the spaces’ dimensions are known, oRlgnKL) := Rank(L) can be inferred.
If L maps an otherwise undistinguished space to itself, brdyJordan Normal Form
If L maps one Euclidean space to another, onh\Sihgular Valuesof L .

If L isaSymmetricmap between a space and its dual space, lordylnertia.
see Sylvesterdnertia Theorem on p. 63

If too little is known about the domain- and target-spaces of linear opdratarot much
about it can be inferred (numerically) from arbitrary matrix representations L .of
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Here are three Matrix norms for m-by-n matrices L that take account only of its
elements |, not of the operatoL that L represents, so these norms’theory is shallow:

+ |ILlf:=3;3IL5l  extends from |lx|
o |ILJE:=V(3; 2 ILjj |2) ... theFrobenius norm, the earliest matrix norm.
* [|IL]} == n-max; |Lj| extends from |[¥]|

« Compatibilities: [|Lf] & [[x|f, [ILI¢ & [Ix|]b, I[ILI & [X|k , among others.
Each of these norms possesses separately a property Rallgglicative Dominance
[|K-L||< [IK||-]|L|| whenever matrices K and L can be multiplied.

This property impliesCompatibility with inherited n-by-1 vector norms. Consequently
Multiplicative Dominance is so useful that we shall require it of all Matrix norms.

And we shall get it fromOperator Normsdefined thus:

* |LIl:==(max |}x|| over K||=1)=(maxw'-L| over f'||=1)
=(max w'Lx| over W'||=1k||=1)  withdual ||T}| and ||...]|

Danger: Here five distinguishable norms are all written the same w&y:..||" .

Operator Norms are also calle®upNorms” and LUB-norms” (Least Upper Bound).
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Operator Norms
o |LIl:= (max || over §[|=1) = (maxw'-L|]| over #'||=1)
=(max w'Lx| over Wi[|=||=1)  with |.TJ] dualto ||L-...|]
Later we shall see how to test whether a given Matrix norm ||L]| is an Operator Norm too.

For now observe that Operator Norms possess Multiplicative Dominance in this way:
IK-L||< [K]||-|E]] if DomainK) [J Rangell) and both have the same vector norm.

And for linear mapsL of a space to itself each Operator Norm satisfief >|\| for
every eigenvalue of L ; and ||]|=1.

A few Operator Norms can be computed at modest cost from the matrix L representing
L in suitably chosen bases for its domain- and target-spaces. Because there are many
uses for different norms, they must be distinguished by subscripts that clutter the notation:

Let  Ilyp = (max |k x|ly/|Xlly over x #0) = (max |w'-L|j/|w'[ly overw'#o")
exceptve abbreviate Uf|,, t0 |k|l;- Most subscriptet and 3 willbe 1, 2 oreo .

Actually we compute ||l from elements L of L’'s matrix L :=E~LL.B, justas
we got ||xj from elementsg; of x :=B™*x, and |||, from «y of w' =w'E.
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Formulas for Five Familiar Operator Norms of Matrices
Here L isan m-by-n matrix of elementg L

* |ILlk = max 3 L] = ||I_T||1 , the biggest Row-Sum of Magnitudes

|ILIf = max 3 |Lj| = Il'|l, , the biggest Column-Sum of Magnitudes

LIz = max ma [Li| = Il [kog = lILIL/n = [IL'[}/m , the biggest Magnitude

|IL[Lo = max V( 2 ILj ), the biggest Euclidean Row-Length

IIL|b = ( the biggestSingular Valueof L) = |||, = V( biggest Eigenvalue of 'LL )

T

Also |[[L[4 = the biggest Eigenvalue ofO L] from tisengular Value Decomposition.

L O
And  |ILB < V(ILIL-|ILIL) . Do you see why?

lILIk2, lILIb1, |ILlhe @nd ||L|be @re little used because their computations cost too much.

If dimensions are not too big, then, just as any vector norm ||...|| can be approximated by
I|.--1, |l---1p or ||...}, perhaps after a change of basis, so can any Operator Norm ...
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Maximized Ratios of Norms
Set Hgp = MaX o Xl/IXllg = maxrzor IW'[lg/IW']ly,  whena #p.

All such ratios g are finite for finite dimensions n, but may grow with n. For
INStance, Hog =HMew2 =Hp1 =15 H12=Hoe =VN; M =N.  Generallyyp-tgy > 1.

There are analogous ratio-maxima for m-by-n Matrix norms; for instance
Mes = max z o lILIHIILIE = 1 pge=VMN; Wr=Hy =05 e =VM/; Py, =m.

Operator Norms inherit their ratio-maxima from their associated vector norms:

Recalling that Ufllyg := max o lIL Xllu/IXll3 . Set Hopys = Madx 20 I I/ I Ii5
Then it so happens thatpygys = Hay'Hag -

Caution: If L is not square, then ratipgs  must take different dimensions into account.

These ratio-maximat  reveal how well or badly one norm can approximate another.

The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen?
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How should a Matrix norm be chosen for error-analysis?
|deally, an appropriate norm would be what | cBljuitable, i.e., so chosen that ...
All errors of the same norm have roughly equal (in)significance.

This ideal is often not achievable before a computation’s results have been inspected,
and not always achievable afterwards, but always worth attempting.

For example, given two diagonal matricegs ahd \j with wildly diverse magnitudes on
their diagonals, but such that the nonzero elements-#f-\X, span a modest range of

magnitudes (such a K is called a “Graded” matrix), then variathsn K may be
gauged more equitably by normAK]|| := ||M-AK-V4|| than by a familiar AK]| .

If ]|...|| isan Operator Norm, sois |||...]|]|] , but derived from vector norms after basis
changes tantamount to scaling the vectors: |||x|||d‘:1-|>|<‘ﬂ for x in thelomain-space;
HIYIIl = 1I¥yIl for y in thearget-space oK whose K[| = max [[AK-x||f[{IX]]] -

Another example: Compute a norfidK] := |JAK || from the elementAK; ::AKij/Qij

scaled by a given array of positiweights 1€; . When ||...|| = ||..o{{ , the biggest
magnitude,|[...] is called an “Elementwise” norm, especially if evedy ;= [Ky| >0 .
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When is a preassigned Matrix norm also an Operator Norm ?
Operator Norms have properties that some mere Matrix norms lack. For instance, the

norm of a rank-1 matrix or operator igW'|| = [k||-W"|| for every Operator Norm but
not for every compatible Matrix norm.

To simplify the exploration that follows, suppose a given Matrix nprnm| for square
n-by-n matrices possesses Positivity, Homogeneity and the Triangle Inequality but, for
lack of defined vector norms, perhaps not Compatibility.

Instead we assume thfit..|] possesses Multiplicative DominancfK-L] < [K]-[L] ,
which can always be realized by scaliphg.| if necessary. Then choose a fixed n-row

" #0' and define a (perhaps new) vector norm to be |p|r'st, the same for both
the domain- and target-spaces of the n-by-n matrices for which was given. Now

this vector norm induces an Operator Norm ||L|| :=mgHL-x|[||x]| . We find that this
lIL||< [L] for all n-by-n matrices L. Thus, there is a sense in which ...

Operator Norms are minimal among Multiplicatively Dominant norms.

And |[|L]| S[L] for all L only when the giverj...| was already an Operator Norm.

Eg. [L]=ILIEC QLI =g o) = qiul 8= el s [el = ey O Qe =Ly.
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Orthogonally Invariant Matrix Norms
These are for m-by-n matrices L that represent operataitsat map one Euclidean

space to another. These norms satisfy |[[L]|| =||Q-L-P]| for all Orthogonal matrices

Q"=q*! and P =P?. (Analogous Unitarily Invariant norms are for complex unitary
spaces, and especially for Hilbert spaces whose dimensions are infinite.)

These norms ||L|| depend solely upon$negular Valuesof L, which are the biggest

min{m, n} eigenvalues of[O LT] (these comedpairs). In fact, every such normis

L O
lIL|| =1vii in which column vector v is a column of the singular values of Ljandcan

be any vector norm.

Almost all useful orthogonally invariant matrix norms é&gmmetrical Cross-Norms
o “Symmetrical” means the order of the singular values in v does not mattar.to

« “Cross-Norms” means that the norm of a rank-1 matrix is "[Jk=f|x}-||W'|b .

Among these the most common by far are the Multiplicatively Dominant ...
* ||L|p = v, =the biggest singular value of L, the natural Operator Norm.

e |ILJE = vip = V(Trace(U-L)) = V(3 (squared singular valuds) the Frobenius norm.
IC-Li < [|CI3-[ILIE =< [[Cl-1IL[E
* |IL|k =vip =D (singular values) , the “Nuclear” norm, used for some optimizations.
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Dual Norms for Dual Matrix Spaces

The vector space of all real m-by-n matrices L has its Dual-space consisting of n-by-m
real matrices K with the scalar producl; Y ; K;-Lj = Trace(K L) = Trace(L-K) .

Given a Matrix norm |[|L|| for m-by-n matrices L, the natural norm for their dual-
space of n-by-m matrices 'Kis ||K'|| := max o Trace(K -L)/||L]| .

This places a severe strain upon our subscripting notation. For example ...

Dual to the norm [|LJ|= max ¥ ILj| is [IK e := 3j max K| = [|KT [k, = [IKIf.
The strain is less severe for our orthogonally invariant norms; for example ...
Dual to the norm ||IdE V(Trace(U'-L)) is |IK||r = |IKIE .

Dual to ||LY = max(singular value(L)) is |y = 3 (singular value& ")) = [|K|k.

This last duality explains partially why the Nuclear norm figures in some optimizations
that can be reformulated advantageously in a dual-space. In certain optimizations, the K
that minimizes ||K{| subject to appropriate constraints also minimizes Rank(K) .
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Do not confuse Dual Norms for Dual Matrix Spaces with ...
Norms for Linear Maps £ from a Real Vector Space to its Dual:
Scalar £-x'y is linearin x and y separately. ... (conjugate-linearin y if space is complex)
£-x'y is called a Bilinear Form , also written £(X,y) .
Matrix L representing £ depends upon Basis B={[b, by, ....,b,]:  Lj=%£byb; so

£xy=yl-Lx for columns x := B!x and y = B_l-y . .. (...=y"Lx if complex)

Change of Basis from B to B:=B-C! changes L to L= (C_I)T-L-C_l; then ...

L and L are called Congruent. See also pp. 62-3 for more about Congruence.

Operator Norms:  ||£]| := max |£-x'y| over |x]|=]y||=1.
ILllgo = max |y -Lox| over [xllg=ylla=1-  Llga =L llga
Examples:
IL][11 = lIL{leo1 = max; max; [L .
IL{[p2 = |IL|l, = biggest singular value of L.

[Lflooco = lILll1eo = 25 2§ [Lgjl  and [|L{leoee 2 max{ |[L|ly, [[Llleo § -

£ is called Symmetric when £xy=£yx= yT-L-X = XT-L-y , Whereupon LT=L.
See also p. 62.
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Part 111:
Matrix Norms and Matrix Inverses

Condensed Review of Parts 1 & 11 :

1. Try to avoid choosing a norm ||...|| badly;
take care to choose appropriate Bases, Coordinates, Variables.

Ideally, perturbations with the same norm would be about equally (in)significant.

The choice of ||...||; , ||---|l» or ||...|lo matters most when dimensions are big.

2. Among Matrix norms, the Operator Norms ||L|| := max,, |[LX||/||x|| have
the most useful properties ... multiplicative ..., minimality ... .
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Matrix Norms and Matrix Inverses

Sensitivity of Inverses to (Infinitesimal) Perturbations:
Changing L to L+08L changes L to L1+&L");
SLYH=-L'BLIL! so |6 <|dL] '1||2, and equality is achievable.

Condition Number (for Inversion): K(L) := ||L'1||°||L|| , an amplification factor;
IS HIVILY < K@L)DSL|/||L]| and equality is achievable.
Also |IBLYHI/LY = (1/k@))|IBL|/|IL||, because K(L™')=K(L).

Perhaps K(L) would be better regarded as a Distortion factor.

Sensitivity to Perturbations in Data {L, ¢} of Solutions x of equation LX=c¢:
10x])/||x|| < K(L)W@||OL|/|IL|| + |O¢|l/|le]| ), and equality is achievable.

If & when it succeeds,
Backward Error-Analysis maps rounding errors to induced perturbations in data.

[1 As matrix inversion’s rounding errors propagate they get amplified by K(L).

1ll-Condition means a HUGE amplification factor K(L). cf. p.6.
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Operator Norms of Inverses

Theorem: For any Operator Norm ||...||, ... known to Banach ?

LYl = 1/( min ||AL|| over Rank(L-AL) < Rank(L)) .

Condition Number (fOI’ IIlVGI’SiOl’l)I K(L) = ||L_1||||L|| amplifies perturbations’ effects

Space of n-by-n Matrices or Linear Operators

Rank =n-2

- Cone of Rank <n-1

An [11-Conditioned
Matrix L 1S
extremely close to
Singular Matrices

Angle A = arcsin( 1/K(L) )
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Space of n-by-n Matrices or Linear Operators
/Rank =n-2
Cone of Rank <n-1

How does L' behave
as L approaches a
Singular matrix ?

Where are the inverses
Angle A=arcsin( 1/K(L) ) of the little Red Ball ?

IL! - (Rank-1 matrix)|[/][L}|| - 0

‘m:ﬁ“ Red Ball)

This is the most likely situation, necessary for eigenvector computation.
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Equilibration invokes Diagonal Scaling to help compute the solution x

of an equation “ CX =b ” more nearly as accurately as the data deserve, though
limited by the available arithmetic’s precision: Choose apt diagonals V, & V4 ;

replace C by C:=VC-V4, b by b:=V,b; solve C-x=b; get x: =V Xx.
How are “apt diagonals” V, & V, to be chosen?

 To avoid introducing extraneous roundoff, restrict diagonals’ elements to
powers of the arithmetic’s radix (2 for Binary, 10 for Decimal).

« [f the uncertainties in the elements of the data {C, b} are known, diagonals
should i1deally be chosen to make some common norm, say ||...||s ,

Equitable for scaled data: i.e., every AC with the same ||AC||, 1s very

roughly equally (in)consequential or (in)significant or ... . This ideal
may be unattainable, especially before solution x has been estimated.

o If the uncertainties in the elements of the data {C, b} are unknown, diagonals
should ideally be chosen to roughly minimize some common condition
number, say Kp(C) =||Cll,|IC [,
This 1deal usually costs too much; e.g. see p. 59. There 1s an exception:

for p in {1, 2,0}, of scaled data.
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Equilibration continues ... minimize condition number ... one exception:

A. van der Sluis’ Theorem (1969):

Suppose H is an N-by-N Positive-definite symmetric or Hermitian matrix. See p. 63
Then K((Diag(H)) "> H-(Diag(H)) %) £ N'mingisgona1 v Ko(V-HV) .

 Other equilibration schemes abound, all somewhat mysterious. For instance:
Compute diagonals V; & V4 to turn every row- and column-sum of magnitudes of
C:=V¢C-V,4 into 1, making |C| Doubly Stochastic. This computation 1s iterative; usually it
converges fast but at times appallingly slowly, especially when equilibration is most needed.

Gaussian Elimination is affected by equilibration only through its effect upon the order of
pivot selection. This effect may be thwarted 1f column exchanges are disallowed, and
then computed results can be undeservedly grossly inaccurate, remediable only by
Iterative Refinement. Sce striking examples posted on my <.../Math128/FailMode.pdf>

Preconditioning resembles equilibration’s attempt to reduce K(V,C-Vy) a
lot but allows non-diagonal choices of V, & V,, and rarely computes V,C-V

explicitly. Preconditioning is an essential step in the fast solution of discretized
continuum problems by iterative methods like Conjugate Gradients.
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Iterative Refinement
attenuates 1ll effects of Ill-Condition or BIG dimensions or ... ?

Given Fandc, let G stand for operations performed to solve “FZ=c¢” forz;
e.g., triangular factorization of F, efc., or Conjugate Gradient iteration, ... .

Computation yields instead x := GId=z .. roundoff accumulates, iteration stops, ...

Let Residual r:=c—FX, computed as accurately as is affordable. Then
reuse (if saved) operations in G to get y :=x+ Gl =z more closely than x=z.

If it works, why doesitwork? y—z = (I-GH )l(k —z) + more roundoft,
and if G=F"! roughly then we expect ||[—GH||<<1, so |y—z||<<|x—Z.

It might not work 1f ...
F 1s too Ill-Conditioned, within too few rounding errors of singular, or
G 1istoo 1naccurate, or cf. <www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf>
Residual r 1s too inaccurate, drowned perhaps in its own rounding errors

for lack of extra-precise accumulation of r .
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Diagonal Dominance
Some matrices are obviously invertible.

Suppose L maps a space linearly to itself, and ||[L||<1. Then (I— L)_1 exists
because Liouville’s series (I — L)_1 =I+L+L>+L3+ L%+ ... converges.

Square matrix B is said to have Rows Dominated by its Diagonal when
every |b;| > Zj;ti [bj; 5 then B! exists. (L :=1-Diag(B)"'B has ||L||x, <1)

Square matrix B is said to have Columns Dominated by its Diagonal when
every |b;| > Zi;tj [bj; 5 then B! exists. (L:=1—B-Diag(B)" has IIL|[{<T1)

Often B is invertible though “="" replaces almost all “>" signs, but not always.
Gaussian Elimination generally needs Pivotal Exchanges to ensure numerical

stability, but they turn out to be unnecessary for matrices dominated by their
diagonals and also for symmetric Positive definite matrices. ... see p. 63.
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Schur Complements

S:=7Z-EC!D isthe Schur Complement of C in B = {C D} :
E Z
Without pivotal exchanges, Gaussian Elimination reduces B through
successive Schur Complements of B’s leading principal submatrices, like C,

in the course of Triangular (LU) Factorization: B — [UC UD] — U= ﬂ
O S

* All Schur Complements in Diagonally Dominant matrices B are also
Diagonally Dominant, and do not grow much in norm.

* All Schur Complements in Symmetric Positive Definite matrices B are also
Symmetric Positive Definite, and do not grow at all in norm.

(13

What matters most is ... do not grow ...” lest elements of Z be corrupted.

The choice of norm implied in “grow” can affect “corrupted” drastically;
cf. pp. 3-6 of <.../Math128/FailMode.pdf>
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When does equation “F-x =y "~ have at least one solution x ?

And 1f 1t exists, when 1s solution X unique ?

Ivar Fredholm’s Alternatives:

Valid also in many an infinite-dimensional space; no determinants!

* At least one solution x exists if & only 1f
w''y =0 whenever w"F =o'
as w' runs through the vector space dual to F’s target space.

e If it exists, solution x is unique if & only if F-z # 0 whenever z # o
as z runs through F’s domain.

I
O

which dimension(I) = rank(F) . (Some O’s may be empty.) Now switch given

Proof: The canonical form of F under Equivalence is 8 =R F-C in

equation “Fx=y” to “RF-C(C!'x)=(R!y)” in canonical form; etc.
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Generalized Inverses and Pseudo-Inverses

Suppose matrix F 1s non-invertible because it 1s not square and/or Rank(F) is
less than both dimensions. At least one Generalized Inverse G always exists

such that if equation “F-x =y~ has solution(s) x then x := G-y is a solution.

The Generalized Inverses of F are the solutions G of “F-G'F=F”.

Example: The Least-Squares problem “Choose x to minimize |[F'x-g|,”
always has at least one solution x and, if more than one, then the
one that also minimizes |[x|], 1s X := FT'g in which F is F’s
Moore-Penrose Pseudo-Inverse , a Generalized Inverse of F .

«p-fl-F=F, F-F-FT=F", (F"F)T=FF, (F-FHT=FF ” characterize F'

but FT is best computed from the Singular Value Decomposition of F .

F and F' are Reciprocal, each a Generalized Inverse of the other;
but non-reciprocal Generalized Inverses of F may exist too. ...
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How Big Must Generalized Inverses Be ?

Most are arbitrarily big; when some Z # O satisfies either F*Z=0 or Z'F=0,
then any Generalized Inverse G of F yields infinitely many others: G £ AlZ .

Generalized Inverses of some matrices F are all HUGE :

Theorem: Every Generalized Inverse G of F has cf. picture on p. 37
|G|| = 1/( min ||AF|| over Rank(F - AF) < Rank(F)) .

Equality can occur for Pseudo-Inverses gauged by the /, Operator Norm ||...||, :
||F7L||2 = 1/( min ||AF||, over Rank(F - AF) < Rank(F) )
= 1/(the least nonzero singular value of F) .
For Operator Norms ||...|| generally, the best that can be said appears to be ...

Theorem: F has at least one Generalized Inverse G with
|G|| < V(Rank(F))/( min ||AF|| over Rank(F - AF) < Rank(F)) .

I hope this theorem has a short proof; mine is much too long.
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Use of Generalized Inverses can be Dangerous !

E.g.: Pseudo-Inverse FT = F'E) BT or FIFE) !, whichever inverse exists,
unless neither inverse exists, in which case use ... . SVD ?

Limit Formula: FT = limg _ o+ (FIF + O(El])'1 Bl 2

Over-determined X :
Choose x with minimum [[x||, to minimize ||[FX—g||, . F H

Solution: x = FT@ unless columns of F are too nearly linearly dependent.

Remedies for HUGE and HYPERSENSITIVE FT :

QR factorization, Doubled precision, Better basis for X  orthogonal polynomials
cf. pp. 15-16 of <.../HilbMats.pdf>

A Bad Idea: Tychonoff Regularization: x = (F'[B +a El])'1 B@ forasmall o.
If good values for Regularization Parameter O exist they depend upon NOISE.

Better Idea: Choose basis for x so that ||Ax||, is appropriate, then compute
SVD(F) to diagonalize “FX =g~ and delete elements below noise levels.
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Limit Formula: F=1limy_ o, FT-(FE'+am)! 2

Under-determined X :
Choose x with minimum |[x||, to satisfy FR=g. F

Solution: x = FT@ unless rows of F are too nearly linearly dependent.

Remedies for HUGE and HYPERSENSITIVE FT :
Doubled precision? Discard redundant rows ? Change basis in Range(F) ?

A Bad Idea: Tychonoff Regularization: X = FIFE +a [I])'1 [@ forasmall a.
If good values for Regularization Parameter o exist they depend upon NOISE.

Better Idea: Choose basis for g so that ||AF||, 1s Equitable; then compute

SVD(F) to diagonalize “FX =g” and delete elements below noise levels.
Alternatively, seek x with the fewest “very nonzero” components.

High noise levels can leave no solution x determined unambiguously. Then ...

Sometimes NO RESULT is better than a BAD RESULT
when NO GOOD RESULT exists.
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A Generality
Often a computational task amounts to solving “ F(z) =o0” for z given F.
Errors and uncertainties due to roundoff etc. make F(z+ dz) = OF instead.

Consequent uncertainty or error in z is 0z = F'(z)"\BF .

Uncertainty in data that specifies F' 1s amplified in z by as much as ||~ (z)'1|| :

HUGE amplification ||F"(z)"!|| can occur only if DATA puts F CLOSE toa
SINGULARITY :

 APole (infinite value) of F*!.

* Confluence (collapse of dimension; multiplicity of mapping F', of zeros z).

« Exponentially-growing functions of variables unobviously near oo .
Common! See also my web page’s <.../WrongR.pdf>

Changes of variables/parameters/bases, perhaps nonlinear, can alter closeness
of F' to asingularity, or change the norm that measures closeness, sometimes so
drastically as to change amplification of error by many orders of magnitude.

Good choices are worth the thought devoted to them.
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Part1V:

Matrix Norms and Eigenvalues
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Matrix Norms exceed Eigenvalues

Eigenvalue N of L has LI =AY for some Eigenvector v # o ; therefore

IA| < ||L|| for every compatible |...||,
including every Operator Norm.

Eigenvalue A of L alsohas w'll.= AlW' for some Left Eigenvector w' # o' in
the space of linear functionals w' Dual to Domain(L) = Target-Space(L)) . The
spaces, like A, may be complex regardless of whether L is real.

Eigenvalues A are the zeros of L’s Characteristic Polynomial det(All— L).

Computing the Characteristic Polynomial explicitly is usually a numerically bad way to determine eigenvalues.

Eigenvalues A are Continuous Functions of L;
but Perhaps Not Differentiable,
unless A is a Simple cigenvalue where ...

detA- L)=0 # d det(A\ll- L)/dA\ .
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A Computed Eigenvector’s Error is an Angle:

Let x be a computed approximation to a desired eigenvector v ;
then the error 1s not ||x —v|| but the difference between two Subspaces ,
one spanned by scalar multiples of x, the other ... of v.

The relevant error 1s the (unsigned) Angle [I(x, v) between the two subspaces,
usually in complex spaces where x' 1s the complex conjugate transpose of x .

How to compute [I(x, v) := arccos(|x'/(||x||,0v|],)) :
NOT FROM THIS FORMULA! wWhy not?

First choose a basis for which ||Ax||, 1s an Equitable measure of perturbations.
Then replace x by x/|[x|[; and v by V/||v|l,, sonow Vx"x=|x|,=|v|],=1.
Compute [(x, v) := 2[dresin( [[x[(k'D/|[x' ™) — v||»/2).  Presubstitute 1 for (0/0]).

A generalization works for Angles between higher-dimensional Subspaces; see p. 74.
|Accurate| for all angles. For Signed Angle between two vectors see p. 15 of my <.../Cross.pdf>
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(Unobviously) Clustered Eigenvalues of a Matrix

not Real Symmetric nor Hermitian nor Orthogonal nor Unitary nor “Normal”

can be hypersensitive to perturbations

0100 o o o
0100 0o o

Example: L:=|° 0 010 100 0 det\D- L) =A°—10°7 .
0 0 0

0
o o o o010
0

0
0
0
0
3

0 0 0 0]

6 Eigenvalues A jump from 0 at £=0 to [A\[=1 at £=1/10°. Clustered?

Eigenvectors of a Matrix can be hypersensitive to perturbations,
especially if it is close to a matrix with Repeated Eigenvalues.
Example: 6 cigenvectors of L attiny ¢ #0 collapseto one at ¢=0.

Whenever a matrix’s Jordan Normal Form is not merely diagonal, itis a
Discontinuous Function of the matrix’s elements, and thus very hard to compute.
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Gershgorin’s Circles enclose Eigenvalues

Given a square matrix L, its eigenvalues A can be located within the union of a
family of circular disks in the complex plane: ... Row version. A Column version exists too.

Disk D; is centered at L;; with radius Zj;ti Lyl = 2| ith row’s off-diagonals | .

Gershgorin’s Circles Theorem :
Every eigenvalue A of L lies in the union of all the disks D, .

Each disjoint component of that union contains
as many eigenvalues A as it contains disks.

Numbers of Eigenvalues: @ @ @

Proof: Ifno disk D; contains n it cannot be an eigenvalue since NI —L 1is Diagonally
Dominant (p. 42). To count eigenvalues use continuity as disks expand from their centers.

This theorem 1s useful mainly for matrices with Prominent if not Dominant diagonals.

Sometimes replacing L by VIV for a suitable matrix V, perhaps diagonal, perhaps
consisting of approximate eigenvectors, can reduce the sizes of at least some of the disks.
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Diagonal Prominence (rather than Dominance) also admits cheaper estimates of
Extreme Singular Values:
(Biggest Singular Value of L) = max,, [|[Lx||,/||x

2 = IILll2 = 1Ll -
(Least Singular Value of square L) = ming, ||L-x||,/|[x]l, = 1/][L7}, .

These Eigenvalues cost work O(min{m, n}3) to compute closely for m-by-n matrices L.

Cheaper estimates of ||L||, :
(Biggest Euclidean row-length) = |[L|l; < |[L|l, € Vm||L||w,, and
VILl Ll ) Vmen < [ILI < VOIL] (L) -

The blue “<” inequalities come closer as the diagonal of L becomes more prominent.
(The 2nd-last “<” istight “=" when L isa Hadamard Matrix; cf. MATLAB’s hadamard.m .)

Cheaper underestimates of the least (nth) singular value of an n-by-n matrix L:
If possible, first permute its rows and columns to make its diagonal prominent. Then
scale its rows or columns by factors of magnitude 1 to make the diagonal positive. Now

th . . . <, ..
(n™ Singular Value of L) 2 miny { Ly — 2 [Lyy + ij|/2 } ; hope it’s positive.
Cf. Chas. R. Johnson’s “A Gersgorin-type Lower Bound for the Smallest Singular Value” pp.1-7 Lin. Alg. & Appl. 112 (1989)

h

Appending rows and/or columns to n-by-n L cannot decrease its n* singular value.
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Sensitivity of Eigenvalues to Tiny Perturbations

Say A is an eigenvalue of L with eigenvectors x and w',

perhaps all complex: L:-x=Ax and w"L=w"A. Then
d\/d( = w'-(dL/d0)-x/w'x

UNLESS A is a multiple eigenvalue, in which case d\/d(

may be multi-valued or infinite: \
o < [

When A is a simple eigenvalue, K := |[w'||'||x||/|lw'-x| is its
Condition Number.

K can be arbitrarily big unless L stays special, say “Normal”
(i.e. L""L=L-L' ... Real Symmetric, Hermitian, Unitary, Orthogonal ... K =1)

“Stays”? If L is Hermitian but not dL, K can be = 1+2-log(dimension)/TT.
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Sensitivity of Eigenvalues to Perturbations, cont’d

Suppose matrix L is diagonalizable by similarity (as almost

all square matrices are) and let \ = X 1L-X be the diagonal
matrix of eigenvalues of L ; a matrix of eigencolumns 1s X .

How much can A NOT change if L changesto L+ AL ?

Now (probably non-diagonal) A+ AA = X! (L+AL)-X, so

IAA = [XTALX] |y < X IAL Xl = Ky (X)[[AL]; -
Here K{(X) is a (perhaps excessive) condition number for inversion of
X . Now Gershgorin’s Circles Theorem applied to A+ AA implies ...

Bauer-Fike Theorem:

No eigenvalue of L + AL can differ from an eigenvalue
of L by more than min{ K{(X)"||AL||{, Ke(X)[|AL||e } -
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The Perron-Frobenius Theory of Nonnegative Matrices

Let P be any square matrix with elements all positive; we shall write “P> Q.

Then P has a positive eigenvector, its “Perron Vector” p >0, and a positive
eigenvalue p>0 with Pp=pp; and P’s “Perron Root” p is a simple
eigenvalue strictly bigger than the magnitude of every other eigenvalue of P.

Proof: The simplex S :={s: s=0 & ||s|[{ =1} isclosed, convex and bounded, and mapped into
itself continuously by function TY(s) := P-s/||P-s||; . Brauer’s Fixed-Point Theorem provides a fixed-
point p =T(p) strictly inside S, and p=|P-p|; . Let V:=Diag(p) and B := V1PV ; then B

and P have the same eigenvalues, and p = |Bl|. is the Perron Root of B with Perron eigenvector
b=1[1;1;1;...;1]. Jacobi’s formula: d Det(AI — B)/d\ = Trace(Adj(AI -B))>0 @ A = p because

principal submatrices of pl — B are diagonally dominant, so p is a simple eigenvalue. Except p,
every other eigenvalue B of B has [B| <||B|lo=p, strictly < when the eigenvector is considered.

Let C be any square matrix with |C| <P elementwise. Then no eigenvalue of
C can exceed in magnitude the Perron Root p of P.

If, instead of P> O, we have merely P> O, then Perron Root p need not be simple; it and/or
elements of eigenvector p may vanish, and other eigenvalues of P may match p in magnitude.
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Application of Perron-Frobenius theory to
Optimal Diagonal Equilibration
(See the bottom of p. 39.)

Suppose we seek diagonal matrices A and V to minimize the condition number
Keo(AH-CV) = [[(ACV o (AT-C VD,
Theorem:
min( Koo(/\'l-C-V'l) over all diagonal A and V) = Perron Root of |C'1|-|C|
and the minimum is achieved (at some computational cost) by setting
A = Diag( Perron Vector of |C[|C’!|) and
V := Diag( Perron Vector of |C'1|-|C| ).

... due to F.L. Bauer [1963] “Optimally Scaled Matrices”, pp. 73-87
of Numerische Mathematik 5.

From the late 1950s Fritz Bauer and his students in Mainz and Munich were major contributors to
the applications of norms to numerical analysis. Bauer also contributed to the design of Algol 60,
an early programming language more humane than most. Later he became “Mr. Computing” to the
Bavarian government. Recently he authored a fascinating text on Cryptology (Springer). As of this
writing he is still active at age 90, having barely survived 1942 - 1945 in the Wehrmacht.
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Part V;

Matrix Norms and
Real Symmetric Matrices’ Eigenvalues

The best source about eigensystems of real symmetric and Hermitian matrices
is B.N. Parlett’s book The Symmetric Eigenvalue Problem
[1998] 426 pp., SIAM, Philadelphia
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Real Symmetric Matrices’ Eigenvalues are all ...

Stationary Values of Quotients of Real Quadratic Forms

« The Stationary Values (also called Critical Values) of a function f(x)
are the values it takes where its derivative f (X) vanishes.

« The Stationary Points (also called Critical Points) of a function f(x)
are the arguments x at which its derivative f'(x) vanishes.

Instances are maxima and minima, but these are far from the only instances.

eg., f(&) = 385 SE3 takes all real values on the real -axis,
takes a locally maximum value f(-1)=+2,
takes a locally minimum value f(+1)=-2,
and takes another stationary value f(0) =0 neither maximum nor minimum.
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Real Symmetric Matrices’ Eigenvalues are all ...

Stationary Values of Quotients of Real Quadratic Forms

A Real Quadratic Form ®(x):=x"H-x, where column x represents x
in some basis, and matrix H= H' represents a symmetric bilinear operator:
Hxy=Hyx=y"Hx. Forareal vector space, y' and H' are transposes,

and H 1s the matrix of a linear map H from x’s vector space to its dual.

Abstractly, “ ®(x+y) + P(x—y) =2d(x) + 2P(y) ~ characterizes quadratic forms @ . ¢f. p. 20.
Example: 2nd derivative in Taylor Series for scalar W(z+x) = (z) + L' (z)'x + L"(z)x'x/2 + ...

(Complex spaces, for which y' and H' are complex conjugate transposes, and H=H"' is Hermitian
instead of real symmetric, and Hxy is complex conjugate to Hyyx, will not be treated here. Besides,
the treatment of complex spaces would differ only slightly from real.)

Typically P(x) 1s some kind of Energy,— Kinetic Energy if x stands for velocities or
momenta, Elastic Energy if for infinitesimal displacements from equilibrium, etc.

How does a change of basis from B to B :=B-C L affect H? cf. pp. 18-19

x changesto X:=C-x but Wto W :=w-C?t, and H to H= C~tH-C!, whence
O(x) =x"Hx=Xx"HX. ( P(x) need not be defined upon the vector space dual to x’s .)

The relation between H and H:= C™LH-C! iscalled a Congruence.
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Diagonalization of a Real Quadratic Form by Congruence

Let real quadratic form @P(x) :=x"H-x 1n some chosen basis, no matter which.

Lagrange showed that Infinitely Many Congruences C''-H-C™' =V have a diagonal V.

Let n,; count positive diagonal elements of V, ng ... zero..., n_ ... negative ... .

Sylvester’s Inertia Theorem: Every diagonal V congruent to H has
the same Inertia(H) := {n,, ny, n_} .
Some authors use the word “Signature” instead of “Inertia”, a word chosen by Sylvester.
Geometrically, ny = max{dimension of every Subspace on which ®(x) >0 for x#0};
n_=max{ ... P(x) <0 for x#0}; ny=dimension(x)-n,—n_.

Inertia distinguishes shapes of Ellipsoids vs. Hyperboloids of one or two sheets.

Nomenclature for @ and Symmetric H

Names n, positives i zeros n negatives
Nonnegative Definite | Positive Definite >1 0 0
Positive Semidefinite >1 >1 0
Indefinite >1 >1
Degenerate or Singular >1
Nonpositive Definite | Negative Semidefinite 0 >1 >1
Negative Definite 0 0 >1
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Stationary Values of Quotients of Real Quadratic Forms

Given two real quadratic forms ®P(x) :=x""H-x and W(x) :=x""M-x, we seek all
Stationary Values p of the Rayleigh Quotient p(x) = ®(x)/W(x)
as x runs through all nonzero vectors in a real space.

Each stationary value gf(x) and its stationary point turn out to satisfy
H-x=p(X)-M:x and M-¥%o0.
Hence thisp and x are solutions of 8ymmetric Generalized Eigenproblem

If M~1 exists, each such is an eigenvalue of B := H"M. However, not all
eigenvalues 3 of B need be stationary valugs®f, not even if all are real.

e.g, H ::{20} M :2{01} : X:ﬂ ,p(x):EZ/(Er]) ; B:H-I\/I'lz{gj , 3 =0 No stationaryp .

oq '’ 10
e.g, H ::ﬁj , M: 2j , X ﬂ ,p(X)=&n-nl¢; B= |-|.|\/|-1:L02 (ZJ , B =21 . No stationaryp .
Every real square matrix 8H-M™1 for some symmetric HEH' and M=M".
Therefore, without further restrictions, Symmetric Generalized Eigenproblems and
unrestricted nonsymmetric eigenproblems fall prey to the same pathologigs., 51-56.
Consequently we shall impose further restrictions ugbandW in what follows. ...

Prof. W. Kahan SUBJECT TO CHANGE: Do you have the latest version? Page 64/ 79



File: NormQOvrv Tutorial Overview of Vector and Matrix Norms Version dated January 30, 2013 11:18 am

Simultaneous Diagonalization by Congruence

A powerful motive to find all the stationary poirnks of the Rayleigh Quotient
p(x) :=X"-H-¥x'-M-x is that,IF they are linearly independent and numerous
enough to constitute the columns of an invertible matrix, Ghey provide a
new coordinate system (basis) that transforms H and M into diagonal matrices
H:=CctH.c! and M:=C~tM-C! simultaneously by the same congruence.
The eigenvalues (stationary values)are the diagonal elementwise quotieHtsM .
They are often identified with squares of resonant frequencies of vibration.

The columns of & are often identified with “Natural Modes” of vibration.

What conditions sufce for sinultaneous digonalizaion by conguence?

e John Milnor’s Criterion: If x =0 whenever-W-x = X-M-x =0, and if the
dimension of vectors x Is #12, then some linear combination of

real symmetric H and M is positive definiteé.n =2 2cf. 2d.e.g on p. 64.
(The case n =2 is unexceptional when x is complex and H and M Hermitian.)

 |f some linear combination of real symmetric H and M is positive definite,
H and M can be diagonalized simultaneously by a congruentce. C
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Suppose some linear combination, spid +u-M, of real symmetric H and M
IS positive definite, so some congruence diagonalizes H and M simultaneously.

How then may such a congruencée! ®e found?

Choose a second linear combination, said —[3-M , independent of the first
so a-u +[B:n #0. Agood choice would havea{H —B-M|| << ||di-H| + B-M] ||
by virtue of substantial cancellation, but this may not be feasible. Thus a given

Symmetric Generalized Eigenproblem “ H-g-#-x” Is converted into a
Definite Symmetric Generalized EigenproblethH-y =p-M-y ” in which
H=oa-H-B-M=H and M=n-H+uM=M is positive definite.

Their eigenvalues are relatedo = (a-p—B)/(N-p+1); p=ER+up)(a—n-p).
A way to compute them and a desired congruence: Cholesky factoriz&' \J
and compute an eigendecomposition of W '=lH-U =W = QQ-Q with

an orthogonal Q= Q! and diagonal of eigenvaluep. Now Ct:= ULQ.

Thus does MTLAB's eig . Since such eigenproblems can be pathological, their error-analysis isn’t
yet tidy enough for a succinct and memorable overview. See instead Ren-Cang l14'sin§15

Hogben’s Handbook... cited underFurther Reading and my .../Math128/GnSymEig.pdf>. No
comparable numerical scheme is known to findradefiniteSymmetric Generalized Eigenproblem’s
congruence when it exists. What follows concerns problems that are easier and better understood. ...
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The (ordinary) Real Symmetric Eigenproblem

. is the special case M =1 of the Definite Symmetric Generalized Eigenproblem:

Given a real symmetric H ='H we seek its eigenvaluds and eigenvectors g
satisfying H-q #%-q. All of them constitute a diagon® and an orthogonal

Q = Q7! satisfying O@H-Q =©. The eigenvalues can be ordered in two ways:

e Ascending:8,<6,<05<...<6,,. <Descending8;=26,>2063=>...26,.

These two orderings are relevant to the identification of eigenvalues as stationary
values of theRayleigh Quotient p(x) := x -H-¥x'-x via the ...

Courant-Fischer Minimax Principle:
Ascending order,9, = Ming,pspaces of dimension kM@nonzeraxins P(X) -

Descending orderpy = IVlaxsubs.pace§ of dimension kMINnonzerax in s P(X) -

Let a perturbatiomdH = AH' that changes eigenvalues of AH to © + A®
have InertisfH) ={m:=n,, (:=ny, v:=n}. (See p. 63.) Then ordered ...

Ascending, 6, +AB < 8, for 1<k< n-t; 6,,+A6,,26,._, forv<m<n.
Descending, 6, +A6; 2 6;,, for 1<isn-v; 6;+A8 <6, for m<|<n.

.. useful mainly whenrt and/orv is small like 0, 1 or 2.
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Absolute and Relative Perturbations

Let perturbationAH = AH' change eigenvalues of HAH to © + A® with the
same ordering a® . Then AO||< ||]AH|| for every Orthogonally Invariant
norm ||...|| (See p. 32.) The norms usually chosen are,|lanf] ||...H.

The foregoing inequality AP||< [lAH]| is satisfactory when H is the matrix of a
symmetric linear operator from a Euclidean space to itself. More generally if H
IS the matrix of a symmetric linear operator from a normed vector space to its
dual, no orthogonally invariant norm need Beuitable different perturbations
with the same normAH|| may differ utterly in significance and effect.

Graded matricesef. p. 30. Better coordinatesf. p. 12. Other norms;f. Li & Mathias [1999]

Ostrowski’'s Refinement of Sylvester’s Inertia Theorem:. (See p. 63)

If the eigenvalues® of H change to eigenvalu@& of H:= C~1H-C?! with
the same ordering, Inert@) = Inertia@) and everyd; # 0 in © has

Y|IC-Clp < 8/6; < [I(C-CY il
Typically this is applied with C close to, lso H is Relatively close to H
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Partial Eigensystems and Spectral Gaps
The Spectrumof n-by-n real symmetric H ='Hs the Multiset of its n eigenvalues,

(some of which may be repeated) which we assume to be orbesrending say. Let
E(H) denote this so ordered spectrun®,&£06,>20;>...20,} of H.

Especially when dimension n is big, occasions arise to compute only those eigenvalues
of H in some interval separated from the res&gH) by a Gap or two. To this end,
suppose n-by-m matrix F has m dimearly independentcolumns approximating

(perhaps poorly) m eigenvectors of H, and suppose m-by-m real symmetric matrix M
(not necessarily diagonal) has a spectra@) = {p; =2 o =2 3= ... 2 Yyt thought to

approximate part olE(H) . Let Residual R:=H-F—-F-M and lef} := |FT||2-||R|1 :

Ri:= H F| - |F M For [Tl see p. 44.

Computable

Theorem: Among n eigenvalue§; of H there are m each of which lies in a different
(though perhaps overlapping) interal-3 <0< y+p for i=1,2,3, ..., m

Eigenvectors of H are orthogonal. If their estimates in F are too far from orthonormal,
||FT||2 may be excessively big. A remedy for thisReorthogonalization...
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Reorthogonalization:

One way replaces F by Q fromthe QR factorization F = Q-U with upper-triangular U

and Q-Q =1. Other ways, one sometimes faster, one closer,taré& explored in
<www.eecs.berkeley.edu/~wkahan/Math128/NearestQ.pdf> .

After a (closely) orthonormal n-by-m matrix Q replacesthe new residual becomes
R:=H-Q-QM and :=||R}}. Then, as before, the m eigenvalyesof E(M)

estimate m of the n eigenvalu@sin E(H) thus:
Among n eigenvalue$; in E(H) there are m each of which lies in a different
(possibly overlapping) interval wherejp; —0] < for i=1,2,3,...,m

Now R can have its nord := ||R]} minimized by the choice M :='€H-Q. Then those
m eigenvalues; fall into much narrower intervals whefh is much tinier tharSpectral
Gaps between the rest de(H) and those m or their estimatps. To describe these
Spectral Gaps we perform a (notional, not necessarily computed) change of coordinates:

Let n-by-n orthogonal [Q,Qbe obtained fromany n—m orthonormal columns Q
orthogonal to Q so n-by-n [Q, Q-[Q, J =1. This [Q, Q provides a new ortho-

normal coordinate system in which the linear operator formerly represented by H is now
represented by [Q,]JQH:[Q, Q. Of course, spectrunz([Q, Q]'-H-[Q, Q) = E(H).
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To define Spectral Gaps let ...
[Q,Q]'-H-[Q,Q] ::{M B} and set Y:{M O] NOW{O} represents R := H-D-M in
B' W o'W B'
the new coordinates} := ||R}} = [[Bl]. Usually only M =QH-Q and R are computed.

Let names for the relevant ordered spectra be ...
E(H) =E([Q, Q'-H[Q, Q) ={06,=20,=203=>... 20,} which we wish to estimate.
EM)={ g =M=z ...2 4y} which are our m computed estimates.
EW)={w2w=2u2... 2w,y for which rough estimates will be needed.

EY)={n¢{=no=n3=...2n,} = EM) O E(W) as multi-sets. |[6; ;| < B.

For i=1, 2,3, ..., n define th@apsy, between spectr&(M) and E(W) thus:
If n; 0E(M) theny; :=min |n; —w| elseifn; O E(W) theny, :=min |n; —].
Let Gapy:=miny,. UsuallyE(M) and E(W) are disjoint, and thegy > 0.

Then Chi-Kwong Li & Ren-Cang Li [2005] provedVERY GENERALLY that every
Bi —nil < BAY(vi2 +V(B2+y%/4)) < BI(yi2 +V(B*+y*14)) < min{B, By} .

When (3 <<y these inequalities estimate that partg{H) approximated bye(M) far

more tightly thanf3 becausesomehowthe rest ofE(H) is known to be farther away.
SOMEHOW ?
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Error-bounds on three previous pages boéngolute errors 8; 1; . What about

Relative Errors log®/n;) ?
Again, n-by-m matrix Q has orthonormal columns, M#HX, R:=H-Q - Q-M
Now, provided ||R-|V|1||2<l.|J< 1, the m eigenvalueg; in E(M) estimate m of the

n eigenvalued; in E(H) thus: cf. p. 70
Among n eigenvalue$§; in E(H) there are m each of which lies in a different

(possibly overlapping) interval whereiflog(®/p) | <y for i=1,2,3, ..., m

These bounds are advantageous only when 1{fR-i4 a lot smaller than ||R||-Ti.

Deflation replaces HH' :E\; \I/Sv} by Y {I(\)/I' \C/)v} when ||B]|is deemed small enough.

Its motivation is to repace a big eigenproblem by two smaller ones, maybe not both much smaller.
ReplacingE(H) by E(Y) incurs Absolute errors bounded by ||B]| or by ||BHZ/y If
the gapy is known to be big enouglRelative errors are bounded by < 1 whenever

both [[MLB|L<y and ||BWYL<u.

Only in special situations can these Relative error-bounds be worth what they cost to compute.
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Relative Error Bounds for Deflated Singular Value Problems

Let triangular S :{8 E} and Z :E'O} have singular value multisets respectively

S)={0120,2...20,} and H2)={42(=...2(,} = YD) O YF)
wherein D) ={0;20,2...28,} and S(F)={@;2@®=>... 2@} -

Z comes from S videflation Every Absolute Errw; — ;| < |[E]|.
What about Relative Errors lagl(;) ?

If either |[DME||<2p<1or |[EFY<ap<1 thenevenjlog(c/Z)| <.
It persists with 0/0 :=1 even if sonfg=0 so long as either [TBE|| or [E-FY| exists.

Example:
Let n-by-n S := bidia{% s s . 5 5 € } {D e} in which the paﬁ IS
1 .. .. 1 1 f |of 1

missing from only the first and last columns, anedf>>1>e> 0.
o1=s+1 >> o= (L-DV(Z"-nL+n-1) fors>3 and n>3.

Deleting e causes relative errorgsif e< 2p-f though thise can exceeds,, hugely.

For relative error-bounds improved substantially by a knowledge of gapg,likee Kahan [2012"].
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Spectral Gaps, Invariant Subspaces, and Angles

Although the n eigenvectors of n-by-n H = gan be chosen to be orthonormal, those

belonging to eigenvalues repeated or too tightly clustered are partially indeterminate, at

least numerically. Instead tHavariant Subspacespanned by the cluster’s eigenvectors

is determined accurately whenever the cluster is separated from the rest of the spectrum by

a sufficiently wide gap. Théngles between a subspace and an approximation to it are

described best in Davis & Kahan [1969]; the best way to compute them is on p. 7 of
<www.eecs.berkeley.edu/~wkahan/Math128/NearestQ.pdf> .

Let the columns of n-by-m Q be an orthonormal-QQ= |I) basis for an approximation
to the invariant subspace belonging to a tight cluster of m eigenvalues of H . As before,
QO HIQ Q=M Y= 0 R=HQ-QM=® so p:=IIRE=IBE
B'W o'W
EH)=E(Q,Q"'H[Q,Q ={6;=26,=263>...26,,}. Recal M:=QH-Q.
EM)={H 2H2h32... 2 Uy} approximates a tight cluster i&(H) .
EW)={w2w2u2... 2w,y approximates the rest cE(H) .
Gapy:=minyy; = min; | — oy . This may be of little use unless>> 23 .
Let A be the biggest angle between Range(Q) and the cluster’s invariant subspace;
then A< arcsin(B)/2 if y>28B.
When E(W) is all on just one side d&€(M) , then A< arctan(B/y)/2<Bly.
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Miscellany:
» Elaborations of Perturbation Theory: Ren-Cang Li's 815 in Hogben [2007]

« Compute Eigenvalues to High Relative Accuracy: Z. Dien&46 in Hogben
... of Graded Real Symmetric Matrices, Positive Definite Matrices (only ?)

... of Specially Structured Matrices: see his citations of P. Kaieal.
Another such example: pp. 12-13 of <.../HiloMats.pdf>

« Computational Methods and Perturbation Theories of Singular Values of L :

amended by some simplifications.

. same as for eigensystem %17 L'
see R. Mathias’ 817 in Hogben [2007]

L O

Regions in the Complex Planeassociated witl. acting on a complex space:
e e-Pseudo-Spectrumf L ;: {Z for which |[{1 =L) ™| > 1£}. Usually ... J
. Includes spectrum df ; see M. Embree’s §16 in Hogben [2007]

* Field of Valuesof, or Numerical Rangeof L : {w'-L-x/w'x} as w' andx

run through all nonzero paifSual (p. 17) with respect to the space’s norm.
. includes spectrum dof . Convex set for ||.,|] see C.K. Li's 818 in Hogben
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Citations and Further Reading

A huge encyclopedic survey of facts citing the literature for their proofs i1s Handbook of
Linear Algebra ed. by Leslie Hogben [2007] 1504 pp., Chapman & Hall/CRC.

For a treatment of finite-dimensional linear algebra that prepares the diligent reader for
infinite dimensions, tryFinite-Dimensional Linear Analysis, a Systematic Presentation
in Problem Form by .M. Glazman & Ju.l. Ljubictranslated and edited by G.P. Barker
& G. Kuerti [1974] MIT Press. This huge text’'s exposition consists of about 1500
problems with hints but none accompanied by a full solution. You must do it yourself.

Normed Linear Space8rd ed. by M.M. Day [1973], Springer-Verlag, is a short (211
pages) brutally compressed overview of the situation in infinite-dimensional spaces. The
last chapter is a nine-page reader’s guide to the literature up to 1972.

For more about unitarially invariant Cross-Norms and Symmetric Gauge Functions
applicable to linear operators upon Hilbert spaces, see ch.Norofi Ideals of
Completely Continuous Operatorby R. Schatten [1960], Springer-Verlag.

B.N. Parlett’s book The Symmetric Eigenvalue Problem [1998] 426 pp., SIAM,
Philadelphia, is the best source about the properties and computations of eigensystems of

real symmetric and Hermitian matrices.
Citations & Further Reading continues ...
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... Citations & Further Reading continued ...

N.J. Higham [2002Accuracy & Stability of Numerical Algorithm£nd ed., ~700 pp,.
SIAM, Philadelphia, is the best text treating error-analysis of roundoft.

Often better than bounds upon norms of errors are elementwise bounds mentioned herein
at the bottom of p. 30. For more about them see Higham’s “A survey of componentwise
perturbation theory in numerical linear algebra” pp. 49-77 in ...

W. Gautschi (ed.Mathematics of Computation 1943-1994, half century of
computational mathematicd’roc. of theMath. of Comp 50th Anniv. Symposium,
9 - 13 Aug. 1993 in Vancouver B.C., American Math Soc.

Chi-Kwong L1 & Roy Mathias [1999] “The Lidskii-Mirsky-Wielandt Theorem —
additive and multiplicative versions” pp. 377-413 of Numerische Mathematik 81, is a
superb survey with elegant proofs of matrix norms’ relations with Hermitian matrices.

Chandler Davis & W.M. Kahan [1969] “Some New Bounds on Perturbations of
Subspaces” pp. 863-868RBulletin Amer. Math. Soc75#4. This describes bounds upon
angles between subspaces in a readable way, far more so than the most often cited ...

Davis & Kahan [1970] “The Rotation of Eigenvectors by a Perturbation. IlI” pp. 1-46 in
SIAM J. Numer. Anal7 #1. Used herein on p. 74.

Citations & Further Reading continues ...
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... Citations & Further Reading continued ...

Chi-Kwong L1 & Ren-Cang Li [2005] “A note on eigenvalues of perturbed Hermitian
matrices” pp. 183-190 in Linear Algebra and its Applications 395 , cited herein on p. 71.

“Deflations Preserving Relative Accuracy” by W. Kahan [2012"] was posted recently at
<www.eecs.berkeley.edu/~wkahan/4Junel2.pdf> and fully at .../ma221/Deflate.pdf> .

Mentioned at the bottom of p. 56 is the possibly heightened sensitivity of the eigenvalues
of an Hermitian matrix to non-Hermitian perturbations. For more about this see ...

“Spectra of Operators with Fixed Imaginary Parts” by Andrzej Pokrzywa [1981], pp.
359-364 inProc. Amer. Math. Soc81#3, and ...

“Arbitrary Perturbations of Hermitian Matrices” by Arnold Schonhage [1979], pp. 143-9
in Linear Algebra and its Applications 24
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Epilogue

| learned what little | know about nornmetc. over half a century ago, and later turned in
a different direction. Consult appropriate Math. Dept. professors for this century’s
understandings of normed and more general metric spaces.

As an error-analyst, | have chosen mostly applications to error-analyses to illustrate how a
norm can be used. Scattered among them are attempts to awaken an awareness of how
important, despite its difficulty, is choosing an appropriate thing to gauge with a norm.
Choosing anEquitable norm (pp. 12, 30, 39, 48, 52, 68) raised that issue. However, ...

Many a situation cannot be comprehended in a single number.

These situations abound in Scientific and Engineering computations, and in almost all
human endeavors; see a few surprising military examples in ...

J.G. Roche & B.D. Watts [1991] “Choosing Analytic Measures” pp. 165-209Strategic Studies
14 #2. Disregard their mathematically naive and irrelevant uses of “linear” and “chaos”.

Still, when a decision is needed, it often amounts to distilling one number out of many:
Pass a test? Accept a candidate? Choose a purchase? Launch an enterprise? ...
Such unavoidable decisions must occasionally be mistaken or, less often, very lucky.
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