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Abstract

 

Intended for new graduate students whose experience as undergraduates 
may have prepared them inadequately to apply norms to numerical error-
analyses and to proofs of convergence,  this tutorial surveys norms for 
finite-dimensional real spaces in a way that may ease a transition to the 
infinite-dimensional spaces of  Functional Analysis.  Among the topics 
covered are some more useful than is implied by their absence from most 
curricula.  The notation is mostly standard but interpreted in ways not 
always taught to undergraduates,  so attendees may prepare for the tutorial 
by reading just a few of my lecture notes for  Math. H110  posted at 

 <eecs.berkeley.edu/~wkahan/MathH110/2dspaces.pdf>   and  
 <.../pts.pdf>  in that order,  and afterwards  <.../geo.pdf>  and  
 <.../geos.pdf>  skimmed lightly.

This tutorial omits proofs;  almost all can be found in  
 <.../NORMlite.pdf>,  <.../GIlite.pdf>,  and a few other places cited.

 

This tutorial’s pages have been posted at  <.../NormOvrv.pdf> .
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What are  Norms  for?

 

They provide vector spaces and their linear operators with measures of 
size,   length   and   distance 

only   a little more general   than what we already use routinely in everyday life.

 

“A little more general”   

 

⇒

 

  more widely applicable than our most familiar notions
but still often conforming to our intuitions about them.

 

Examples …

1•

 

  A  “Backward”  Error-Analysis  of a computed approximation  

 

Y

 

  to  ƒ(

 

X

 

) :

 

Y

 

 + 

 

∆

 

Y

 

 = ƒ(

 

X

 

 + 

 

∆

 

X

 

) ;   are  

 

∆

 

Y

 

  and  

 

∆

 

X

 

  negligible?  
Depends upon what we can infer about   ||

 

∆

 

Y

 

||  and  ||

 

∆

 

X

 

|| .  

 

vector norms

 

 

 

2•

 

  Convergence Analysis of an  Iteration  towards a  Fixed-Point  

 

z

 

 :

 

x

 

n+1

 

 := ƒ(

 

x

 

n

 

) = ƒ

 

[n+1]

 

(

 

x

 

0

 

)   

 

→

 

 ? 

 

→

 

   

 

z

 

 = ƒ(

 

z

 

)   ?

Depends upon what we can infer about derivative  …   ||ƒ

 

 

 

`

 

(

 

z

 

)|| .    

 

matrix norm

 

 

• • •
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Example 1:

 

  A  “Backward”  Error-Analysis 

 

A program  F(

 

X

 

)  is intended to compute vector-valued  ƒ(

 

x

 

)  for vector inputs  

 

x

 

 .
Actually,  computed   

 

Y

 

 := F(

 

X

 

)   only approximates   

 

y

 

 := ƒ(

 

x

 

) .     

 

HOW WELL

 

 

 

?

 

We deem program  F  to be  “Backward Stable”  numerically just  

 

If

 

  we have proved that   
||F(

 

X

 

) – ƒ(

 

X

 

)||  is at worst slightly bigger than  ||ƒ(

 

X

 

 + 

 

∆

 

X

 

) – ƒ(

 

X

 

)||  can be for  some 
unknown roundoff-induced perturbation  

 

∆

 

X

 

  whose  ||

 

∆

 

X

 

||  is at worst slightly bigger than 
negligible compared with  ||

 

X

 

||  for all inputs  

 

X

 

  in a region big enough to be useful.

 

If  F  is “backward stable” but computed  F(

 

X

 

)  is very wrong,  do we blame the victim  ƒ  for  “ill condition”  at  

 

X

 

 ?

 

Error-Analyses  tend to excessive pessimism partly because they allow for unlikely conspiracies 
among rounding errors,  and partly because the chosen norms are often not the most  suitable.

DATA

===>

e.g.  Matrix Inversion,
but  inappropriate  for  log,  acos,  …  

Our chosen norm
may exaggerate
uncertainties in

whose correlations
the norm disregards.

Useful computed
results  F(X)  lie 
                    

RESULTSactual input data
and computed results

X

X + ∆X
ƒ(X)

ƒ(X + ∆X)

ƒ
inside this circle:
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Example 2:  Convergence Analysis of an Iteration
Given a smooth map   ƒ(x)  of a vector-space to itself,  and a starting vector  x0 ,  let  

 xn+1 := ƒ(xn) = ƒ(ƒ(xn–1)) = … = ƒ[n+1](x0)   for  n = 0, 1, 2, 3, …  in turn.

Does  xn → z  fast enough from every  x0  near enough to a Fixed-Point  z = ƒ(z) ?

  Yes if and only if a  z  exists and every  | eigenvalue of  ƒ `(z) |  is sufficiently less than  1 .

But we don’t know  z  yet,  much less the eigenvalues of the derivative  ƒ `(z) .     Jacobian

Instead we explore conditions upon  ƒ  easier to test.  For instance,  maybe  ƒ  is a  … 

Contractive Map:   ||ƒ(y) – ƒ(x)||/||y – x|| < λ < 1  whenever distinct  x  and  y  

 lie in some  sufficiently large  region  XX   .

Then  either  ||xn – z|| ≤ λn·||x0 – z|| → 0   so   xn → z = ƒ(z)   uniquely in  XX  ,

  or  ultimately  xn  escapes from  XX  ,  which is too small to hold a fixed-point.

And test the  Contractive  hypothesis:   Is   ||xn+1 – xn||/||xn – xn–1|| < 1 ?       Until roundoff …

       THE CATCH:  All this makes sense only for an  appropriately  chosen norm  ||…|| .

  That is the trouble with norms:  There are so many of them,  apt choice may be hard.
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Part I

Vector Norms
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The trouble with norms is that there are so many of them.
To be a vector norm,  ||…||  need satisfy only three requirements … 

•  Positivity:   ∞ > ||x|| > 0  for every vector  x  except  ||o|| = 0 .
•  Homogeneity:   ||λ·x|| = |λ|·||x||  for every scalar  λ .                   Let’s keep  λ  real.

•  Triangle Inequality:   ||x + y|| ≤ ||x|| + ||y||   for all  x  and  y .  Equality need not imply parallelism.

If  ||x||  is a norm,  so is  |||x||| := ||L–1·x||  for any fixed invertible linear operator  L  .

If  ||x||  and  |||x|||  are norms,  so are  max{||x||, |||x|||} ,   √(||x||2 + |||x|||2) ,    ||x|| + |||x||| ,   … .

The  Unit Ball   of a norm  ||x||  is the region   BB := { x :  ||x|| ≤ 1 } .  This   BB  turns out to 
be closed,  bounded,  centrally symmetric  ( BB = –BB )  and convex with  o  strictly inside.
 “Convex”  means that,  if  x  and  y  lie in  BB ,  so does  ζ·x + (1– ζ)·y  for  0 ≤ ζ ≤ 1 .
  Line segment joining  “points”   x  and  y 

Conversely,  any  region  BB  closed,  bounded,  centrally symmetric and convex with  o  
strictly inside is the  Unit Ball  of the norm   ||x|| := inf ( |ξ|  for which  x/ξ  lies in  BB ) .

•
•

•

o

y
x∂BB ||x|| ≈ 2/3
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The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen?

Scalar value  ||x||  has to be  computable  at a tolerable cost.    Computable  from what?
Computable  from scalar  components  of a representation  x  of  (abstract?)  vector  x .

An applied mathematician’s first challenge is to choose suitable  parameters 
  ( variables,  coordinates,  basis vectors,  … )

to represent his problem’s entities  ( on paper,  on a blackboard,  in his computer,  … ).

Let  B := [b1, b2, b3, …, bn]  be a  Basis  for the  (abstract?)  space of vectors  x ,  so each 

vector  x = B·x = ∑j bj·ξj   is represented by a  column-vector  x = [ξ1; ξ2; ξ3; …; ξn]  in  

MATLAB ’s  notation.  Thus,  basis  B  is an invertible linear map from a space of columns  x  

to the  (abstract?)  space of vectors  x = B·x ;  each  x  has its own column  x = B–1·x .

Then  ||x||  will be computed as  ||x|| := ||x||  from the components  ξj  of column  x .

If a basis  B  accepted first is unsatisfactory,  a new basis  B := B·C–1  can be chosen;  here  
C  is an invertible matrix.  And the new representative of  x = B·x = B·x  is then column  

x = C·x ,  whence the new formula to compute  ||x|| = || x ||  becomes  || x || = ||C–1·x|| .
  Don’t Memorize!    Re-derive!
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Having chosen  (or accepted)  a basis in which vector  x  is represented by its column  
x = [ξ1; ξ2; ξ3; …; ξn] ,  we can choose a formula by which to compute  ||x|| := ||x||  from 

the components  ξj .  Here are three familiar formulas and their  Unit Balls  for  n = 3 :

•   ||x||∞ := max |ξj| .          Ball is a solid  Cube.                          Postal box 

•   ||x||2 := √(∑ |ξj|
2) .          Ball is a solid  Sphere.                   Euclidean length! 

•   ||x||1 := ∑ |ξj| .               Ball is a solid  Octahedron              Taxicab norm 

These norms are unchanged by permutation of the elements of  x ;  these norms treat each 
element the same as any other.  What if some elements need closer scrutiny than others?

Let  W  be an invertible diagonal matrix;   |||x||| := ||W–1·x||  is a norm too,  maybe better.

Let  C  be an invertible matrix of a change of basis;   |||x||| := ||C–1·x||  is a norm too.

A change of variables often induces a change of norm.  Or is it  vice-versa ?
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A change of variables often induces a change of norm.  Or is it  vice-versa ?

How should a norm be chosen for error-analysis?
Ideally,  an appropriate norm would be what I call  Equitable,  i.e.,  so chosen that …

  All errors of the same norm have roughly equal  (in)significance.
This ideal is often not achievable before a computation’s results have been inspected,  
and not always achievable afterwards,  but always worth attempting.

Example:  The control of electric power distribution networks involves voltages of widely 
diverse magnitudes,  ranging from those on cross-country transmission lines to those in 
radio receivers of the microwave transmissions needed to control power generation.

Changes by  0.001  Volt   are negligible in locations  1 -  4 ,  devastating in the last two.
Changes by  0.001  Unit   are negligible in all locations.

Locations Voltage Ranges Better Units
1 Cross-Country Transmission Towers 250,000 - 1,000,000 Megavolts
2 Substation to Transformers on Telephone Poles 2,000 - 10,000 Kilovolts
3 In-house wall sockets to appliances 110 - 240 Volts
4 Computer power supplies to transistors 2 - 12 Volts
5 Transistor circuits’ on-off variations 0.001 - 0.01 Millivolts
6 Inputs to radio receivers’ antennas 0.000,001 - 0.000,01 Microvolts
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A change of variables often induces a change of norm.  Or is it  vice-versa ?

How should a norm be chosen for convergence analysis?
Ideally,  the norm should be so chosen that a  Stationary Iteration   …

    xn+1 := ƒ(xn) → z = ƒ(z)   converges monotonically in norm.
This ideal is often not achievable,  but always worth attempting.

Local Convergence:  If   1 > λ > | each eigenvalue of  ƒ `(z) | ,  norms  ||…||  exist such that

  ||xn+1 – z|| ≤ λ·||xn – z|| ≤ λn+1·||x0 – z|| → 0  for every  x0  close enough to  z .

In principle such a norm can be constructed by changing to a new basis obtained from the 
eigendecomposition of   ƒ `(z) ,  but this merely raises hopes for something more practical.

Global Convergence:  Rather than by shrinkage of a norm,  convergence must be proved 
(if true)  by shrinkage of a  Lyapunov Function  whose  Level-lines/surfaces  form a nested 
family shrinking onto  z ,  and whose shapes need not be centrally symmetric and convex.

Global Convergence of a Non-Stationary Iteration   xn+1 := ƒn(xn) → z = ƒm(z)  for all  m

can rarely be proved using norms;  rare exceptions are mostly matrix computations like  
Conjugate Gradients.  Other global convergence proofs need some other monotonicity.

E.g.:  §6  of  <eecs.berkeley.edu/~wkahan/Math128/GnSymEig.pdf>  uses a monotonic determinant,  not a norm at all.
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And now for something entirely different:

Why are vector spaces like potato chips?
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Why are vector spaces like potato chips?

 Because you cannot have just one.
Each space of vectors  x  comes with its  Dual-Space  of  Linear Functionals  wT

 :
•  Scalar Product  wT·x  is a scalar,  real for real spaces.                Complex:  w*·x  or  wH·x

•  wT  acts linearly upon vectors  x  and  y :      wT·(λ·x + µ·y) = λ·wT·x + µ·wT·y .

•  x  acts linearly upon  vT  and  wT :               (λ·vT + µ·wT)·x = λ·vT·x + µ·wT·x .

So the linear functionals  wT  form a vector space  Dual  or  Conjugate  to the space of 
vectors  x .  Each space is dual to the other,  and they have the same finite dimension.

But among infinite dimensional spaces,  many are properly contained within their dual’s dual.

Since  x  need not be a column,  wT  need not be a row,  much less the  “Transpose”  of a 
vector  w .  Except for  Euclidean  and other  Inner-Product  spaces,  there is no necessary 

relation between  wT  and  w ,  just as  Miss Carla  and  Master Carlo  need not be related.
Compare  Contravariant  and  Covariant Tensors.

Distinctions between dual spaces are obscured by other notations for  wT·x  like   w'·x,   w•x,  <x, w>,  
<x|w>,  (x, w),  …  devised originally for  Euclidean  and other  Inner-Product  spaces,  each one  
Isomorphic  to its dual.  Many mathematicians expect context to disambiguate those notations.
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E.g.:  The space dual to  x ’s  contains the derivative  µ`(x)  of any scalar function  µ(x)  
because scalar  dµ(x) = µ`(x)·dx .

The  Dual-Space’s  Norm

The natural dual norm for functional  wT  is     ||wT|| := max |wT·x|/||x||  over  x ≠ o .

From that follows   ||x|| = max |wT·x|/||wT||  over  wT ≠ oT .                Non-trivial proof in general

Examples  of dual norms for rows and columns:                     … in  MATLAB ’s  notation … 

Say column  x = [ξ1; ξ2; ξ3; …; ξn] ,   and row  wT =  [ω1, ω2, ω3, …, ωn] .

•   Dual to   ||x||∞ := max |ξj|  is  ||wT||∞ = ∑ |ωj|        

•   Dual to   ||x||2 := √(∑ |ξj|
2)  is  ||wT||2 = √(∑ |ωj|

2)      

•   Dual to   ||x||1 := ∑ |ξj|  is  ||wT||1 = max |ωj|     

Hölder’s Inequality:     |wT·x| ≤ ||wT||·||x||    for all  wT  and  x .        Cf.  Cauchy’s  for  ||…||2
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Vectors  and  Functionals  Dual  with respect to the  Norm

 z  and  uT  are called  “Dual w.r.t. the norm”  when  uT·z = ||uT||·||z||  and  ||uT|| = ||z|| ≠ 0 .

This duality relation is also called  “Polarity”.  Its  z  and  uT  determine each other 
nonlinearly and perhaps nonuniquely in general,  but linearly and uniquely only in  
Euclidean  and in  Inner-Product  spaces to be described imminently.  Examples …

•  Grad µ(x)  is a vector in  x ’s  space dual to derivative  µ`(x)  in the dual-space.
    From  Hölder’s Inequality,  µ(x)  changes fastest in the direction of  Grad µ(x) ,   and  ||Grad µ(x)|| = ||µ`(x)||  .

• Row(s)  wT =  [ω1, ω2, ω3, …, ωn]  dual  to column  x = [ξ1; ξ2; ξ3; …; ξn]  w.r.t.  ||x|| :

»   For  ||x||∞ :   If  |ξj| < ||x||∞  then  ωj := 0  

       else let  sign(ωj) := sign(ξj)  or  0 ,   and  ∑ |ωj| := ||x||∞ .

   This dual  wT  is unique just when only one  |ξj| = ||x||∞ .

»   For  ||x||2 :   w
T := xT  (its transpose !)  uniquely.     (Complex conjugate transpose for complex spaces) 

»   For  ||x||1 :   If  ξj = 0  then choose any  ωj  with  |ωj| ≤ ||x||1  

       else   ωj := ||x||1·sign(ξj) .

   This dual  wT  is unique just when every  ξj ≠ 0 .
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Changing a vector space’s  Basis   changes the  Dual-space’s  Basis:
Column  x  that represents vector  x = B·x  in the basis  B := [b1, b2, b3, …, bn]  has its 

counterpart in  row  wT  that represents functional  wT = wT·B–1  in the same basis.  This 

notation preserves the scalar product   wT·x = wT·x   as a matrix product in a natural way.

Just as the  “columns”  bj  of  B  are basis vectors for the space of vectors  x ,  the  “rows”  

of  B–1  are basis vectors  ej
T  (functionals)  for the dual-space of linear functionals  wT .  

“Evaluation”  functional  ej
T  extracts  x ’s  component  ξj = ej

T·x  of column  x = B–1·x .

Changing basis to  B := B·C–1  changes column  x  representing vector  x = B·x = B·x  to  

x = C·x ,  and changes row  wT  representing  wT = wT·B–1 = wT·B–1  to  wT = wT·C–1 .  

•  When can  “ …T ”  be construed as an operator instead of merely a suffix?
    When does row  wT = wT·C–1  match the transpose  (w)T = wT·CT  of column  w = C·w ? 

They match only if  CT = C–1  is an  Orthogonal  matrix.  That is what happens when 
 B  and  B  are  Orthonormal  bases for a  Euclidean  space,  which is the prototypical
 instance of an  Inner-Product Space  ... 
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Real Inner-Product Spaces
A real  Inner-Product Space  possesses a symmetric scalar product  x•y = y•x  linear in 
each of  x  and  y  separately,  and with  x•x > 0  except  o•o = 0 .  Therefore the space is 
normed:  ||x|| := √x•x .  But its  Unit Ball  is generally an  Ellipsoid.     ( Complex  x•y = y•x .)

An inner-product space has a natural linear map between it and its dual space.  Vector  

x = B·x  represented by column  x  maps to linear functional  x• = xT·M·B–1  represented 

by row  xT·M  for some  symmetric positive definite matrix  M = MT ,   the space’s  Metric.  
M  comes from the basis vectors in  B := [b1, b2, b3, …, bn]  thus:  Mij  = bi•bj .  Similarly  

w• = wTB–1  represented by row  wT  maps to  w = B·M–1·w .  Now representative 

columns  x = B–1·x  and  y = B–1·y  figure in the formula to obtain   y•x = yT·M·x ;   and   

||x|| = √(xT·M·x)   but   ||w•|| = √(wT·M–1·w) .   Now  x  and  x•  are duals  w.r.t.  ||…|| .

A  Euclidean  space’s metric  M  is the  Identity  matrix  I ,  which simplifies everything.

Changing basis  B  to  B := B·C–1  changes metric  M  to  M = C–1T·M·C–1 .  Therefore

Every real inner-product space is a  Euclidean  space 
disguised perhaps by a non-orthonormal basis  B .

B  changes to an orthonormal basis  B := B·C–1  when  CT·C = M .   ... Gram-Schmidt,  Cholesky
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What distinguishes an  Inner-Product  or  Euclidean  space
from all other  Normed  vector spaces?

The  Parallelogram  Law:   ||x + y||2 + ||x – y||2 ≡ 2||x||2 + 2||y||2 .     … Jordan-von Neumann Th’m

And then   x•y ≡ ( ||x + y||2 – ||x – y||2 )/4 .

For a proof see  <www.eecs.berkeley.edu/~wkahan/MathH110/QF.pdf>

•  Every  Inner-Product  space is  Isomorphic  to its  Dual-space.

But every  other  normed  n-space  is  NOT  Isomorphic  to its dual space 
except possibly if  dimension  n ≤ 2 .

  

Generally,  flat spots on the surface of a normed space’s unit ball match up with vertices of the dual space’s unit ball,  and  vice-versa.

||…||∞ ↔  ||…||1
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The Derivative of a Vector Norm                          ( Say dimension  n > 1 .)  
It is determined uniquely only where the norm’s unit ball is smooth  (no vertex nor edge),  
as is an inner-product space’s ellipsoidal unit ball,  everywhere but at  o .

Then   d||z|| = uT·dz/||z||   in which  uT  is the linear functional dual to  z  w.r.t.  ||…|| .

More generally,  d||z||  is an extremum of  uT·dz/||z||  over all the linear functionals  uT  dual to  z  w.r.t.  ||…|| .

The foregoing formula helps to provide a short proof of the most useful special case of …

Auerbach’s Theorem: Any n-space’s unit ball  BB  can be circumscribed by at least one  
  Parallelepiped  PP  whose  2n  faces touch  BB  at their midpoints.

One such  PP  is a circumscribing parallelepiped of minimum volume.  And if a new basis  
P  is chosen from just the vectors that join  o  to the midpoints of  PP’s  faces,  then the 

column  x := P–1·x  that represents  n-dimensional  vector  x  in this new basis  P  has 
  ||x||1/n ≤ ||x||∞ ≤  ||x||  ≤ ||x||1 ≤ n·||x||∞   for every  x .

• Therefore any  n-dimensional  norm  ||…||  can be approximated within a factor  n±1/2  by
   either  ||…||∞  or  ||…||1 ,  each of which costs at most  n  operations to compute after the 

   change of basis  (whose one-time cost may be of order  n3).
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An  Ellipsoid  is the level surface of a  Positive Definite Quadratic Form;  see  pp. 62-63.

Fritz John’s Ellipsoid Theorem:                                            (1948) 
Any  n-dimensional  normed space’s  unit ball  BB  can be circumscribed 

by an ellipsoid  EE  tightly enough that   √n·BB ⊇  EE ⊇  BB .

One such  EE  is a circumscribing ellipsoid of minimum volume.  And if a new basis  E  is 

chosen from the principal axes of  EE  then the column  x := E–1·x  that represents  n-
dimensional  vector  x  in this new basis  E  has   ||x||/√n ≤ ||x||2 ≤ ||x||  for every  x .

•  Therefore  any  n-dimensional  norm  ||…||  can be approximated within a factor  n±1/4 
    by  ||…||2  at a cost of order  n  after the change of basis.

Often a change of basis involving nothing more onerous than choices of suitable units  
(recall the voltages’ example on  p. 12)  allows one of the cheap norms  ||…||∞,  ||…||2  or  

||…||1  to provide adequate error-estimates.

Fritz John’s Ellipsoid Theorem  has vastly many other useful implications some of which 
are mentioned in my posted lecture notes  <…/MathH110/NORMlite.pdf>

However,  if dimension  n  is too big or infinite,  different norms may defy comparison.
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Part II    

Matrix Norms
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All the linear operators  L   mapping one given normed space of vectors  x  to another 
constitute a third vector space and therefore can be subjected to any of a vast horde of 
norms.  We prefer that each such  Matrix Norm   satisfy these  four  requirements:

•  Positivity:   ∞ > ||L || > 0  for every  L   except  ||O|| = 0 .
•  Homogeneity:   ||λ·L || = |λ|·||L ||  for every scalar  λ .                   Let’s keep  λ  real.

•  Triangle Inequality:   ||L  + K || ≤ ||L || + ||K ||   for all  L   and  K  .
•  Compatibility:   ||L ·x|| ≤ ||L ||·||x||   for all  L   and  x .                     Subordination

Overloaded Notation
Note that the last requirement involves three norms all written  “||…||” .  This notation is 
heavily overloaded,  obliging readers to disambiguate norms by close attention to the 
linguistic type and context of each norm’s argument,  just as we learned to distinguish  

||wT||  from  ||x|| .  A  Compatible  Matrix norm is compatible with one or two vector norms 

and consequently with their dual norms:  Compatibility implies   ||wT·L || ≤ ||wT||·||L ||  too.

This  Compatibility  requirement is trifling because it can always be met by scaling up the 
norm offered for linear maps  L  :    If    µ := ( max ||L ·x|| over  ||L || = ||x|| = 1 ) > 1   then 
replace  ||L ||  by a scaled-up norm   |||L ||| := ||L ||·µ   to make it compatible.

(Then if identity  I   maps a space to itself but with a different norm,  ||I ||  can have any positive value! )
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The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen?   … to be computed?

Scalar value  ||L ||  has to be  computable  at a tolerable cost.    Computable  from what?
Computable  from scalar  components  of a representation  L  of  (abstract?)  operator  L  .

Let  B  be a basis for vectors  x  in the domain of  L  .  and  E  a basis for vectors  y  in the 

target-space containing the range of  L  .  Then matrix  L := E–1·L ·B  represents  L  ,  and  
||L ||  must be computed from its elements  Lij  .  These change when bases are changed.

More generally,  most of a second college course in linear algebra concerns the question
“What can be inferred about a linear operator  L   from its matrix  L  given 
  only the natures of  L  ’s  domain-  and  target-spaces  but not their bases?”

If only the spaces’ dimensions are known,  only  Rank(L ) := Rank(L)  can be inferred.
If  L   maps an otherwise undistinguished space to itself,  only  L  ’s  Jordan Normal Form.
If  L   maps one  Euclidean  space to another,  only the  Singular Values  of  L  .
If  L   is a  Symmetric  map between a space and its dual space,  only  L  ’s  Inertia.

see  Sylvester’s  Inertia  Theorem on  p. 63

If too little is known about the domain- and target-spaces of linear operator  L  ,  not much 
about it can be inferred  (numerically)  from arbitrary matrix representations  L  of   L  .
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Here are three  Matrix  norms for  m-by-n  matrices  L  that take account only of its 
elements  Lij  , not of the operator  L   that  L  represents,  so these norms’ theory is shallow:

•   ||L||∑ := ∑i ∑j |Lij |       extends from   ||x||1  

•   ||L||F := √( ∑i ∑j |Lij |
2 )         …  the  Frobenius  norm,  the earliest matrix norm.

•   ||L||µ := n·maxi,j |Lij |     extends from   ||x||∞  

•  Compatibilities:   ||L||∑  &  ||x||1 ,   ||L||F  &  ||x||2 ,   ||L||µ  &  ||x||∞ ,  among others. 

Each of these norms possesses separately a property called  Multiplicative Dominance :
  ||K·L|| ≤ ||K||·||L||  whenever matrices  K  and  L  can be multiplied.

This property implies  Compatibility  with inherited  n-by-1  vector norms.  Consequently  
Multiplicative Dominance  is so useful that we shall require it of all Matrix norms.

And we shall get it from  Operator Norms  defined thus:

•   ||L || := ( max ||L ·x||  over  ||x|| = 1 ) = ( max ||wT·L ||  over  ||wT|| = 1 )

= ( max | wT·L ·x |   over  ||wT|| = ||x|| = 1 )        with dual  ||…T||  and  ||…|| 

  Danger :  Here five distinguishable norms are all written the same way:    “||…||” .

Operator Norms  are also called  “Sup Norms”  and  “LUB-norms”  (Least Upper Bound).
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Operator Norms 
•   ||L || :=  ( max ||L ·x||  over  ||x|| = 1 )  =  ( max ||wT·L ||  over  ||wT|| = 1 )

= ( max | wT·L ·x |   over  ||wT|| = ||x|| = 1 )        with  ||…T||  dual to  ||L·…|| 

Later we shall see how to test whether a given Matrix norm  ||L||  is an  Operator Norm too.

For now observe that  Operator Norms  possess  Multiplicative Dominance  in this way:
 ||K ·L || ≤ ||K ||·||L ||   if  Domain(K ) ⊇  Range(L )  and both have the same vector norm.

And for linear maps  L   of a space to itself each  Operator Norm  satisfies   ||L || ≥ |λ|  for 
every eigenvalue  λ  of  L  ;  and  || I  || = 1 .

A few  Operator Norms  can be computed at modest cost from the matrix  L  representing  
L   in suitably chosen bases for its domain- and target-spaces.  Because there are many 
uses for different norms,  they must be distinguished by subscripts that clutter the notation:

    Let     ||L ||αβ := ( max ||L ·x||α/||x||β  over  x ≠ o ) = ( max ||wT·L ||β/||wT||α  over  wT ≠ oT
 )  

     except we abbreviate  ||L ||αα  to  ||L ||α .   Most subscripts  α  and  β  will be  1,  2  or  ∞ .

Actually we compute  ||L||αβ  from elements  Lij    of   L  ’s  matrix  L := E–1·L ·B ,  just as 

we got  ||x||β  from elements  ξi  of  x := B–1·x ,   and  ||wT||α  from  ωj  of  wT = wT·E .
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Formulas  for Five Familiar  Operator Norms  of  Matrices
Here  L  is an  m-by-n  matrix of elements  Lij  :

•   ||L||∞ = maxi ∑j |Lij | = ||LT||1 ,  the biggest  Row-Sum  of  Magnitudes

•   ||L||1 = maxj ∑i |Lij | = ||LT||∞ ,  the biggest  Column-Sum  of  Magnitudes

•   ||L||∞1 = maxi maxj |Lij | = ||LT||∞1 = ||L||µ/n = ||LT||µ/m ,   the biggest  Magnitude

•   ||L||∞2 = maxi √( ∑j |Lij |
2 ) ,   the biggest  Euclidean Row-Length

•   ||L||2 = ( the biggest  Singular Value  of  L ) = ||LT||2 = √( biggest  Eigenvalue of  LT·L ) 

Also   ||L||2 = the biggest  Eigenvalue of    from the  Singular Value Decomposition.

And     ||L||2 ≤ √(||L||1·||L||∞) .   Do you see why? 

||L||12 ,  ||L||21 ,  ||L||1∞  and  ||L||2∞  are little used because their computations cost too much.

If dimensions are not too big,  then,  just as any vector norm  ||…||  can be approximated by  
||…||1,  ||…||2  or  ||…||∞  perhaps after a change of basis,  so can any  Operator Norm … 

O L
T

L O
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Maximized Ratios of Norms
Set   µαβ :=  maxx ≠ o ||x||α/||x||β  =  maxwT ≠ oT ||wT||β/||wT||α    when  α ≠ β .

All such ratios  µαβ  are finite for finite dimensions  n ,  but may grow with  n .  For 

instance,   µ∞1 = µ∞2 = µ21 = 1 ;   µ12 = µ2∞ = √n ;   µ1∞ = n .       Generally  µαβ·µβα > 1 .

There are analogous ratio-maxima for  m-by-n  Matrix norms;  for instance 
 µF∑ := maxL ≠ O ||L||F/||L||∑ = 1 ;   µ∑F = √m·n ;   µµF = µµ∑ = n ;   µFµ = √m/n ;   µ∑µ = m .

Operator Norms  inherit their ratio-maxima from their associated vector norms:

    Recalling that   ||L ||αβ := maxx ≠ o ||L ·x||α/||x||β ,   set   µαβγδ := maxL  ≠ O ||L ||αβ/||L ||γδ .

 Then it so happens that     µαβγδ  =  µαγ·µδβ .

Caution:  If  L   is not square,  then ratios  µ…  must take different dimensions into account.

These ratio-maxima  µ…  reveal how well or badly one norm can approximate another.

The trouble with norms is that there are so many of them.
How is an appropriate one to be chosen?
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How should a Matrix norm be chosen for error-analysis?
Ideally,  an appropriate norm would be what I call  Equitable,  i.e.,  so chosen that …

  All errors of the same norm have roughly equal  (in)significance.
This ideal is often not achievable before a computation’s results have been inspected,  
and not always achievable afterwards,  but always worth attempting.

For example,  given two diagonal matrices  Vt  and  Vd  with wildly diverse magnitudes on 

their diagonals,  but such that the nonzero elements of  Vt·K·Vd  span a modest range of 

magnitudes  (such a  K  is called a  “Graded”  matrix),  then variations  ∆K  in  K  may be 
gauged more equitably by norm  |||∆K||| := ||Vt·∆K·Vd||  than by a familiar  ||∆K|| .

If  ||…||  is an  Operator Norm,  so is  |||…||| ,  but derived from vector norms after basis 

changes tantamount to scaling the vectors:  |||x||| := ||Vd
–1·x||  for  x  in the domain-space;  

|||y||| := ||Vt·y||  for  y  in the target-space of  ∆K  whose  |||∆K||| = maxx≠o |||∆K·x|||/|||x||| .

Another example:  Compute a norm   [[∆K]]  := || ∆K ||   from the elements  ∆Kij  := ∆Kij/Ωij   

scaled by a given array of positive  Weights  1/Ωij  .   When  ||…|| = ||…||∞1 ,  the biggest 

magnitude,  [[…]]   is called an  “Elementwise”  norm,  especially if every   Ωij  := |Kij | > 0 .
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When is a preassigned  Matrix  norm also an  Operator Norm ?
Operator Norms  have properties that some mere Matrix norms lack.  For instance,  the 

norm of a rank-1 matrix or operator is  ||x·wT|| = ||x||·||wT||  for every  Operator Norm  but 
not for every compatible Matrix norm.

To simplify the exploration that follows,  suppose a given Matrix norm  [[…]]   for  square  
n-by-n  matrices possesses  Positivity,  Homogeneity  and the  Triangle Inequality  but,  for 
lack of defined vector norms,  perhaps not  Compatibility.

Instead we assume that  [[…]]   possesses  Multiplicative Dominance:   [[K·L]]  ≤ [[K ]] ·[[ L ]]  ,  
which can always be realized by scaling  [[…]]   if necessary.  Then choose a fixed  n-row  

rT ≠ oT  and define a  (perhaps new)  vector norm to be   ||x|| := [[ x·rT]]  ,  the same for both 
the domain- and target-spaces of the  n-by-n  matrices for which  [[…]]   was given.  Now 
this vector norm induces an  Operator Norm   ||L|| := maxx ≠ o ||L·x||/||x|| .  We find that this  

||L|| ≤ [[ L ]]   for all  n-by-n  matrices  L .  Thus,  there is a sense in which  … 

 Operator Norms  are minimal among  Multiplicatively Dominant  norms.

And  ||L|| = [[ L ]]   for all  L  only when the given  [[…]]   was already an  Operator Norm.

Eg.  [[ L ]]  = ||L||F ⇒  ||L|| = ||L||2 ;    [[ L ]]  = ||L||µ ⇒  ||L|| = ||L||∞ ;     [[ L ]]  = ||L||∑ ⇒  ||L|| = ||L||1 .
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Orthogonally Invariant Matrix Norms
These are for  m-by-n  matrices  L  that represent operators  L   that map one  Euclidean  
space to another.  These norms satisfy   ||L|| = ||Q·L·P||  for all  Orthogonal  matrices  

QT = Q–1  and  PT = P–1 .  (Analogous  Unitarily Invariant  norms are for complex unitary 
spaces,  and especially for  Hilbert  spaces whose dimensions are infinite.)

These norms  ||L||  depend solely upon the  Singular Values  of  L ,  which are the biggest 

min{m, n}  eigenvalues of    (these come in  ± pairs).  In fact,  every such norm is 

||L|| = ||v||  in which column vector  v  is a column of the singular values of  L  and  ||…||  can 
be any vector norm.

Almost all useful orthogonally invariant matrix norms are  Symmetrical Cross-Norms :
•  “Symmetrical”  means the order of the singular values in  v  does not matter to  ||v|| .

•  “Cross-Norms”  means that the norm of a rank-1 matrix is  ||x·wT|| = ||x||2·||w
T||2 .

Among these the most common by far are the  Multiplicatively Dominant  …  
•   ||L||2 = ||v||∞ =the biggest singular value of  L ,  the natural  Operator Norm.

•   ||L||F = ||v||2 = √(Trace(LT·L)) = √(∑(squared singular values)) ,   the  Frobenius  norm.

||C·L||F ≤ ||C||2·||L||F ≤ ||C||F·||L||F 

•   ||L||N = ||v||1 = ∑ (singular values) ,  the  “Nuclear”  norm,  used for some optimizations.

O L
T

L O
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Dual Norms  for  Dual Matrix Spaces

The vector space of all real  m-by-n  matrices  L  has its  Dual-space  consisting of  n-by-m  

real matrices  KT  with the scalar product  ∑i ∑j Kij ·Lij  = Trace(KT·L) = Trace(L·KT) .   

Given a  Matrix  norm  ||L||  for  m-by-n  matrices  L ,  the natural norm for their dual-

space of  n-by-m  matrices  KT  is  ||KT|| := maxL≠O Trace(KT·L)/||L|| .

This places a severe strain upon our subscripting notation.  For example …

Dual to the norm  ||L||∞ = maxi ∑j |Lij |   is   ||KT||(∞) := ∑i maxj |Kij | ≥ ||KT||∞ = ||K||1 .

The strain is less severe for our orthogonally invariant norms;  for example … 

Dual to the norm   ||L||F = √(Trace(LT·L))   is   ||KT||F = ||K||F .

Dual to  ||L||2 = max(singular value(L))  is  ||KT||N = ∑(singular values(ΚΤ)) = ||Κ||Ν.

This last duality explains partially why the  Nuclear  norm figures in some optimizations 
that can be reformulated advantageously in a dual-space.  In certain optimizations,  the  K  
that minimizes  ||K||N  subject to appropriate constraints also minimizes  Rank(K) .
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Do not confuse  Dual Norms  for  Dual Matrix Spaces  with É

Norms  for  Linear Maps  £  from a  Real Vector Space  to its  Dual:
Scalar  £áxáy  is linear in  x  and  y  separately.   É (conjugate-linear in  y  if space is complex) 

    £áxáy  is called a  Bilinear Form ,  also written   £(x, y) .

Matrix  L  representing  £  depends upon  Basis  B = [b1, b2, É, bn] :      Lij = £ábjábi   so 

 £áxáy = yTáLáx  for columns  x := BÐ1áx  and  y := BÐ1áy .    É ( É = y'áLáx  if complex)

Change of  Basis  from  B  to  B := BáCÐ1  changes  L  to   L := (CÐ1)TáLáCÐ1 ;    then É

   L  and  L  are called  Congruent.      See also  pp. 62-3  for more about  Congruence. 

Operator Norms:     ||£|| := max |£áxáy|  over  ||x|| = ||y|| = 1 .

||L||αα := max |yTáLáx|  over  ||x||α = ||y||α = 1 .        ||L||αα = ||LT||αα 
Examples:

   ||L||11 = ||L||∞1 = maxi maxj |Lij| .
   ||L||22 = ||L||2 = biggest singular value of  L . 
   ||L||∞∞ = ||L||1∞ ≤ ∑i ∑j |Lij|    and    ||L||∞∞ ≥ max{ ||L||1, ||L||∞ } . 

£  is called  Symmetric  when  £áxáy ≡ £áyáx = yTáLáx ≡ xTáLáy ,  whereupon  LT = L .
  See also p. 62.
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Part III:
Matrix Norms  and  Matrix Inverses

Condensed Review  of  Parts I & II :

1.  Try to avoid choosing a norm  ||É||  badly;  
take care to choose appropriate  Bases,  Coordinates,  Variables.

Ideally,  perturbations with the same norm would be about equally (in)signiÞcant.

    The choice of   ||...||1 ,  ||...||2  or  ||...||∞  matters most when dimensions are big.

2.  Among Matrix norms,  the  Operator Norms   ||L|| := maxx≠o ||L⋅x||/||x||   have 
 the most useful properties ...  multiplicative ...,  minimality ...  .
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Matrix Norms  and  Matrix Inverses
Sensitivity of Inverses  to  (InÞnitesimal)  Perturbations:

Changing   L  to  L + δL   changes   L-1  to  L-1 + δ(L-1) ;

    δ(L-1) = -L-1⋅δL⋅L-1    so    ||δ(L-1)|| ≤ ||δL||⋅||L-1||2,   and equality is achievable.

Condition Number (for Inversion):   κ(L) := ||L-1||á||L|| ,   an ampliÞcation factor;

   ||δ(L-1)||/||L-1||  ≤  κ(L)⋅||δL||/||L||   and equality is achievable.
Also   ||δ(L-1)||/||L-1||  ≥  (1/κ(L))á||δL||/||L|| ,    because   κ(L-1) = κ(L) .

  Perhaps  κ(L)  would be better regarded as a  Distortion  factor.

Sensitivity to Perturbations in Data  {L, c}  of Solutions  x  of equation   L⋅x = c :
   ||δx||/||x||  ≤  κ(L)⋅( ||δL||/||L|| + ||δc||/||c|| ) ,    and equality is achievable.

If & when it succeeds,

Backward Error-Analysis  maps rounding errors to induced perturbations in data.
 ⇒   As matrix inversionÕs rounding errors propagate they get ampliÞed by  κ(L) .

Ill-Condition   means a  HUGE  ampliÞcation factor    κ(L) .  cf. p. 6.
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Operator Norms  of  Inverses
Theorem:   For any  Operator Norm  ||...|| ,                                É known to  Banach ? 

  ||L-1|| = 1/( min ||∆L||  over  Rank(L - ∆L) < Rank(L) )  .

Condition Number (for Inversion):    κ(L) := ||L-1||á||L||    ampliÞes perturbationsÕ effects 

•

L¥O

¥L - ∆L

Space of  n-by-n  Matrices  or  Linear Operators

Cone of  Rank ≤ n-1
Rank = n-2

A
Angle A = arcsin( 1/κ(L) )

An Ill-Conditioned
Matrix  L  is
extremely close to
Singular Matrices
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•

L¥O

¥L - ∆L

Space of  n-by-n  Matrices  or  Linear Operators

Cone of  Rank ≤ n-1
Rank = n-2

A
Angle A = arcsin( 1/κ(L) )

How does  L-1  behave
as  L  approaches a 
Singular  matrix ?

Where are the inverses
of the little Red Ball ?

2/(Radius of Red Ball)

||L-1 - (Rank-1 matrix)||/||L-1|| → 0 

This is the most likely situation,  necessary for eigenvector computation.
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Equilibration   invokes  Diagonal Scaling  to help compute the solution  x  
of an equation  Ò C⋅x = b Ó  more nearly as accurately as the data deserve,  though 
limited by the available arithmeticÕs precision:  Choose apt diagonals  Vt  &  Vd ;  
replace  C  by  C := VtáCáVd ,  b  by  b := Vtáb ;  solve  Cáx = b ;  get  x := Vdáx .

How are  Òapt diagonalsÓ    Vt  &  Vd  to be chosen?

¥  To avoid introducing extraneous roundoff,  restrict diagonalsÕ elements to  
powers of the arithmeticÕs radix  (2  for  Binary,  10  for  Decimal).

¥  If the uncertainties in the elements of the data  {C, b}  are known,  diagonals 
should ideally be chosen to make some common norm,  say  ||É||∞ , 
Equitable  for scaled data:  i.e.,  every  ∆C  with the same  ||∆C||∞ is very 
roughly equally (in)consequential or (in)signiÞcant or É .  This ideal 
may be unattainable,  especially before solution  x  has been estimated.

¥  If the uncertainties in the elements of the data  {C, b}  are unknown,  diagonals 
should ideally be chosen to roughly minimize some common condition

number,  say  κp(C) = ||C||pá||CÐ1||p  for  p  in  {1, 2, ∞} ,  of scaled data.
This ideal usually costs too much;  e.g. see p. 59.  There is an exception:
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Equilibration   continues É    minimize condition number    É one exception:

A. van der SluisÕ  Theorem (1969):
Suppose  H  is an  N-by-N Positive-deÞnite symmetric or  Hermitian matrix.  See p. 63

  Then  κ2((Diag(H))Ð1/2áHá(Diag(H))Ð1/2)  ≤  Námindiagonal V κ2(VáHáV) .

¥  Other equilibration schemes abound,  all somewhat mysterious.  For instance: 
Compute  diagonals  Vt  &  Vd  to turn every  row- and column-sum  of  magnitudes of 
C := VtáCáVd  into  1 ,  making  |C|  Doubly Stochastic.  This computation is iterative;  usually it 
converges fast but at times appallingly slowly,  especially when equilibration is most needed.

Gaussian Elimination is affected by equilibration only through its effect upon the order of 
pivot selection.  This effect may be thwarted if column exchanges are disallowed,  and 
then computed results can be undeservedly grossly inaccurate,  remediable only by  
Iterative ReÞnement.  See striking examples posted on my  <É/Math128/FailMode.pdf> 

Preconditioning   resembles equilibrationÕs attempt to reduce  κ(VtáCáVd)   a 
lot but allows non-diagonal choices of   Vt  &  Vd ,  and rarely computes  VtáCáVd  
explicitly.  Preconditioning is an essential step in the fast solution of discretized 
continuum problems by iterative methods like  Conjugate Gradients.
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Iterative ReÞnement
attenuates ill effects of  Ill-Condition  or  BIG dimensions  or ... ?

Given  F and c ,  let  G  stand for operations performed to solve  Ò F⋅z = c Ó  for z ;
   e.g.,  triangular factorization of  F ,  etc.,   or  Conjugate Gradient iteration,  ... .

Computation yields instead  x := G⋅c ≈ z     ... roundoff accumulates,  iteration stops,  ... 

Let  Residual   r := c Ð F⋅x ,  computed  as accurately as is affordable.  Then 
reuse (if saved) operations in  G  to get   y := x + G⋅r  ≈ z  more closely than  x ≈ z .

If it works,  why does it work ?      y Ð z  =  ( I Ð G⋅F )⋅(x Ð z)  +  more roundoff,  

and if  G ≈ F-1  roughly then we expect   ||I Ð G⋅F|| << 1 ,   so  ||y Ð z|| << ||x Ð z|| .

It might not work if  ... 
F  is too  Ill-Conditioned,  within too few rounding errors of singular,   or 
G  is too inaccurate,  or         cf.  <www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf>    
Residual  r  is too inaccurate,  drowned perhaps in its own rounding errors

for lack of extra-precise accumulation of  r .
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Diagonal Dominance
Some matrices are obviously invertible.

Suppose  L  maps a space linearly to itself,  and  ||L|| < 1 .  Then  (I Ð L)Ð1  exists

    because  LiouvilleÕs  series   (I Ð L)Ð1 = I + L + L2 + L3 + L4 + É   converges.

Square matrix  B  is said to have  Rows Dominated by its Diagonal  when

  every  |bii| > ∑j≠i |bij| ;   then  BÐ1  exists.  ( L := I Ð Diag(B)Ð1áB  has  ||L||∞ < 1 )

Square matrix  B  is said to have  Columns Dominated by its Diagonal  when

   every  |bjj| > ∑i≠j |bij| ;   then  BÐ1  exists.  ( L := I Ð BáDiag(B)Ð1  has  ||L||1 < 1 )

     Often  B  is invertible though  Ò = Ó  replaces almost all  Ò > Ó  signs,  but not always.

Gaussian Elimination  generally needs  Pivotal Exchanges  to ensure numerical 
stability,  but they turn out to be unnecessary for matrices dominated by their 
diagonals and also for  symmetric Positive deÞnite matrices.      É see p. 63. 



File:  NormOvrv                                               Tutorial Overview of Vector and Matrix Norms                                           Version dated January 30, 2013 11:18 am

Prof. W. Kahan                                                         SUBJECT  TO  CHANGE:  Do you have the latest version?                                                              Page 43 / 79

Schur Complements

     S := Z Ð EáCÐ1áD   is the  Schur Complement  of  C  in  B :=  .

Without pivotal exchanges,  Gaussian Elimination  reduces  B  through 
successive  Schur Complements  of  BÕs  leading principal submatrices,  like  C ,  

in the course of  Triangular  (LU)  Factorization:   B →  → U = 

¥  All  Schur Complements  in  Diagonally Dominant  matrices  B  are also 
Diagonally Dominant,  and do not grow much in norm.

¥  All  Schur Complements  in  Symmetric Positive DeÞnite  matrices  B  are also 
 Symmetric Positive DeÞnite,  and do not grow at all in norm.

What matters most is  ÒÉ do not grow ÉÓ  lest elements of  Z  be corrupted.
The choice of norm implied in  ÒgrowÓ  can affect  ÒcorruptedÓ  drastically;

  cf. pp. 3-6  of  <É/Math128/FailMode.pdf>

C D

E Z

UC UD

O S
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When does equation  Ò Fáx = y Ó  have at least one solution  x ?

     And if it exists,  when is solution  x  unique ?

Ivar FredholmÕs Alternatives:
Valid also in many an inÞnite-dimensional space;  no determinants!

¥  At least one solution  x  exists if & only if  
w'áy = 0  whenever  w'áF = o'  

    as  w'  runs through the vector space dual to  F Õs  target space.

¥  If it exists,  solution  x  is unique if & only if  Fáz ≠ o  whenever  z ≠ o 
    as  z  runs through  F Õs  domain.

Proof:  The canonical form of  F  under  Equivalence  is    = RÐ1áFáC   in 

which  dimension(I) = rank(F) .  (Some  O Õs  may be empty.)  Now switch given 

equation   Ò Fáx = y Ó  to    Ò RÐ1áFáCá(CÐ1áx) = (RÐ1áy) Ó  in canonical form;  etc.

I O
OO
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Generalized Inverses  and  Pseudo-Inverses
Suppose matrix  F  is non-invertible because it is not square  and/or  Rank(F)  is 
less than both dimensions.  At least one  Generalized Inverse  G  always exists 
such that if equation  Ò Fáx = y Ó  has solution(s)  x   then  x := Gáy  is a solution.

 The  Generalized Inverses of  F  are the solutions  G  of    Ò FáGáF = F Ó .  

Example:  The  Least-Squares  problem  Ò Choose  x  to minimize  ||Fáx - g||2 Ó  
always has at least one solution  x  and,  if more than one,  then the 

one that also minimizes  ||x||2  is  x := F ág  in which  F   is  F Õs 
Moore-Penrose Pseudo-Inverse ,  a  Generalized Inverse  of  F .

Ò FáF áF = F ,  F áFáF  = F  ,   (F áF)T = F áF ,   (FáF )T = FáF   Ó  characterize  F  

but  F   is best computed from the  Singular Value Decomposition  of  F .

F  and  F   are  Reciprocal,  each a  Generalized Inverse  of the other ;  
       but  non-reciprocal  Generalized Inverses  of  F  may exist too.  ...  
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How Big  Must  Generalized Inverses  Be ?
Most are arbitrarily big;  when some  Z ≠ O  satisÞes either  FáZ = O  or  ZáF = O ,  
then any  Generalized Inverse  G  of  F  yields inÞnitely many others:  G ± λ⋅Z .

Generalized Inverses  of  some  matrices  F  are  all  HUGE :

Theorem:   Every  Generalized Inverse  G  of  F  has                    cf. picture on p. 37 
       ||G|| ≥ 1/( min ||∆F||  over  Rank(F - ∆F) < Rank(F) )  .

Equality can occur for  Pseudo-Inverses  gauged by the  l2 Operator Norm  ||...||2 :

     ||F ||2 = 1/( min ||∆F||2  over  Rank(F - ∆F) < Rank(F) )  

        = 1/(the least nonzero singular value of  F ) .

For  Operator Norms ||...||  generally,  the best that can be said appears to be ...

Theorem:    F  has at least one  Generalized Inverse  G  with 
       ||G||  ≤  √(Rank(F))/( min ||∆F||  over  Rank(F - ∆F) < Rank(F) )  .

I hope this theorem has a short proof;  mine is much too long.
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Use  of  Generalized Inverses  can be  Dangerous ! 
E.g.:  Pseudo-Inverse  F  = (FT⋅F)-1⋅FT or  FT⋅(F⋅FT)-1

 ,  whichever inverse exists,
unless neither inverse exists,  in which case use ... .             SVD ? 

Limit Formula:  F  = limα→0+ (F
T⋅F + α⋅I)-1⋅FT       ? 

Over-determined  x :
   Choose  x  with minimum  ||x||2  to minimize  ||F⋅x Ð g||2 .

Solution:   x = F ⋅g   unless columns of  F  are too nearly linearly dependent.

Remedies for  HUGE  and  HYPERSENSITIVE  F   :   
         QR factorization,  Doubled precision,  Better basis for  x     orthogonal polynomials 

     cf. pp. 15-16 of  <É/HilbMats.pdf>

A Bad Idea: Tychonoff Regularization:    x := (FT⋅F + α⋅I)-1⋅FT⋅g   for a small  α .
 If good values for  Regularization Parameter  α  exist they depend upon NOISE.

Better Idea:  Choose basis for  x  so that  ||∆x||2  is  appropriate,  then compute 
         SVD(F)  to diagonalize  Ò F⋅x ≈ g Ó  and delete elements below noise levels.

F g
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Limit Formula:  F  = limα→0+ F
Tá(F⋅FT + α⋅I)-1       ? 

Under-determined  x :
   Choose  x  with minimum  ||x||2  to satisfy  F⋅x ≈ g .

Solution:    x = F ⋅g   unless rows of  F  are too nearly linearly dependent.

Remedies for  HUGE  and  HYPERSENSITIVE  F   :   
         Doubled precision?  Discard redundant rows ?   Change basis in  Range(F) ?

A Bad Idea: Tychonoff Regularization:    x := FT⋅(F⋅FT + α⋅I)-1⋅g   for a small  α .
 If good values for  Regularization Parameter  α  exist they depend upon NOISE.

Better Idea:  Choose basis for  g  so that  ||∆F||2  is  Equitable;  then compute 
         SVD(F)  to diagonalize  Ò F⋅x ≈ g Ó  and delete elements below noise levels.

Alternatively,  seek  x  with the fewest  Òvery nonzeroÓ  components.

High noise levels can leave no solution  x   determined unambiguously.   Then É

Sometimes  NO RESULT  is better than a  BAD RESULT  
when  NO GOOD RESULT  exists.

F g
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A Generality  
Often a computational task amounts to solving  Ò F(z) = o Ó  for  z  given  F .
Errors and uncertainties due to roundoff etc.  make   F(z + δz) = δF  instead.

                    Consequent uncertainty or error in  z  is   δz ≈ F `(z)-1⋅δF .   

Uncertainty in data that speciÞes  F  is ampliÞed in  z  by as much as  ||F `(z)-1|| .

HUGE  ampliÞcation  ||F `(z)-1||  can occur  only  if  DATA  puts  F  CLOSE  to a  
SINGULARITY :

¥  A Pole   (inÞnite value)  of  F `-1 . 
¥  Conßuence  (collapse of dimension;  multiplicity of mapping  F ,  of zeros  z ). 
¥  Exponentially-growing functions of variables unobviously near  ∞ .    

Common!  See also my web pageÕs   <É/WrongR.pdf>

Changes of   variables/parameters/bases,  perhaps nonlinear,  can alter closeness 
of  F  to a singularity,  or change the norm that measures closeness,  sometimes so 
drastically as to change ampliÞcation of error by many orders of magnitude.

Good choices are worth the thought devoted to them.
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Part IV:

Matrix Norms  and  Eigenvalues
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Matrix Norms  exceed  Eigenvalues 
Eigenvalue  λ  of  L  has  L⋅v = λ⋅v  for some Eigenvector  v ≠ o ;  therefore 

   |λ|  ≤  ||L||  for every compatible  ||...|| ,
 including every  Operator Norm.

Eigenvalue  λ  of  L  also has  w'⋅L = λ⋅w'  for some Left Eigenvector  w' ≠ o'  in 
the space of  linear functionals  w'  Dual  to  Domain(L) = Target-Space(L) .  The 
spaces,  like  λ  ,  may be complex regardless of whether  L  is real.

Eigenvalues  λ  are the zeros of  L Õs  Characteristic Polynomial  det(λ⋅Ι − L) . 
Computing the  Characteristic Polynomial  explicitly is usually a numerically bad way to determine eigenvalues.

Eigenvalues  λ  are  Continuous Functions  of  L ; 
 but Perhaps Not Differentiable,  

unless  λ  is a  Simple eigenvalue where É
   det(λ⋅Ι − L) = 0  ≠  d det(λ⋅Ι − L)/dλ  .
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A Computed EigenvectorÕs Error  is an  Angle:

Let  x  be a computed approximation to a desired eigenvector  v ; 
then the error is not  ||x Ð v||  but the difference between two  Subspaces ,

one spanned by scalar multiples of  x ,  the other  ...  of  v .

The relevant error is the  (unsigned)  Angle  ∠ (x, v)  between the two subspaces,  
usually in complex spaces where  x'  is the complex conjugate transpose of  x .

How to compute    ∠ (x, v) :=  arccos( |x'⋅v|/(||x||2⋅||v||2) ) :
 NOT FROM THIS FORMULA !    Why not? 

First choose a basis for which  ||∆x||2  is an  Equitable  measure of perturbations.

Then replace  x  by  x/||x||2  and   v  by  v/||v||2 ,    so now  √x'áx = ||x||2 = ||v||2 = 1 .

Compute   ∠ (x, v) := 2⋅arcsin( ||x⋅(x'⋅v/|x'⋅v|) Ð v||2/2 ) .      Presubstitute  1  for  (0/|0|) . 

A generalization works for  Angles  between higher-dimensional  Subspaces;  see  p. 74.
|Accurate|  for all angles.  For Signed Angle between two vectors see  p. 15  of my  <.../Cross.pdf>
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(Unobviously)  Clustered Eigenvalues  of a  Matrix
not  Real Symmetric  nor  Hermitian  nor  Orthogonal  nor  Unitary  nor  ÒNormalÓ  

can be hypersensitive to perturbations

Example:              L :=  ;            det(λ⋅Ι − L) = λ6 Ð 105⋅ξ  .

6  Eigenvalues  λ  jump from  0  at  ξ = 0  to  |λ| = 1  at  ξ = 1/105
 .      Clustered?

Eigenvectors of a  Matrix  can be hypersensitive to perturbations,  
especially if it is  close to a matrix with  Repeated Eigenvalues.

Example:   6  eigenvectors of  L  at tiny  ξ ≠ 0  collapse to  one  at   ξ = 0 .

Whenever a matrixÕs  Jordan Normal Form  is not merely  diagonal,  it is a  
Discontinuous Function of the matrixÕs elements,  and thus very hard to compute.

0 10 0 0 0 0

0 0 10 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 10
ξ 0 0 0 0 0
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GershgorinÕs Circles  enclose  Eigenvalues
Given a square matrix  L ,  its eigenvalues  λ  can be located within the union of a 
family of circular disks in the complex plane:  É  Row  version.  A Column  version exists too.

    Disk  Di  is centered at  Lii  with radius   Σj≠i |Lij| = Σ | ith rowÕs off-diagonals | .

GershgorinÕs  Circles  Theorem :
Every eigenvalue  λ  of  L  lies in the union of all the disks  Di .

Each disjoint component of that union contains 
as many eigenvalues  λ  as it contains disks. 

Proof:  If no disk  Di  contains  η  it cannot be an eigenvalue since  ηI Ð L  is  Diagonally 
Dominant (p. 42).  To count eigenvalues use continuity as disks expand from their centers.

This theorem is useful mainly for matrices with  Prominent  if not  Dominant  diagonals.

Sometimes replacing  L  by  V-1⋅L⋅V  for a suitable matrix  V ,  perhaps diagonal,  perhaps 
consisting of approximate eigenvectors,  can reduce the sizes of at least some of the disks.

Numbers of Eigenvalues: 3 2 2
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Diagonal Prominence  (rather than  Dominance)  also admits cheaper estimates of  
Extreme Singular Values:

(Biggest Singular Value of  L) = maxx≠o ||Láx||2/||x||2 = ||L||2 = ||L'||2 .

(Least Singular Value of square  L) = minx≠o ||Láx||2/||x||2 = 1/||LÐ1||2 .

These  Eigenvalues  cost work  O(min{m, n}3)  to compute closely for  m-by-n  matrices  L .

Cheaper estimates of  ||L||2 :
(Biggest Euclidean row-length) = ||L||∞2  ≤  ||L||2  ≤  √má||L||∞2 ,   and

     √( ||L||1á||L||∞ )/ 4√mán  ≤  ||L||2  ≤  √( ||L||1á||L||∞ ) .
The  blue  Ò ≤ Ó  inequalities come closer as the diagonal of  L  becomes more prominent.
(The  2nd-last  Ò ≤ Ó  is tight  Ò = Ó  when  L  is a  Hadamard Matrix;  cf.  MATLABÕs  hadamard.m  .)

Cheaper underestimates of the least  (nth)  singular value of an  n-by-n  matrix  L :
If possible,  Þrst permute its rows and columns to make its diagonal prominent.  Then 
scale its rows or columns by factors of magnitude  1  to make the diagonal positive.  Now

(nth  Singular Value of  L)  ≥  mink { Lkk Ð ∑j≠k |Ljk + Lkj|/2 } ;  hope itÕs positive.

Cf. Chas. R. JohnsonÕs ÒA Gersgorin-type Lower Bound for the Smallest Singular ValueÓ pp.1-7 Lin. Alg. & Appl. 112 (1989)

Appending rows  and/or  columns to  n-by-n  L  cannot decrease its  nth  singular value.
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Sensitivity  of  Eigenvalues  to  Tiny Perturbations
Say  λ  is an eigenvalue of  L  with eigenvectors  x  and  w' ,  
perhaps all complex:   Láx = λáx  and  w'áL = w'áλ .  Then  

 dλ/dζ = w'á(dL/dζ)áx/w'áx  
UNLESS  λ  is a multiple eigenvalue,  in which case  dλ/dζ  
may be multi-valued or inÞnite:

When  λ  is a  simple  eigenvalue,   κ := ||w'||á||x||/|w'áx|   is its 
 Condition Number.

κ  can be arbitrarily big unless  L  stays special,  say ÒNormalÓ
(i.e.  L'áL = LáL'  É  Real Symmetric,  Hermitian,  Unitary,  Orthogonal  É  κ  = 1 )

ÒStaysÓ?  If  L  is  Hermitian  but not  dL ,  κ  can be ≈ 1+2álog(dimension)/π .

or

ζ

λ
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Sensitivity of Eigenvalues to Perturbations,  contÕd
Suppose matrix  L  is diagonalizable by similarity  (as almost 

all square matrices are)  and let  Λ  = XÐ1áLáX  be the  diagonal 
matrix of eigenvalues of  L ;  a matrix of eigencolumns is  X .

How much can  Λ  NOT  change if  L  changes to  L + ∆L ?

Now  (probably non-diagonal)  Λ + ∆Λ := XÐ1á(L + ∆L)áX ,  so 

    ||∆Λ||1 = ||XÐ1á∆LáX||1 ≤ ||XÐ1||1á||∆L||1á||X||1 = κ1(X)á||∆L||1 .
Here  κ1(X)  is a  (perhaps excessive)  condition number for inversion of  
X .  Now  GershgorinÕs Circles Theorem  applied to  Λ + ∆Λ  implies É

  Bauer-Fike Theorem:
No eigenvalue of  L + ∆L  can differ from an eigenvalue 

of  L  by more than   min{ κ1(X)á||∆L||1 ,  κ∞(X)á||∆L||∞ } .
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The  Perron-Frobenius Theory of Nonnegative Matrices

Let  P  be any square matrix with elements all positive;  we shall write  Ò P > O Ó .

Then  P  has a positive eigenvector,  its  ÒPerron VectorÓ  p > o ,  and a positive 
eigenvalue  ρ > 0  with  Páp = ρáp ;  and  P Õs  ÒPerron RootÓ  ρ  is a simple 
eigenvalue strictly bigger than the magnitude of every other eigenvalue of  P .

Proof:  The  simplex  SS  := {s:  s ≥ o  &  ||s||1 = 1}  is closed,  convex and bounded,  and mapped into 

itself continuously by function  π(s) := Pás/||Pás||1 .  BrauerÕs Fixed-Point Theorem  provides a Þxed-

point  p = π(p)  strictly inside  SS  ,  and  ρ = ||Páp||1 .  Let  V := Diag(p)  and  B := VÐ1áPáV ;  then  B  

and  P  have the same eigenvalues,  and  ρ = ||B||∞  is the  Perron Root  of  B  with  Perron  eigenvector  

b = [1; 1; 1; É; 1] .  JacobiÕs  formula:  d Det(λI Ð B)/dλ = Trace(Adj(λI Ð B)) > 0  @ λ = ρ  because 
principal submatrices of  ρI Ð B  are diagonally dominant,  so  ρ  is a simple eigenvalue.  Except  ρ ,  
every other eigenvalue  §  of  B  has  |§| < ||B||∞ = ρ ,  strictly  <  when the eigenvector is considered.

Let  C  be any square matrix with  |C| ≤ P  elementwise.  Then no eigenvalue of  
C  can exceed in magnitude the  Perron Root  ρ  of  P .

If,  instead of  P > O ,  we have merely  P ≥ O ,  then  Perron Root  ρ  need not be simple;  it and/or 
elements of eigenvector  p  may vanish,  and other eigenvalues of  P  may match  ρ  in magnitude.
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Application of  Perron-Frobenius  theory to  
Optimal Diagonal Equilibration

(See the bottom of p. 39.)

Suppose we seek diagonal matrices  Λ and V  to minimize the condition number

  κ∞(Λ-1áCáV-1) := ||(Λ-1áCáV-1)-1||∞á||(Λ-1áCáV-1)||∞ .
Theorem:

min( κ∞(Λ-1áCáV-1)  over all diagonal  Λ  and  V )  =  Perron Root of  |C-1|á|C|
and the minimum is achieved  (at some computational cost)  by setting

 Λ := Diag( Perron Vector of  |C|á|C-1| )    and

 V := Diag( Perron Vector of  |C-1|á|C| ) .

É due to  F.L. Bauer [1963] ÒOptimally Scaled MatricesÓ,  pp. 73-87
of  Numerische Mathematik 5.

From the late  1950s  Fritz Bauer  and his students in  Mainz  and  Munich  were major contributors to 
the applications of norms to numerical analysis.  Bauer  also contributed to the design of   Algol 60,  
an early programming language more humane than most.  Later he became  ÒMr. ComputingÓ  to the  
Bavarian  government.  Recently he authored a fascinating text on  Cryptology  (Springer).  As of this 
writing he is still active at age  90,  having barely survived  1942 - 1945  in the  Wehrmacht.
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Part V:

Matrix Norms  and  
Real Symmetric MatricesÕ Eigenvalues 

The best source about eigensystems of  real symmetric and  Hermitian  matrices 
is  B.N. ParlettÕs  book  The Symmetric Eigenvalue Problem  

[1998] 426 pp.,  SIAM, Philadelphia
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Real Symmetric MatricesÕ Eigenvalues are all É

Stationary Values  of  Quotients  of  Real Quadratic Forms

¥   The  Stationary Values  (also called  Critical Values)  of a function  Ä(x)  
are the values it takes where its derivative   Ä `(x)  vanishes.

¥   The  Stationary Points  (also called  Critical Points)  of a function  Ä(x)  
are the arguments  x  at which its derivative   Ä `(x)  vanishes.

Instances are maxima and minima,  but these are far from the only instances.
e.g.,   Ä(ξ) := 3ξ5 Ð 5ξ3    takes all real values on the real  ξ-axis,

   takes a locally maximum value   Ä(Ð1) = +2 ,
   takes a locally minimum value   Ä(+1) = Ð2 ,

                     and takes another stationary value   Ä(0) = 0  neither maximum nor minimum.

-1.5 -1 -0.5 0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5



File:  NormOvrv                                               Tutorial Overview of Vector and Matrix Norms                                           Version dated January 30, 2013 11:18 am

Prof. W. Kahan                                                         SUBJECT  TO  CHANGE:  Do you have the latest version?                                                              Page 62 / 79

Real Symmetric MatricesÕ Eigenvalues are all É

Stationary Values  of  Quotients  of  Real Quadratic Forms

¥    A  Real Quadratic Form  Φ(x) := x'áHáx ,  where column  x  represents  x  
in some basis,  and matrix  H = H'  represents a symmetric bilinear operator: 
 Háxáy = Háyáx = y'áHáx .  For a real vector space,  y'  and  H'  are transposes, 
and  H  is the matrix of a linear map  H  from  x Õs  vector space to its dual.
Abstractly,  Ò Φ(x+y) + Φ(xÐy) ≡ 2Φ(x) + 2Φ(y) Ó  characterizes quadratic forms  Φ .  cf. p. 20.
Example:  2nd derivative in Taylor Series for scalar  µ(z + x) = µ(z) + µ`(z)áx + µ"(z)áxáx/2 + É

(Complex spaces,  for which  y'  and  H'  are complex conjugate transposes,  and  H = H'  is  Hermitian  
  instead of real symmetric,  and  Háxáy  is complex conjugate to  Háyáx ,  will not be treated here.  Besides, 
  the treatment of complex spaces would differ only slightly from real.)

Typically  Φ(x)  is some kind of  Energy,Ñ  Kinetic Energy  if  x  stands for velocities or 
momenta,  Elastic Energy  if for inÞnitesimal displacements from equilibrium,  etc.

How does a change of basis from  B  to  B := B·C–1  affect  H ?               cf. pp. 18-19

    x  changes to  x := C·x  but  w'   to  w'  := w'·C–1 ,  and  H  to  H := C'–1·HáCÐ1 ,  whence 
    Φ(x) = x'áHáx = x'áHáx .           ( Φ(x)  need not be defined upon the vector space dual to  x Õs .) 

The relation between  H  and  H := C'–1·HáCÐ1   is called a  Congruence. 
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Diagonalization of a Real Quadratic Form by Congruence
Let real quadratic form   Φ(x) := x'áHáx   in some chosen basis,  no matter which.

Lagrange  showed that  InÞnitely Many Congruences  C'Ð1áHáCÐ1 = V  have a diagonal  V .

Let  n+  count positive diagonal elements of  V ,    n0  É zero É,    nÐ  É negative É .

SylvesterÕs  Inertia  Theorem: Every diagonal  V  congruent to  H  has 
 the same  Inertia(H) := {n+, n0, nÐ} .

Some authors use the word  ÒSignatureÓ  instead of  ÒInertiaÓ,  a word chosen by  Sylvester.

Geometrically,  n+ = max{ dimension of every  Subspace  on which  Φ(x) > 0  for  x ≠ o } ;
  nÐ = max{  É Φ(x) < 0  for  x ≠ o } ;      n0 = dimension(x) Ð n+ Ð nÐ .

     Inertia  distinguishes shapes of  Ellipsoids  vs.  Hyperboloids of one or two sheets.

Nomenclature  for  Φ  and  Symmetric  H  
Names n+ positives n0 zeros n– negatives

Nonnegative Definite Positive Definite ≥ 1 0 0
Positive Semidefinite ≥ 1 ≥ 1 0
Indefinite ≥ 1 ≥ 1
Degenerate or Singular ≥ 1

Nonpositive Definite Negative Semidefinite 0 ≥ 1 ≥ 1
Negative Definite 0 0 ≥ 1
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Stationary Values  of  Quotients  of  Real Quadratic Forms
Given two real quadratic forms  Φ(x) := x'áHáx  and  Ψ(x) := x'áMáx ,  we seek all 

 Stationary Values  ρ  of the  Rayleigh Quotient   ρ(x) := Φ(x)/Ψ(x)  
as  x  runs through all nonzero vectors in a real space.

Each stationary value of  ρ(x)  and its stationary point  x  turn out to satisfy  
H·x = ρ(x)·M·x   and   M·x ≠ o .

Hence this  ρ  and  x  are solutions of a  Symmetric Generalized Eigenproblem.

If  M–1  exists,  each such  ρ  is an eigenvalue of  B := H·M–1
 .  However,  not all 

eigenvalues  ß  of  B  need be stationary values of  ρ(x) ,  not even if all are real.

e.g.,  H :=  ,  M :=  ,  x :=  ,   ρ(x) = ξ2/(ξη)  ;   B = H·M–1 =  ,  ß = 0 .  No stationary  ρ .

e.g.,  H :=  ,  M :=  ,  x :=  ,   ρ(x) = ξ/η – η/ξ ;   B = H·M–1 =  ,  ß = ±2ı .  No stationary  ρ .

Every  real square matrix  B = H·M–1  for  some  symmetric  H = H'   and  M = M'  .
Therefore,  without further restrictions,  Symmetric Generalized Eigenproblems  and 
unrestricted nonsymmetric eigenproblems fall prey to the same pathologies;  cf. pp. 51-56.  
Consequently we shall impose further restrictions upon  Φ and Ψ  in what follows.  … 

2 0

0 0

0 1

1 0

ξ
η

0 2

0 0

2 0

0 2–

0 1

1 0

ξ
η

0 2

2– 0



File:  NormOvrv                                               Tutorial Overview of Vector and Matrix Norms                                           Version dated January 30, 2013 11:18 am

Prof. W. Kahan                                                         SUBJECT  TO  CHANGE:  Do you have the latest version?                                                              Page 65 / 79

Simultaneous Diagonalization by Congruence
A powerful motive to find all the stationary points  x  of the  Rayleigh Quotient  
ρ(x) := x'·H·x/x'·M·x  is that,  IF   they are linearly independent and numerous 

enough to constitute the columns of an invertible matrix  C–1
 ,  they provide a 

new coordinate system  (basis)  that transforms  H  and  M  into diagonal matrices  

H := C'–1·HáCÐ1  and  M := C'–1·MáCÐ1  simultaneously by the same congruence.
The eigenvalues (stationary values)  ρ  are the diagonal elementwise quotients  H./ M .
They are often identified with squares of resonant frequencies of vibration.

The columns of  C–1  are often identified with  “Natural Modes” of vibration.

What conditions suffice for simultaneous diagonalization by congruence?

•  John Milnor’s Criterion:  If  x = o  whenever  x'·H·x = x'·M·x = 0 ,  and if the 
dimension of vectors  x  is  n ≠ 2 ,  then some linear combination of
real symmetric  H  and  M  is positive definite.   If  n = 2 ?  cf. 2d. e.g. on p. 64. 

(The case  n = 2  is unexceptional when  x  is complex and  H  and  M  Hermitian.)

•  If some linear combination of real symmetric  H  and  M  is positive definite, 
    H  and  M  can be diagonalized simultaneously by a congruence  C–1

 …
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Suppose some linear combination,  say  η·H + µ·M ,  of real symmetric  H and M  
is positive definite,  so some congruence diagonalizes  H and M   simultaneously.

How then may such a congruence  C–1  be found?

Choose a second linear combination,  say  α·H – β·M ,  independent of the first 
so   α·µ + β·η ≠ 0 .  A good choice would have  ||α·H – β·M|| << || |α·H| + |β·M| ||  
by virtue of substantial cancellation,  but this may not be feasible.  Thus a given 

    Symmetric Generalized Eigenproblem  “ H·x = ρ·M·x ”      is converted into a 
    Definite Symmetric Generalized Eigenproblem   “ H·y = ρ·M·y ”        in which
            H := α·H – β·M = H'     and    M := η·H + µ·M = M'   is positive definite.

Their eigenvalues are related:    ρ = (α·ρ – β)/(η·ρ + µ) ;    ρ = (β + µ·ρ)/(α – η·ρ) .

A way to compute them and a desired congruence:  Cholesky factorize  M = U'·U 
and compute an eigendecomposition of  W := U'–1·H·U–1 = W'  = Q·Ω·Q'   with
an orthogonal  Q'  = Q–1  and diagonal  Ω  of eigenvalues  ρ .  Now  C–1 := U–1·Q .

Thus does  MATLAB ’s  eig .  Since such eigenproblems can be pathological,  their error-analysis isn’t 
yet tidy enough for a succinct and memorable overview.  See instead  Ren-Cang Li’s  §15.4  in  L. 
Hogben’s  Handbook …  cited under  Further Reading,  and my …/Math128/GnSymEig.pdf> .  No 
comparable numerical scheme is known to find an  Indefinite Symmetric Generalized Eigenproblem’s  
congruence when it exists.  What follows concerns problems that are easier and better understood. …
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The (ordinary)  Real Symmetric Eigenproblem 
…  is the special case  M = I  of the  Definite Symmetric Generalized Eigenproblem: 

Given a real symmetric  H = H'  ,  we seek its eigenvalues  θ  and eigenvectors  q  
satisfying  H·q = θ·q .  All of them constitute a diagonal  Θ  and an orthogonal  

Q = Q'–1  satisfying   Q'·H·Q = Θ .  The eigenvalues can be ordered in two ways:

 • Ascending:  θ1 ≤ θ2 ≤ θ3 ≤ … ≤ θn .    • Descending:  θ1 ≥ θ2 ≥ θ3 ≥ … ≥ θn .

These two orderings are relevant to the identification of eigenvalues as stationary 
values of the  Rayleigh Quotient   ρ(x) := x'·H·x/x'·x  via the … 

Courant-Fischer Minimax Principle: 
      Ascending order,   θk = Minsubspaces SS of dimension k  Maxnonzero x in SS  ρ(x) .
      Descending order,   θk = Maxsubspaces SS of dimension k  Minnonzero x in SS  ρ(x) .

Let a perturbation  ∆H = ∆H'   that changes eigenvalues of  H + ∆H  to  Θ + ∆Θ     
have  Inertia(∆H) = { π := n+ ,  ζ := n0 ,   ν := n– }  .  (See p. 63.)  Then ordered …

Ascending,   θk + ∆θk ≤ θk+π for 1 ≤ k ≤ n–π ;   θm + ∆θm ≥ θm–ν for ν < m ≤ n .
Descending,    θi + ∆θi ≥ θi+ν  for  1 ≤ i ≤ n–ν ;    θj + ∆θj ≤ θj–π  for  π < j ≤ n .

…  useful mainly when  π  and/or  ν  is small like  0,  1  or  2 .
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Absolute  and  Relative  Perturbations
Let perturbation  ∆H = ∆H'   change eigenvalues of  H + ∆H  to  Θ + ∆Θ   with the 
same ordering as  Θ .  Then  ||∆Θ|| ≤ ||∆H||  for every  Orthogonally Invariant 
norm  ||…|| .  (See p. 32.)   The norms usually chosen are  ||…||2  and  ||…||F .

The foregoing inequality  ||∆Θ|| ≤ ||∆H||  is satisfactory when  H  is the matrix of a 
symmetric linear operator from a  Euclidean  space to itself.  More generally if  H  
is the matrix of a symmetric linear operator from a normed vector space to its 
dual,  no orthogonally invariant norm need be  Equitable;  different perturbations 
with the same norm  ||∆H||  may differ utterly in significance and effect.  

Graded matrices;  cf.  p. 30.    Better coordinates;  cf.  p. 12.    Other norms;  cf. Li & Mathias [1999]

Ostrowski’s  Refinement of  Sylvester’s Inertia Theorem:       (See p. 63) 
If the eigenvalues  Θ  of  H  change to eigenvalues  Θ  of  H := C'–1·H·C–1  with 
the same ordering,  Inertia(Θ) = Inertia(Θ)  and every  θj ≠ 0  in  Θ  has 

 1/||C'·C||2  ≤  θj/θj  ≤  ||(C'·C)–1||2 .
Typically this is applied with  C  close to  I ,  so  H  is  Relatively  close to  H .
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Partial Eigensystems  and  Spectral Gaps
The  Spectrum  of  n-by-n  real symmetric  H = H'   is the  Multiset  of its  n  eigenvalues  θj  

(some of which may be repeated)  which we assume to be ordered  Descending,  say.  Let
EE(H)  denote this so ordered spectrum  { θ1 ≥ θ2 ≥ θ3 ≥ … ≥ θn }  of  H .

Especially when dimension  n  is big,  occasions arise to compute only those eigenvalues 
of  H  in some interval separated from the rest of  EE(H)  by a  Gap  or two.  To this end,  
suppose  n-by-m  matrix  F  has  m < n  linearly independent  columns approximating  
(perhaps poorly)  m  eigenvectors of  H ,  and suppose  m-by-m  real symmetric matrix  M  
(not necessarily diagonal)  has a spectrum  EE(M) = {µ1 ≥ µ2 ≥ µ3 ≥ … ≥ µm}  thought to 

approximate part of  EE(H) .  Let  Residual   R := H·F – F·M   and let   β := ||F ||2·||R||2 .  

Theorem:  Among  n  eigenvalues  θj  of  H  there are  m  each of which lies in a different 

          (though perhaps overlapping)  interval  µi – β  ≤ θ ≤  µi + β   for  i = 1, 2, 3, …, m .

Eigenvectors of  H  are orthogonal.  If their estimates in  F  are too far from orthonormal,  

||F ||2  may be excessively big.  A remedy for this is  Reorthogonalization: …

:= –R H F F
M     For  ||F ||2  see p. 44.Computable
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Reorthogonalization:
One way replaces  F  by  Q  from the  QR  factorization  F = Q·U  with upper-triangular  U  
and  Q'·Q = I .  Other ways,  one sometimes faster,  one closer to  F ,  are explored in
  <www.eecs.berkeley.edu/~wkahan/Math128/NearestQ.pdf> .

After a  (closely)  orthonormal  n-by-m  matrix  Q  replaces  F ,  the new residual becomes  
R := H·Q – Q·M ,  and  β := ||R||2 .  Then,  as before,  the  m  eigenvalues  µi  of  EE(M)  

estimate  m  of the  n  eigenvalues  θj  in  EE(H)  thus:

Among  n  eigenvalues  θj  in  EE(H)  there are  m  each of which lies in a different 

(possibly overlapping)  interval wherein  | µi – θ |  ≤  β   for  i = 1, 2, 3, …, m .

Now  R  can have its norm  β := ||R||2  minimized by the choice  M := Q'·H·Q .  Then those  

m  eigenvalues  θj  fall into much narrower intervals when  β  is much tinier than  Spectral 

Gaps  between the rest of  EE(H)  and those  m  or their estimates  µi .  To describe these  

Spectral Gaps  we perform a  (notional,  not necessarily computed)  change of coordinates:

Let  n-by-n  orthogonal  [Q, Q]  be obtained from  any  n–m  orthonormal columns  Q  
orthogonal to  Q ,  so  n-by-n  [Q, Q]'·[Q, Q] = I .  This  [Q, Q]  provides a new ortho-
normal coordinate system in which the linear operator formerly represented by  H  is now 
represented by  [Q, Q]'·H·[Q, Q] .  Of course,  spectrum  EE([Q, Q]'·H·[Q, Q]) = EE(H) .
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To define  Spectral Gaps,   let …

[Q, Q]'·H·[Q, Q] =:   and set   Y := .  Now   represents  R := H·Q – Q·M  in 

the new coordinates;  β := ||R||2 = ||B||2 .   Usually only  M = Q'·H·Q  and  R  are computed.

Let names for the relevant ordered spectra be  … 
 EE(H) = EE([Q, Q]'·H·[Q, Q]) = {  θ1 ≥ θ2 ≥ θ3 ≥ … ≥ θn }  which we wish to estimate.

 EE(M) = { µ1 ≥ µ2 ≥ µ3 ≥ … ≥ µm }   which are our  m  computed estimates.

 EE(W) = { ω1 ≥ ω2 ≥ ω3 ≥ … ≥ ωn-m }  for which rough estimates will be needed.

 EE(Y) = { η1 ≥ η2 ≥ η3 ≥ … ≥ ηn }  =  EE(M) ∪  EE(W)   as  multi-sets.    |θi –ηi| ≤ β .
~~~~~~~~~~~~~~~~~~~~~~~

For  i = 1, 2, 3, …, n  define the  Gaps  γi  between spectra  EE(M)  and  EE(W)  thus:

If  ηi ∈  EE(M)  then  γi := minj |ηi – ωj|  else if  ηi ∈  EE(W)  then  γi := minj |ηi – µj| .

Let  Gap  γ := mini γi .     Usually  EE(M)  and  EE(W)  are disjoint,  and then  γ > 0 .

Then  Chi-Kwong Li & Ren-Cang Li [2005]  proved  VERY GENERALLY  that  every 

   |θi – ηi|  ≤  β2/( γi/2 + √( β2
 + γi

2/4 ) )  ≤  β2/( γ/2 + √( β2
 + γ2/4 ) )  ≤  min{ β ,  β2/γ }  . 

When  β << γ  these inequalities estimate that part of  EE(H)  approximated by  EE(M)  far 
more tightly than  β  because  somehow  the rest of  EE(H)  is known to be farther away.

    SOMEHOW ?  
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Error-bounds on three previous pages bound  Absolute  errors  θi –ηi .  What about

Relative Errors   log(θi/ηi) ?
Again,  n-by-m  matrix  Q  has orthonormal columns,  M := Q'·H·Q ,  R := H·Q – Q·M .  

Now,  provided  ||R·M–1||2 < ψ < 1 ,  the  m  eigenvalues  µi  in  EE(M)  estimate  m  of the  

n  eigenvalues  θj  in  EE(H)  thus:                                                                    cf. p. 70 

Among  n  eigenvalues  θj  in  EE(H)  there are  m  each of which lies in a different 

(possibly overlapping)  interval wherein   | log(θ/µi) | < ψ   for  i = 1, 2, 3, …, m .

These bounds are advantageous only when  ||R·M–1||  is a lot smaller than  ||R||·||M–1|| .

Deflation replaces  H = H'  =   by  Y =   when  ||B||2  is deemed small enough.

Its motivation is to repace a big eigenproblem by two smaller ones,  maybe not both much smaller.

Replacing  EE(H)  by  EE(Y)  incurs  Absolute  errors bounded by  ||B||2 ,  or by  ||B||2
2/γ  if 

the gap  γ  is known to be big enough.  Relative  errors are bounded by  ψ < 1  whenever 

  both   ||M–1·B||2 < ψ   and   ||B·W–1||2 < ψ .

Only in special situations can these  Relative  error-bounds be worth what they cost to compute.
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Relative Error Bounds for  Deflated Singular Value Problems

Let triangular   S :=   and  Z :=   have singular value multisets respectively 

SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn }  and   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn } =  SS(D) ∪  SS(F)

 wherein   SS(D) = { δ1 ≥ δ2 ≥ … ≥ δm }  and   SS(F) = { φ1 ≥ φ2 ≥ … ≥ φn–m }  .

Z  comes from  S  via  Deflation.                      Every  Absolute Error  |σj – ζj| ≤ ||E|| .

  What about  Relative Errors  log(σj/ζj) ?

If  either  ||D–1·E|| < 2ψ < 1  or  ||E·F–1|| < 2ψ < 1  then every  | log(σj/ζj)| < ψ .

It persists with  0/0 := 1  even if some  ζj = 0  so long as either  ||D–1·E||  or  ||E·F–1||  exists.

Example:
Let  n-by-n  S := bidiag  =    in which the pair    is 

missing from only the first and last columns,  and  s > f >> 1 > e > 0 .

 σ1 ≈ s + 1  >>  σn ≈ (s2 – 1)/√(s2n – n·s2 + n – 1)                for  s > 3  and  n > 3 .

Deleting  e  causes relative error < ψ if  e < 2ψ·f   though this  e  can exceed  σn  hugely.

For relative  error-bounds improved substantially by a knowledge of gaps like  γ ,  see  Kahan [2012"].

D E

O' F

D O

O' F

 s  s  …  s  s  e  

1  1  …  …  1  1  f

D e
o' f

s

1



File:  NormOvrv                                               Tutorial Overview of Vector and Matrix Norms                                           Version dated January 30, 2013 11:18 am

Prof. W. Kahan                                                         SUBJECT  TO  CHANGE:  Do you have the latest version?                                                              Page 74 / 79

Spectral Gaps,  Invariant Subspaces,  and  Angles
Although the  n  eigenvectors of  n-by-n  H = H'  can be chosen to be orthonormal,  those 
belonging to eigenvalues repeated or too tightly clustered are partially indeterminate,  at 
least numerically.  Instead the  Invariant Subspace  spanned by the cluster’s eigenvectors 
is determined accurately whenever the cluster is separated from the rest of the spectrum by 
a sufficiently wide gap.  The  Angles  between a subspace and an approximation to it are 
described best in  Davis & Kahan [1969];  the best way to compute them is on  p. 7  of
  <www.eecs.berkeley.edu/~wkahan/Math128/NearestQ.pdf> .

Let the columns of  n-by-m  Q  be an orthonormal  (Q'·Q = I)  basis for an approximation 
to the invariant subspace belonging to a tight cluster of  m  eigenvalues of  H .  As before,

[Q, Q]'·H·[Q, Q] = ;    Y := ;    R := H·Q – Q·M = Q·B'   so   β := ||R||2 = ||B||2 .

 EE(H) = EE([Q, Q]'·H·[Q, Q]) = { θ1 ≥ θ2 ≥ θ3 ≥ … ≥ θn } .     Recall  M := Q'·H·Q .
 EE(M) = { µ1 ≥ µ2 ≥ µ3 ≥ … ≥ µm }   approximates a tight cluster in  EE(H) .
 EE(W) = { ω1 ≥ ω2 ≥ ω3 ≥ … ≥ ωn-m }  approximates the rest of  EE(H) .
 Gap  γ := mini γi = mini,j |µi – ωj| .        This may be of little use unless   γ >> 2β .

Let  Â  be the biggest angle between  Range(Q)  and the cluster’s invariant subspace;
  then  Â ≤ arcsin(2β/γ)/2   if     γ > 2β .

When  EE(W)  is all on just one side of  EE(M) ,  then  Â ≤ arctan(2β/γ)/2 ≤ β/γ .
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Miscellany:

• Elaborations of Perturbation Theory:  Ren-Cang Li’s  §15 in Hogben [2007]

• Compute Eigenvalues to High Relative Accuracy:  Z. Drmac’s §46 in Hogben
… of Graded Real Symmetric Matrices,  Positive Definite Matrices (only ?)

… of Specially Structured Matrices:  see his citations of  P. Koev  et al.
  Another such example:  pp. 12-13 of  <…/HilbMats.pdf>

•  Computational Methods and Perturbation Theories of Singular Values  of  L :

…  same as for eigensystem of    amended by some simplifications.
  see  R. Mathias’ §17 in Hogben [2007]

Regions in the  Complex Plane  associated with  L   acting on a complex space:

•  ε-Pseudo-Spectrum of  L  :   { ζ  for which  ||(ζ·I  – L )–1|| > 1/ε } .  Usually  ||…||2 
  …  includes spectrum of  L  ;  see  M. Embree’s §16 in Hogben [2007]

•  Field of Values  of,  or  Numerical Range  of  L  :  { w'·L ·x/w'·x }  as  w'  and x 
 run through all nonzero pairs  Dual  (p. 17) with respect to the space’s norm.
  …  includes spectrum of  L  .  Convex set for  ||…||2 ;  see  C.K. Li’s §18  in  Hogben
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Citations  and  Further Reading

A huge encyclopedic survey of facts citing the literature for their proofs is  Handbook of 
Linear Algebra  ed. by Leslie Hogben [2007] 1504 pp., Chapman & Hall/CRC.

For a treatment of finite-dimensional linear algebra that prepares the diligent reader for 
infinite dimensions,  try  Finite-Dimensional Linear Analysis,  a Systematic Presentation 
in Problem Form  by  I.M. Glazman & Ju.I. Ljubic,  translated and edited by  G.P. Barker 
& G. Kuerti [1974] MIT Press.  This huge text’s exposition consists of about  1500  
problems with hints but none accompanied by a full solution.  You must do it yourself.

Normed Linear Spaces 3rd ed. by  M.M. Day [1973],  Springer-Verlag,  is a short (211 
pages) brutally compressed overview of the situation in infinite-dimensional spaces.  The 
last chapter is a nine-page reader’s guide to the literature up to  1972.

For more about unitarially invariant  Cross-Norms  and  Symmetric Gauge Functions  
applicable to linear operators upon  Hilbert  spaces,  see  ch. V  of  Norm Ideals of 
Completely Continuous Operators  by  R. Schatten [1960],  Springer-Verlag.

B.N. ParlettÕs  book  The Symmetric Eigenvalue Problem  [1998] 426 pp.,  SIAM, 
Philadelphia,  is the best source about the properties and computations of eigensystems of  
real symmetric and  Hermitian  matrices.

Citations  &  Further Reading  continues  É
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É  Citations  &  Further Reading  continued É

N.J. Higham [2002] Accuracy & Stability of Numerical Algorithms 2nd ed.,  ~700 pp,.  
SIAM, Philadelphia,  is the best text treating error-analysis of roundoff.

Often better than bounds upon norms of errors are elementwise bounds mentioned herein 
at the bottom of p. 30.  For more about them see  Higham’s  “A survey of componentwise 
perturbation theory in numerical linear algebra”  pp. 49-77 in …

W. Gautschi (ed.) Mathematics of Computation 1943-1993, A half century of 
computational mathematics;  Proc. of the  Math. of Comp.  50th Anniv. Symposium,
 9 - 13 Aug. 1993 in Vancouver B.C.,  American Math Soc.

Chi-Kwong Li & Roy Mathias [1999] ÒThe Lidskii-Mirsky-Wielandt Theorem Ñ 
additive and multiplicative versionsÓ pp. 377-413 of Numerische Mathematik 81,  is a 
superb survey with elegant proofs of matrix normsÕ relations with  Hermitian  matrices.

Chandler Davis & W.M. Kahan [1969] “Some New Bounds on Perturbations of 
Subspaces” pp. 863-868 in Bulletin Amer. Math. Soc. 75 #4.  This describes bounds upon 
angles between subspaces in a readable way,  far more so than the most often cited … 

Davis & Kahan [1970] “The Rotation of Eigenvectors by a Perturbation. III”  pp. 1-46 in 
SIAM J. Numer. Anal 7 #1.   Used herein on p. 74.

Citations  &  Further Reading  continues  É
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É  Citations  &  Further Reading  continued É

Chi-Kwong Li & Ren-Cang Li [2005] ÒA note on eigenvalues of perturbed Hermitian 
matricesÓ pp. 183-190 in Linear Algebra and its Applications 395 ,  cited herein on p. 71.

ÒDeßations Preserving Relative AccuracyÓ  by  W. Kahan [2012"]  was posted recently at 
<www.eecs.berkeley.edu/~wkahan/4June12.pdf>  and fully at  É/ma221/Deßate.pdf> .

Mentioned at the bottom of  p. 56  is the possibly heightened sensitivity of the eigenvalues 
of an  Hermitian  matrix to non-Hermitian perturbations.  For more about this see É

“Spectra of Operators with Fixed Imaginary Parts”  by  Andrzej Pokrzywa [1981],  pp. 
359-364  in  Proc. Amer. Math. Soc. 81 #3,    and …

ÒArbitrary Perturbations of Hermitian MatricesÓ by Arnold Sch�nhage [1979],  pp. 143-9 
in Linear Algebra and its Applications 24 
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Epilogue

I learned what little I know about norms  etc.  over half a century ago,  and later turned in 
a different direction.  Consult appropriate  Math. Dept.  professors for this century’s 
understandings of normed and more general metric spaces.

As an error-analyst,  I have chosen mostly applications to error-analyses to illustrate how a 
norm can be used.  Scattered among them are attempts to awaken an awareness of how 
important,  despite its difficulty,  is choosing an appropriate thing to gauge with a norm.  
Choosing an  Equitable  norm  (pp. 12, 30, 39, 48, 52, 68)  raised that issue.  However,  …

Many a situation cannot be comprehended in a single number.

These situations abound in  Scientific and Engineering  computations,  and in almost all 
human endeavors;  see a few surprising military examples in …
J.G. Roche & B.D. Watts [1991] “Choosing Analytic Measures”  pp. 165-209 in J. Strategic Studies 
14 #2.  Disregard their mathematically naive and irrelevant uses of  “linear”  and  “chaos”.

Still,  when a decision is needed,  it often amounts to distilling one number out of many:
Pass a test?  Accept a candidate?  Choose a purchase?  Launch an enterprise?  …

Such unavoidable decisions must occasionally be mistaken or,  less often,  very lucky. 


