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Abstract

We improve a recent guarantee of Bach and Moulines on the linear convergence
of SGD for smooth and strongly convex objectives, reducing a quadratic depen-
dence on the strong convexity to a linear dependence. Furthermore, we show how
reweighting the sampling distribution (i.e. importance sampling) is necessary in
order to further improve convergence, and obtain a linear dependence on average
smoothness, dominating previous results, and more broadly discus how impor-
tance sampling for SGD can improve convergence also in other scenarios. Our
results are based on a connection between SGD and the randomized Kaczmarz al-
gorithm, which allows us to transfer ideas between the separate bodies of literature
studying each of the two methods.

1 Introduction

This paper concerns two algorithms which until now have remained somewhat disjoint in the liter-
ature: the randomized Kaczmarz algorithm for solving linear systems and the stochastic gradient
descent (SGD) method for optimizing a convex objective using unbiased gradient estimates. The
connection enables us to make contributions by borrowing from each body of literature to the other.
In particular, it helps us highlight the role of weighted sampling for SGD and obtain a tighter guar-
antee on the linear convergence regime of SGD.

Our starting point is a recent analysis on convergence of the SGD iterates. Considering a stochastic
objective F (x) = Ei[fi(x)], classical analyses of SGD show a polynomial rate on the suboptimality
of the objective value F (xk) − F (x?). Bach and Moulines [1] showed that if F (x) is µ-strongly
convex, fi(x) areLi-smooth (i.e. their gradients areLi-Lipschitz), and x? is a minimizer of (almost)
all fi(x) (i.e. Pi(∇fi(x?) = 0) = 1), then E‖xk − x?‖ goes to zero exponentially, rather then
polynomially, in k. That is, reaching a desired accuracy of E‖xk − x?‖2 ≤ ε requires a number of
steps that scales only logarithmically in 1/ε. Bach and Moulines’s bound on the required number of
iterations further depends on the average squared conditioning number E[(Li/µ)2].

In a seemingly independent line of research, the Kaczmarz method was proposed as an iterative
method for solving overdetermined systems of linear equations [7]. The simplicity of the method
makes it popular in applications ranging from computer tomography to digital signal processing [5,
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9, 6]. Recently, Strohmer and Vershynin [19] proposed a variant of the Kaczmarz method which
selects rows with probability proportional to their squared norm, and showed that using this selection
strategy, a desired accuracy of ε can be reached in the noiseless setting in a number of steps that
scales with log(1/ε) and only linearly in the condition number. As we discuss in Section 5, the
randomized Kaczmarz algorithm is in fact a special case of stochastic gradient descent.

Inspired by the above analysis, we prove improved convergence results for generic SGD, as well as
for SGD with gradient estimates chosen based on a weighted sampling distribution, highlighting the
role of importance sampling in SGD:

We first show that without perturbing the sampling distribution, we can obtain a linear dependence
on the uniform conditioning (supLi/µ), but it is not possible to obtain a linear dependence on
the average conditioning E[Li]/µ. This is a quadratic improvement over [1] in regimes where the
components have similar Lipschitz constants (Theorem 2.1 in Section 2).

We then show that with weighted sampling we can obtain a linear dependence on the average con-
ditioning E[Li]/µ, dominating the quadratic dependence of [1] (Corollary 3.1 in Section 3).

In Section 4, we show how also for smooth but not-strongly-convex objectives, importance sampling
can improve a dependence on a uniform bound over smoothness, (supLi), to a dependence on the
average smoothness E[Li]—such an improvement is not possible without importance sampling.
For non-smooth objectives, we show that importance sampling can eliminate a dependence on the
variance in the Lipschitz constants of the components.

Finally, in Section 5, we turn to the Kaczmarz algorithm, and show we can improve known guaran-
tees in this context as well.

2 SGD for Strongly Convex Smooth Optimization

We consider the problem of minimizing a strongly convex function of the form F (x) = Ei∼Dfi(x)
where fi : H → R are smooth functionals over H = Rd endowed with the standard Euclidean
norm ‖·‖2, or over a Hilbert space H with the norm ‖·‖2. Here i is drawn from some source
distribution D over an arbitrary probability space. Throughout this manuscript, unless explicitly
specified otherwise, expectations will be with respect to indices drawn from the source distribution
D. We denote the unique minimum x? = argminF (x) and denote by σ2 the “residual” quantity at
the minimum, σ2 = E‖∇fi(x?)‖22.

Assumptions Our bounds will be based on the following assumptions and quantities: First, F has
strong convexity parameter µ; that is, 〈x− y,∇F (x)−∇F (y)〉 ≥ µ‖x− y‖22 for all vectors x
and y. Second, each fi is continuously differentiable and the gradient function ∇fi has Lipschitz
constant Li; that is, ‖∇fi(x)−∇fi(y)‖2 ≤ Li‖x− y‖2 for all vectors x and y. We denote supL
the supremum of the support of Li, i.e. the smallest L such that Li ≤ L a.s., and similarly denote
inf L the infimum. We denote the average Lipschitz constant as L = ELi.

An unbiased gradient estimate for F (x) can be obtained by drawing i ∼ D and using∇fi(x) as the
estimate. The SGD updates with (fixed) step size γ based on these gradient estimates are given by:

xk+1 ← xk − γ∇fik(xk) (2.1)

where {ik} are drawn i.i.d. from D. We are interested in the distance ‖xk − x?‖22 of the iterates
from the unique minimum, and denote the initial distance by ε0 = ‖x0 − x?‖22.

Bach and Moulines [1, Theorem 1] considered this setting1 and established that

k = 2 log(ε0/ε)
(EL2

i

µ2
+

σ2

µ2ε

)
(2.2)

SGD iterations of the form (2.1), with an appropriate step-size, are sufficient to ensure
E‖xk − x?‖22 ≤ ε, where the expectation is over the random sampling. As long as σ2 = 0, i.e. the

1Bach and Moulines’s results are somewhat more general. Their Lipschitz requirement is a bit weaker and
more complicated, but in terms of Li yields (2.2). They also study the use of polynomial decaying step-sizes,
but these do not lead to improved runtime if the target accuracy is known ahead of time.
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same minimizer x? minimizes all components fi(x) (though of course it need not be a unique min-
imizer of any of them); this yields linear convergence to x?, with a graceful degradation as σ2 > 0.
However, in the linear convergence regime, the number of required iterations scales with the ex-
pected squared conditioning EL2

i /µ
2. In this paper, we reduce this quadratic dependence to a linear

dependence. We begin with a guarantee ensuring linear dependence on supL/µ:

Theorem 2.1 Let each fi be convex where ∇fi has Lipschitz constant Li, with Li ≤ supL a.s.,
and let F (x) = Efi(x) be µ-strongly convex. Set σ2 = E‖∇fi(x?)‖22, where x? = argminx F (x).
Suppose that γ ≤ 1/µ. Then the SGD iterates given by (2.1) satisfy:

E‖xk − x?‖22 ≤
[
1− 2γµ(1− γ supL)

)]k
‖x0 − x?‖22 +

γσ2

µ
(
1− γ supL

) . (2.3)

That is, for any desired ε, using a step-size of

γ =
µε

2εµ supL+ 2σ2
ensures that after k = 2 log(ε0/ε)

( supL
µ

+
σ2

µ2ε

)
(2.4)

SGD iterations, E‖xk − x?‖22 ≤ ε, where ε0 = ‖x0 − x?‖22 and where both expectations are with
respect to the sampling of {ik}.

Proof sketch: The crux of the improvement over [1] is a tighter recursive equation. Instead of:

‖xk+1 − x?‖22 ≤
(
1− 2γµ+ 2γ2L2

ik

)
‖xk − x?‖22 + 2γ2σ2,

we use the co-coercivity Lemma (Lemma A.1 in the supplemental material) to obtain:

‖xk+1 − x?‖22 ≤
(
1− 2γµ+ 2γ2µLik

)
‖xk − x?‖22 + 2γ2σ2.

The significant difference is that one of the factors of Lik , an upper bound on the second derivative
(where ik is the random index selected in the kth iteration) in the third term inside the parenthesis,
is replaced by µ, a lower bound on the second derivative of F . A complete proof can be found in the
supplemental material.

Comparison to [1] Our bound (2.4) improves a quadratic dependence on µ2 to a linear depen-
dence and replaces the dependence on the average squared smoothness EL2

i with a linear dependence
on the smoothness bound supL. When all Lipschitz constants Li are of similar magnitude, this is a
quadratic improvement in the number of required iterations. However, when different components
fi have widely different scaling, i.e. Li are highly variable, the supremum might be significantly
larger then the average square conditioning.

Tightness Considering the above, one might hope to obtain a linear dependence on the average
smoothness L. However, as the following example shows, this is not possible. Consider a uniform
source distribution over N + 1 quadratics, with the first quadratic f1 being N(x[1] − b)2 and all
others being x[2]2, and b = ±1. Any method must examine f1 in order to recover x to within
error less then one, but by uniformly sampling indices i, this takes N iterations in expectation.
We can calculate supL = L1 = 2N , L = 2(2N−1)

N , EL2
i = 4(N2+N−1)

N , and µ = 1. Both
supL/µ = EL2

i /µ
2 = O(N) scale correctly with the expected number of iterations, while error

reduction in O(L/µ) = O(1) iterations is not possible for this example.

We therefore see that the choice between EL2
i and supL is unavoidable. In the next Section, we

will show how we can obtain a linear dependence on the average smoothness L, using importance
sampling, i.e. by sampling from a modified distribution.

3 Importance Sampling

For a weight function w(i) which assigns a non-negative weight w(i) ≥ 0 to each index i, the
weighted distribution D(w) is defined as the distribution such that

PD(w) (I) ∝ Ei ∼D [1I(i)w(i)] ,
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where I is an event (subset of indices) and 1I(·) its indicator function. For a discrete distribution
D with probability mass function p(i) this corresponds to weighting the probabilities to obtain a
new probability mass function, which we write as p(w)(i) ∝ w(i)p(i). Similarly, for a continuous
distribution, this corresponds to multiplying the density by w(i) and renormalizing. Importance
sampling has appeared in both the Kaczmarz method [19] and in coordinate-descent methods [14,
15], where the weights are proportional to some power of the Lipschitz constants (of the gradient
coordinates). Here we analyze this type of sampling in the context of SGD.

One way to constructD(w) is through rejection sampling: sample i ∼ D, and accept with probability
w(i)/W , for some W ≥ supi w(i). Otherwise, reject and continue to re-sample until a suggestion
i is accepted. The accepted samples are then distributed according to D(w).

We use E(w)[·] = Ei∼D(w) [·] to denote expectation where indices are sampled from the weighted
distribution D(w). An important property of such an expectation is that for any quantity X(i):

E(w)
[

1
w(i)X(i)

]
= E [w(i)] · E [X(i)] , (3.1)

where recall that the expectations on the r.h.s. are with respect to i ∼ D. In particular, when
E[w(i)] = 1, we have that E(w)

[
1

w(i)X(i)
]
= EX(i). In fact, we will consider only weights

s.t. E[w(i)] = 1, and refer to such weights as normalized.

Reweighted SGD For any normalized weight function w(i), we can write:

f
(w)
i (x) =

1

w(i)
fi(x) and F (x) = E(w)[f

(w)
i (x)]. (3.2)

This is an equivalent, and equally valid, stochastic representation of the objective F (x), and we can
just as well base SGD on this representation. In this case, at each iteration we sample i ∼ D(w)

and then use ∇f (w)
i (x) = 1

w(i)∇fi(x) as an unbiased gradient estimate. SGD iterates based on the
representation (3.2), which we will refer to as w-weighted SGD, are then given by

xk+1 ← xk −
γ

w(ik)
∇fik(xk) (3.3)

where {ik} are drawn i.i.d. from D(w).

The important observation here is that all SGD guarantees are equally valid for the w-weighted
updates (3.3)–the objective is the same objective F (x), the sub-optimality is the same, and the
minimizer x? is the same. We do need, however, to calculate the relevant quantities controlling SGD
convergence with respect to the modified components f (w)

i and the weighted distribution D(w).

Strongly Convex Smooth Optimization using Weighted SGD We now return to the analysis of
strongly convex smooth optimization and investigate how re-weighting can yield a better guarantee.
The Lipschitz constant L(w)

i of each component f (w)
i is now scaled, and we have L(w)

i = 1
w(i)Li.

The supremum is then given by:

supL(w) = sup
i
L
(w)
i = sup

i

Li
w(i)

. (3.4)

It is easy to verify that (3.4) is minimized by the weights

w(i) =
Li

L
, so that supL(w) = sup

i

Li

Li/L
= L. (3.5)

Before applying Theorem 2.1, we must also calculate:

σ2
(w) = E(w)[‖∇f (w)

i (x?)‖22] = E[
1

w(i)
‖∇fi(x?)‖22] = E[

L

Li
‖∇fi(x?)‖22] ≤

L

inf L
σ2. (3.6)
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Now, applying Theorem 2.1 to the w-weighted SGD iterates (3.3) with weights (3.5), we have that,
with an appropriate stepsize,

k = 2 log(ε0/ε)
( supL(w)

µ
+
σ2
(w)

µ2ε

)
= 2 log(ε0/ε)

(L
µ
+

L

inf L
· σ

2

µ2ε

)
(3.7)

iterations are sufficient for E(w)‖xk − x?‖22 ≤ ε, where x?, µ and ε0 are exactly as in Theorem 2.1.

If σ2 = 0, i.e. we are in the “realizable” situation, with true linear convergence, then we also have
σ2
(w) = 0. In this case, we already obtain the desired guarantee: linear convergence with a linear

dependence on the average conditioning L/µ, strictly improving over the best known results [1].
However, when σ2 > 0 we get a dissatisfying scaling of the second term, by a factor of L/inf L.

Fortunately, we can easily overcome this factor. To do so, consider sampling from a distribution
which is a mixture of the original source distribution and its re-weighting:

w(i) =
1

2
+

1

2
· Li
L
. (3.8)

We refer to this as partially biased sampling. Instead of an even mixture as in (3.9), we could also
use a mixture with any other constant proportion, i.e. w(i) = λ + (1 − λ)Li/L for 0 < λ < 1.
Using these weights, we have

supL(w) = sup
i

1
1
2 + 1

2 ·
Li

L

Li ≤ 2L and σ2
(w) = E[

1
1
2 + 1

2 ·
Li

L

‖∇fi(x?)‖22] ≤ 2σ2. (3.9)

Corollary 3.1 Let each fi be convex where ∇fi has Lipschitz constant Li and let F (x) =
Ei∼D[fi(x)], where F (x) is µ-strongly convex. Set σ2 = E‖∇fi(x?)‖22, where x? =
argminx F (x). For any desired ε, using a stepsize of

γ =
µε

4(εµL+ σ2)
ensures that after k = 4 log(ε0/ε)

(L
µ
+

σ2

µ2ε

)
(3.10)

iterations of w-weighted SGD (3.3) with weights specified by (3.8), E(w)‖xk − x?‖22 ≤ ε, where
ε0 = ‖x0 − x?‖22 and L = ELi.

This result follows by substituting (3.9) into Theorem 2.1. We now obtain the desired linear scaling
on L/µ, without introducing any additional factor to the residual term, except for a constant factor.
We thus obtain a result which dominates Bach and Moulines (up to a factor of 2) and substantially
improves upon it (with a linear rather than quadratic dependence on the conditioning). Such “par-
tially biased weights” are not only an analysis trick, but might indeed improve actual performance
over either no weighting or the “fully biased” weights (3.5), as demonstrated in Figure 1.

Implementing Importance Sampling In settings where linear systems need to be solved repeat-
edly, or when the Lipschitz constants are easily computed from the data, it is straightforward to
sample by the weighted distribution. However, when we only have sampling access to the source
distribution D (or the implied distribution over gradient estimates), importance sampling might be
difficult. In light of the above results, one could use rejection sampling to simulate sampling from
D(w). For the weights (3.5), this can be done by accepting samples with probability proportional
to Li/ supL. The overall probability of accepting a sample is then L/ supL, introducing an addi-
tional factor of supL/L. This yields a sample complexity with a linear dependence on supL, as
in Theorem 2.1, but a reduction in the number of actual gradient calculations and updates. In even
less favorable situations, if Lipschitz constants cannot be bounded for individual components, even
importance sampling might not be possible.

4 Importance Sampling for SGD in Other Scenarios

In the previous Section, we considered SGD for smooth and strongly convex objectives, and were
particularly interested in the regime where the residual σ2 is low, and the linear convergence term is
dominant. Weighted SGD is useful also in other scenarios, and we now briefly survey them, as well
as relate them to our main scenario of interest.
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Figure 1: Performance of SGD with weights w(i) = λ + (1 − λ)Li

L
on synthetic overdetermined least

squares problems of the form (5.1) (λ = 1 is unweighted, λ = 0 is fully weighted). Left: ai are standard
spherical Gaussian, bi = 〈ai,x0〉 + N (0, 0.12). Center: ai is spherical Gaussian with variance i, bi =

〈ai,x0〉 + N (0, 202). Right: ai is spherical Gaussian with variance i, bi = 〈ai,x0〉 + N (0, 0.12). In all
cases, matrix A with rows ai is 1000 × 100 and the corresponding least squares problem is strongly convex;
the stepsize was chosen as in (3.10).
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Figure 2: Performance of SGD with weights w(i) = λ + (1 − λ)Li

L
on synthetic underdetermined least

squares problems of the form (5.1) (λ = 1 is unweighted, λ = 0 is fully weighted). We consider 3 cases. Left:
ai are standard spherical Gaussian, bi = 〈ai,x0〉+N (0, 0.12). Center: ai is spherical Gaussian with variance
i, bi = 〈ai,x0〉 + N (0, 202). Right: ai is spherical Gaussian with variance i, bi = 〈ai,x0〉 + N (0, 0.12).
In all cases, matrix A with rows ai is 50× 100 and so the corresponding least squares problem is not strongly
convex; the step-size was chosen as in (3.10).

Smooth, Not Strongly Convex When each component fi is convex, non-negative, and has an
Li-Lipschitz gradient, but the objective F (x) is not necessarily strongly convex, then after

k = O

(
(supL)‖x?‖22

ε
· F (x?) + ε

ε

)
(4.1)

iterations of SGD with an appropriately chosen step-size we will have F (xk) ≤ F (x?) + ε, where
xk is an appropriate averaging of the k iterates [18]. The relevant quantity here determining the iter-
ation complexity is again supL. Furthermore, the dependence on the supremum is unavoidable and
cannot be replaced with the average Lipschitz constant L [3, 18]: if we sample gradients according
to the source distribution D, we must have a linear dependence on supL.

The only quantity in the bound (4.1) that changes with a re-weighting is supL—all other quantities
(‖x?‖22, F (x?), and the sub-optimality ε) are invariant to re-weightings. We can therefore replace
the dependence on supLwith a dependence on supL(w) by using a weighted SGD as in (3.3). As we
already calculated, the optimal weights are given by (3.5), and using them we have supL(w) = L.
In this case, there is no need for partially biased sampling, and we obtain that

k = O

(
L‖x?‖22

ε
· F (x?) + ε

ε

)
(4.2)

iterations of weighed SGD updates (3.3) using the weights (3.5) suffice. Empirical evidence suggests
that this is not a theoretical artifact; full weighted sampling indeed exhibits better convergence rates
compared to partially biased sampling in the non-strongly convex setting (see Figure 2), in contrast
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to the strongly convex regime (see Figure 1). We again see that using importance sampling allows us
to reduce the dependence on supL, which is unavoidable without biased sampling, to a dependence
on L. An interesting question for further consideration is to what extent importance sampling can
also help with stochastic optimization procedures such as SAG [8] and SDCA [17] which achieve
faster convergence on finite data sets. Indeed, weighted sampling was shown empirically to achieve
faster convergence rates for SAG [16], but theoretical guarantees remain open.

Non-Smooth Objectives We now turn to non-smooth objectives, where the components fi might
not be smooth, but each component is Gi-Lipschitz. Roughly speaking, Gi is a bound on the first
derivative (the subgradients) of fi, while Li is a bound on the second derivatives of fi. Here,
the performance of SGD (actually stochastic subgradient decent) depends on the second moment
G2 = E[G2

i ] [12]. The precise iteration complexity depends on whether the objective is strongly
convex or whether x? is bounded, but in either case depends linearly on G2.

Using weighted SGD, we get linear dependence on

G2
(w) = E(w)

[
(G

(w)
i )2

]
= E(w)

[
G2
i

w(i)2

]
= E

[
G2
i

w(i)

]
(4.3)

where G(w)
i = Gi/w(i) is the Lipschitz constant of the scaled f (w)

i . This is minimized by the
weights w(i) = Gi/G, where G = EGi, yielding G2

(w) = G
2
. Using importance sampling, we

therefore reduce the dependence on G2 to a dependence on G
2
. Its helpful to recall that G2 =

G
2
+Var[Gi]. What we save is thus exactly the variance of the Lipschitz constants Gi.

Parallel work we recently became aware of [22] shows a similar improvement for a non-smooth
composite objective. Rather than relying on a specialized analysis as in [22], here we show this
follows from SGD analysis applied to different gradient estimates.

Non-Realizable Regime Returning to the smooth and strongly convex setting of Sections 2 and 3,
let us consider more carefully the residual term σ2 = E‖∇fi(x?)‖22. This quantity depends on the
weighting, and in Section 3, we avoided increasing it, introducing partial biasing for this purpose.
However, if this is the dominant term, we might want to choose weights to minimize this term. The
optimal weights here would be proportional to ‖∇fi(x?)‖2, which is not known in general.

An alternative approach is to bound ‖∇fi(x?)‖2 ≤ Gi and so σ2 ≤ G2. Taking this bound, we are
back to the same quantity as in the non-smooth case, and the optimal weights are proportional toGi.
Note that this differs from using weights proportional to Li, which optimize the linear-convergence
term as studied in Section 3.

To understand how weighting according to Gi and Li are different, consider a generalized linear
objective fi(x) = φi(〈zi, x〉), where φi is a scalar function with bounded |φ′i| , |φ′′i |. We have
that Gi ∝ ‖zi‖2 while Li ∝ ‖zi‖22. Weighting according to (3.5), versus weighting with w(i) =
Gi/G, thus corresponds to weighting according to ‖zi‖22 versus ‖zi‖2, and are rather different. E.g.,
weighting by Li ∝ ‖zi‖22 yields G2

(w) = G2: the same sub-optimal dependence as if no weighting
at all were used. A good solution could be to weight by a mixture of Gi and Li, as in the partial
weighting scheme of Section 3.

5 The least squares case and the Randomized Kaczmarz Method

A special case of interest is the least squares problem, where

F (x) =
1

2

n∑
i=1

(〈ai,x〉 − bi)2 =
1

2
‖Ax− b‖22 (5.1)

with b ∈ Cn, A an n× d matrix with rows ai, and x? = argminx
1
2‖Ax− b‖22 is the least-squares

solution. We can also write (5.1) as a stochastic objective, where the source distributionD is uniform
over {1, 2, . . . , n} and fi = n

2 (〈ai,x〉− bi)
2. In this setting, σ2 = ‖Ax?−b‖22 is the residual error
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at the least squares solution x?, which can also be interpreted as noise variance in a linear regression
model.

The randomized Kaczmarz method introduced for solving the least squares problem (5.1) in the
case where A is an overdetermined full-rank matrix, begins with an arbitrary estimate x0, and in the
kth iteration selects a row i at random from the matrix A and iterates by:

xk+1 = xk + c · bi − 〈ai,xk〉
‖ai‖22

ai, (5.2)

where c = 1 in the standard method. This is almost an SGD update with step-size γ = c/n, except
for the scaling by ‖ai‖22.

Strohmer and Vershynin [19] provided the first non-asymptotic convergence rates, showing that
drawing rows proportionally to ‖ai‖22 leads to provable exponential convergence in expectation [19].
With such a weighting, (5.2) is exactly weighted SGD, as in (3.3), with the fully biased weights
(3.5).

The reduction of the quadratic dependence on the conditioning to a linear dependence in Theorem
2.1, and the use of biased sampling, was inspired by the analysis of [19]. Indeed, applying Theorem
2.1 to the weighted SGD iterates with weights as in (3.5) and a stepsize of γ = 1 yields precisely the
guarantee of [19]. Furthermore, understanding the randomized Kaczmarz method as SGD, allows
us to obtain the following improvements:

Partially Biased Sampling. Using partially biased sampling weights (3.8) yields a better depen-
dence on the residual over the fully biased sampling weights (3.5) considered by [19].

Using Step-sizes. The randomized Kaczmarz method with weighted sampling exhibits exponential
convergence, but only to within a radius, or convergence horizon, of the least-squares solution [19,
10]. This is because a step-size of γ = 1 is used, and so the second term in (2.3) does not vanish.
It has been shown [21, 2, 20, 4, 11] that changing the step size can allow for convergence inside of
this convergence horizon, but only asymptotically. Our results allow for finite-iteration guarantees
with arbitrary step-sizes and can be immediately applied to this setting.

Uniform Row Selection. Strohmer and Vershynin’s variant of the randomized Kaczmarz method
calls for weighted row sampling, and thus requires pre-computing all the row norms. Although
certainly possible in some applications, in other cases this might be better avoided. Understanding
the randomized Kaczmarz as SGD allows us to apply Theorem 2.1 also with uniform weights (i.e. to
the unbiased SGD), and obtain a randomized Kaczmarz using uniform sampling, which converges
to the least-squares solution and enjoys finite-iteration guarantees.

6 Conclusion

We consider this paper as making three main contributions. First, we improve the dependence on
the conditioning for smooth and strongly convex SGD from quadratic to linear. Second, we investi-
gate SGD and importance sampling and show how it can yield improvements not possible without
reweighting. Lastly, we make connections between SGD and the randomized Kaczmarz method.
This connection along with our new results show that the choice in step-size of the Kaczmarz method
offers a tradeoff between convergence rate and horizon and also allows for a convergence bound
when the rows are sampled uniformly.

For simplicity, we only considered SGD with fixed step-size γ, which is appropriate when the target
accuracy in known in advance. Our analysis can be adapted also to decaying step-sizes.

Our discussion of importance sampling is limited to a static reweighting of the sampling distribution.
A more sophisticated approach would be to update the sampling distribution dynamically as the
method progresses, and as we gain more information about the relative importance of components
(e.g. about ‖∇fi(x?)‖). Such dynamic sampling is sometimes attempted heuristically, and obtaining
a rigorous framework for this would be desirable.
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