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Abstract We present randomized algorithms for estimating the trace and determinant
of Hermitian positive semi-definite matrices. The algorithms are based on subspace
iteration, and access the matrix only through matrix vector products. We analyse
the error due to randomization, for starting guesses whose elements are Gaussian
or Rademacher random variables. The analysis is cleanly separated into a structural
(deterministic) part followed by a probabilistic part. Our absolute bounds for the expec-
tation and concentration of the estimators are non-asymptotic and informative even
for matrices of low dimension. For the trace estimators, we also present asymptotic
bounds on the number of samples (columns of the starting guess) required to achieve
a user-specified relative error. Numerical experiments illustrate the performance of
the estimators and the tightness of the bounds on low-dimensional matrices, and on
a challenging application in uncertainty quantification arising from Bayesian optimal
experimental design.
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1 Introduction

Computing the trace of high-dimensional matrices is a common problem in various
areas of applied mathematics, such as evaluation of uncertainty quantification mea-
sures in parameter estimation and inverse problems [3,17,18,38], and generalized
cross validation (GCV) [15,46,47].

Our original motivation came from trace and log-determinant computations of
high-dimensional operators in Bayesian optimal experimental design (OED) [11].
Of particular interest is OED for Bayesian inverse problems that are constrained by
partial differential equations (PDEs) with high-dimensional parameters. In Sect. 6 we
give an example of such a Bayesian inverse problem and illustrate the evaluation of
OED criteria with our algorithms.

Trace and determinant computations are straightforward if the matrices are explic-
itly defined, and one has direct access to individual matrix entries. The trace is
computed as the sum of the diagonal elements, while the determinant can be computed
as the product of the diagonal elements from a triangular factor [21, Section 14.6].
However, if the matrix dimension is large, or explicit access to individual entries is
expensive, alternative methods are needed.

Here we focus on computing the trace and log-determinant of implicitly defined
matrices, where the matrix can be accessed only through matrix vector products. We
present randomized estimators for trace(A) and1 logdet(I+A) for Hermitian, or real
symmetric, positive semi-definite matrices A ∈ C

n×n .

1.1 Main features of our estimator

Our estimators are efficient and easy to implement, as they are based on random-
ized subspace iteration; and they are accurate for many matrices of interest. Unlike
Monte Carlo estimators, see Sect. 1.3, whose variance depends on individual matrix
entries, our error bounds rely on eigenvalues. To this end we need to assume that the
matrix has a well-defined dominant eigenspace, with a large eigenvalue gap whose
location is known. Our bounds quantify the effect of the starting guess on the domi-
nant eigenspace, and are informative even in the non-asymptotic regime, for matrices
of low dimension. Our estimators, although biased, can be much more accurate than
Monte Carlo estimators.

1.2 Contributions

Our paper makes the following four contributions.

1 The square matrix I denotes the identity, with ones on the diagonal and zeros everywhere else.
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Randomized matrix-free trace and log-determinant estimators 355

1.2.1 Randomized estimators

Assume that the Hermitian positive semi-definite matrix A ∈ C
n×n has k dominant

eigenvalues separated by a gap from the remaining n − k sub-dominant eigenvalues,
λ1 ≥ · · · ≥ λk � λk+1 ≥ · · · ≥ λn . The idea is to capture the dominant eigenspace
associated with λ1, . . . , λk via a low-rank approximation T of A. Our estimators
(Sect. 2.1) for trace(T) ≈ trace(A) and log det(I + T) ≈ log det(I + A) appear to
be new. Here T ≡ Q∗AQ ∈ C

�×� where k ≤ � 	 n. The matrix Q approximates the
dominant eigenspace of A, and is computed from q iterations of subspace iteration
applied to a starting guess �, followed by the thin QR factorization of Aq�.

1.2.2 Structural and probabilistic error analysis

We derive absolute error bounds for trace(T) and log det(I+T), for starting guesses
that are Gaussian random variables (Sect. 2.2.2), and Rademacher random variables
(Sect. 2.2.3) The derivations are cleanly separated into a “structural” (deterministic)
part, followed by a probabilistic part.

Structural analysis (Sect. 3) These are perturbation bounds that apply to anymatrix �,
be it random or deterministic. The resulting absolute error bounds for trace(T) and
log det(I + T) imply that the estimators are accurate if: (1) the starting guess � has a
large contribution in the dominant eigenspace; (2) the eigenvalue gap is large; and (3)
the sub-dominant eigenvalues are negligible.

The novelty of our analysis is the focus on the eigendecomposition ofA. In contrast,
as discussed in Sect. 2.3, the analyses of Monte Carlo estimators depend on the matrix
entries, and do not take into account the spectral properties of A.

To understand the contribution of the random starting guess �, let the columns of
U1 ∈ C

n×k represent an orthonormal basis for the dominant eigenspace, while the
columns of U2 ∈ C

n×(n−k) represent an orthonormal basis associated with the n − k
sub-dominant eigenvalues. The “projections” of the starting guess on the respective
eigenspaces are are �1 ≡ U∗

1� ∈ C
k×� and �2 ≡ U∗

2� ∈ C
(n−k)×�.

The success of T in capturing the dominant subspace range(U1) depends on the
quantity2 ‖�2‖2‖�†

1‖2.

Probabilistic analysis (Sect. 4). We bound the norms of the projections ‖�2‖2 and
‖�†

1‖2 for starting guesses � that are Gaussian or Rademacher random matrices.
For Gaussian starting guesses, we present bounds for the mean (or expectation),

and concentration about the mean, based on existing bounds for the spectral norms of
Gaussian random matrices and their pseudo-inverse.

For Rademacher starting guesses, we present Chernoff-type concentration inequal-
ities, and show that � ∼ (k + log n) log k samples are required to guarantee
rank(�1) = k with high probability.

2 The superscript † denotes the Moore–Penrose inverse.
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1.2.3 Asymptotic efficiency

One way to quantify the efficiency of a Monte Carlo estimator is a so-called (ε, δ)

estimator [6], which bounds the number of samples required to achieve a relative error
of at most ε with probability at least 1− δ. Our asymptotic (ε, δ) bounds (Theorem 4)
show that our trace estimator can require significantly fewer samples thanMonte Carlo
estimators.

1.2.4 Numerical experiments

Comprehensive numerical experiments corroborate the performance of our estima-
tors, and illustrate that our error bounds hold even in the non-asymptotic regime, for
matrices of small dimension (Sect. 5). Motivated by our desire for fast and accu-
rate estimation of uncertainty measures in Bayesian inverse problems, we present a
challenging application from Bayesian OED (Sect. 6).

1.3 Related work

We demonstrate that the novelty of our paper lies in both, the estimators and their
analysis.

There are several popular estimators for the trace of an implicit, Hermitian positive
semi-definite matrix A, the simplest one being a Monte Carlo estimator. It requires
only matrix vector products with N independently generated random vectors z j and
computes

trace(A) ≈ 1

N

N∑

j=1

z∗
jAz j .

The original algorithm, proposed by Hutchinson [24], uses Rademacher random vec-
tors and produces an unbiased estimator. Unbiased estimators can also be produced
with other distributions, such as Gaussian random vectors, or columns of the identity
matrix that are sampled uniformly with or without replacement [6,35], see the detailed
comparison in Sect. 2.3.

Randomized matrix algorithms [19,28] could furnish a potential alternative for
trace estimation. Low-rank approximations of A can be efficiently computed with
randomized subspace iteration [26,29] or Nyström methods [14], and their accuracy
is quantified by probabilistic error bounds in the spectral and Frobenius norms. Yet
we were not able to find error bounds for the corresponding trace estimator in the
literature.

Like our estimators, the spectrum-sweeping method [27, Algorithm 5] is based on a
randomized low-rank approximation ofA. However, it is designed to compute the trace
of smooth functions of Hermitianmatrices in the context of density of state estimations
in quantum physics. Numerical experiments illustrate that the method can be much
faster than Hutchinson’s estimator, but there is no formal convergence analysis.
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Randomized matrix-free trace and log-determinant estimators 357

A related problem is the trace computation of the matrix inverse. One can combine
a Hutchinson estimator 1

N

∑N
i=1 z

∗
i A

−1zi with quadrature rules for approximating the
bilinear forms z∗

i A
−1zi [7,8]. For matrices A that are sparse, banded, or whose off-

diagonal entries decay away from themain diagonal, one can use a probingmethod [41]
to estimate the diagonal of A−1 with carefully selected vectors that exploit structure
and sparsity.

Computation of the log-determinant is required for maximum likelihood estimation
in areas like machine learning, robotics and spatial statistics [48]. This can be achieved
by applying a Monte Carlo algorithm to the log-determinant directly [9], or to an
expansion [32,48].

Alternatively one can combine the identity log det(A) = trace(log(A)) [7, Section
3.1.4]with aMonteCarlo estimator for the trace. Since computation of log(A),whether
with direct or matrix-free methods, is expensive for large A, the logarithm can be
expanded into a Taylor series [10,32,48], a Chebyshev polynomial [20], or a spline
[4,12].

2 Algorithms and main results

We present the algorithm for randomized subspace iteration (Sect. 2.1), followed by
the main error bounds for the trace and logdet estimators (Sect. 2.2), and conclude
with a discussion of Monte Carlo estimators (Sect. 2.3).

2.1 The algorithm

Wesketch the estimators for trace(A) and log det(In+A), forHermitian positive semi-
definite matrices A ∈ C

n×n with k dominant eigenvalues. The estimators relinquish
the matrix A of order n for a matrices T of smaller dimension � 	 n computed with
Algorithm 1, so that trace(T) is an estimator for trace(A), and log det(I� + T) an
estimator for log det(In + A).

Algorithm 1 is an idealized version of randomized subspace iteration. Its starting
guess is a random matrix � with k ≤ � 	 n columns, sampled from a fixed distri-
bution, that is then subjected to q power iterations with A. A thin QR decomposition
of the resulting product Aq� produces a matrix Q with orthonormal columns. The
output of Algorithm 1 is the � × � restriction T = Q∗AQ of A to span(Q).

Algorithm 1 Randomized subspace iteration (idealized version)
Input: Hermitian positive semi-definite matrix A ∈ C

n×n with target rank k,
Number of subspace iterations q ≥ 1
Starting guess � ∈ C

n×� with k ≤ � ≤ n − k columns
Output: Matrix T ∈ C

�×�

1: Multiply Y = Aq�

2: Thin QR factorization Y = QR
3: Compute T = Q∗AQ.
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358 A. K. Saibaba et al.

The idealized subspace iteration in Algorithm 1 can be numerically unstable.
The standard remedy is to alternate matrix products and QR factorizations [37,
Algorithm 5.2]. In practice, one can trade off numerical stability and efficiency by
computing the QR factorization once every few steps [37, Algorithm 5.2]. Through-
out this paper, we assume exact arithmetic and do not take into account finite precision
effects.

Random starting guess The entries of � are i.i.d.3 variables from one of the two
distributions: standard normal (zero mean and variance 1), or Rademacher (values ±1
with equal probability).

As in Sect. 1.2.2, let �1 ≡ U∗
1� and �2 ≡ U∗

2� be the respective “projections” of
the starting guess on the dominant and sub-dominant eigenspaces. The success of T in
capturing the dominant subspace depends on the quantity ‖�2‖2‖�†

1‖2. We make the

reasonable assumption rank(�1) = k, so that �
†
1 is a right inverse. Asymptotically,

for both Gaussian [19, Propositions A.2 and A.4] and Rademacher random matrices
[36, Theorem 1.1], ‖�2‖2 grows like

√
n − k + √

�, and 1/‖�†
1‖2 like

√
� − √

k.
Other than that, however, there are major differences. For Gaussian random matri-

ces, the number columns in � is � = k + p, where p is a user-specified oversampling
parameter. The discussion in [16, Section 5.3] indicates that the bounds in Sect. 2.2.2
should hold with high probability for p � 20. Asymptotically, the required number
of columns in a Gaussian starting guess is � ∼ k.

In contrast, the number of columns in a Rademacher random matrix cannot simply
be relegated, once and for all, to a fixed oversampling parameter, but instead show
a strong dependence on the dimension k of the dominant subspace and the matrix
dimension n. We show (Sect. 4) that the error bounds in Sect. 2.2.3 hold with high
probability, if the number of columns in � is � ∼ (k + log n) log k. This behavior
is similar to that of structured random matrices from sub-sampled random Fourier
transforms and sub-sampled random Hadamard transforms [42]. It is not yet clear,
though, whether the asymptotic factor (k + log n) log k is tight, or whether it is merely
an artifact of the analysis.

2.2 Main results

We clarify our assumptions (Sect. 2.2.1), before presenting the main error bounds for
the trace and logdet estimators, when the random matrices for the starting guess are
Gaussian (Sect. 2.2.2) and Rademacher (Sect. 2.2.3).

2.2.1 Assumptions

Let A ∈ C
n×n be a Hermitian positive semi-definite matrix with eigenvalue decom-

position

A = U�U∗, � = diag
(
λ1 · · · λn

) ∈ R
n×n,

3 independent and identically distributed.
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Randomized matrix-free trace and log-determinant estimators 359

where the eigenvector matrix U ∈ C
n×n is unitary, and the eigenvalues are ordered,

λ1 ≥ · · · ≥ λn ≥ 0.
We assume that the eigenvalues of A have a gap λk > λk+1 for some 1 ≤ k < n,

and distinguish the dominant eigenvalues from the sub-dominant ones by partitioning

� =
(

�1
�2

)
, U = (

U1 U2
)
,

where �1 = diag
(
λ1 · · · λk

) ∈ R
k×k is nonsingular, and U1 ∈ C

n×k . The size of the
gap is inversely proportional to

γ ≡ λk+1/λk = ‖�2‖2 ‖�−1
1 ‖2 < 1.

Given a number of power iterations q ≥ 1, and a starting guess � ∈ C
n×� with

k ≤ � ≤ n columns, we assume that the product has full column rank,

rank(Aq �) = �. (1)

Extract an orthonormal basis for range(Aq �) with a thin QR decomposition
Aq � = QR, where Q ∈ C

n×� with Q∗Q = I�, and the matrix R ∈ C
�×� non-

singular.
To distinguish of the effect of the dominant subspace on the starting guess from

that of the sub-dominant space, partition

U∗� =
(
U∗
1�

U∗
2�

)
=
(

�1
�2

)
,

where �1 ≡ U∗
1� ∈ C

k×� and �2 ≡ U∗
2� ∈ C

(n−k)×�. We assume that � has a
sufficient contribution in the dominant subspace of A,

rank(�1) = k. (2)

2.2.2 Gaussian random matrices

We present absolute error bounds for the trace and logdet estimators when the random
starting guess � in Algorithm 1 is a Gaussian. The bounds come in two flavors:
expectation, or mean (Theorem 1); and concentration around the mean (Theorem 2).
We argue that for matrices with sufficiently dominant eigenvalues, the bounds are
close.

The number of columns in � is equal to

� = k + p,

where 0 ≤ p < n − k is a user-specified oversampling parameter. We abbreviate

μ ≡ √
n − k +√

k + p. (3)
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Theorem 1 (Expectation) With the assumptions in Sect. 2.2.1, let T be computed by
Algorithm 1 with a Gaussian starting guess �n×(k+p) and furthermore, let p ≥ 2.
Then

0 ≤ E [ trace(A) − trace(T)] ≤
(
1 + γ 2q−1 Cge

)
trace(�2),

and

0 ≤ E
[
log det(I + A) − log det(I + T)

] ≤
log det (I + �2) + log det

(
I + γ 2q−1 Cge �2

)
,

where

Cge ≡ e2 (k + p)

(p + 1)2

(
1

2π(p + 1)

) 2
p+1 (

μ + √
2
)2 ( p + 1

p − 1

)
.

Proof See Sect. 4.1.1. �

Theorem 1 demonstrates that Algorithm 1 with a Gaussian starting guess produces
a biased estimator. However, when �2 = 0, then Algorithm 1 produces an unbiased
estimator.

In the special case when rank(A) = k, the assumption (2) guarantees exact compu-
tation, trace(T) = trace(A) and log det(I + T) = log det(I + A). Hence the bounds
are zero, and hold with equality. If A has n − k eigenvalues close to zero, i.e. �2 ≈ 0,
the upper bounds in Theorem 1 are small, implying that the estimators are accurate in
the absolute sense. If A has k dominant eigenvalues that are very well separated from
the remaining eigenvalues, i.e. γ 	 1, then Theorem 1 implies that the absolute error
in the estimators depends on the mass of the neglected eigenvalues �2. The above is
true also for the following concentration bounds, which have the same form as the
expectation bounds.

Theorem 2 (Concentration) With the assumptions in Sect. 2.2.1, let T be computed
by Algorithm 1 with a Gaussian starting guess guess �n×(k+p) where p ≥ 2. If
0 < δ < 1, then with probability at least 1 − δ

0 ≤ trace(A) − trace(T) ≤
(
1 + γ 2q−1 Cg

)
trace(�2),

and

0 ≤ log det(I + A) − log det(I + T) ≤
log det (I + �2) + log det

(
I + γ 2q−1 Cg �2

)
,
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Randomized matrix-free trace and log-determinant estimators 361

where

Cg ≡ e2 (k + p)

(p + 1)2

(
2

δ

) 2
p+1

(
μ +

√
2 log

2

δ

)2

.

Proof Substitute Lemma 5 into Theorems 6 and 8. �
The expectation and concentration bounds inTheorems 1 and 2 are the same save for

the constantsCge andCg . For matricesAwith sufficiently well separated eigenvalues,
i.e. γ 	 1, and sufficiently many power iterations q in Algorithm 1, the factor γ 2q−1

subdues the effect of Cge and Cg , so that Theorems 1 and 2 are effectively the same.
Nevertheless, we can still compare Theorems 1 and 2 by comparing their constants.

To this end we take advantage of the natural logarithm, and consider two cases. For a
high failure probability δ = 2/e, the ratio is

Cg

Cge
= (2 e π (p + 1))

2
p+1

(
p − 1

p + 1

)
→ 1 as p → ∞.

Hence the concentration bound approaches the expectation bound as the oversampling
increases. Note, though, that the rank assumptions for the bounds impose the limit
p < n − k. However, for the practical value p = 20, the ratio Cg/Cge ≈ 1.6, so that
the constants differ by a factor less than 2.

For a lower failure probability δ < 2/e, we haveCg > Cge. Hence the concentration
bound in Theorem 2 has a higher constant.

2.2.3 Rademacher random matrices

We present absolute error bounds for the trace and logdet estimators when the ran-
dom starting guess � in Algorithm 1 is a Rademacher random matrix. In contrast to
Gaussian starting guesses, the number of columns in the Rademacher guess reflects
the dimension of the dominant subspace.

The error bounds contain a parameter 0 < ρ < 1 that controls the magnitude of
‖�†

1‖2. The bound below has the same form as the error bound in Theorem 2 with
Gaussian starting guesses; the only difference being the constant.

Theorem 3 With the assumptions in Sect. 2.2.1, let 0 < δ < 1 be a given failure
probability, and let T be computed by Algorithm 1 with a Rademacher starting guess
� ∈ R

n×�. If the number of columns in � satisfies

� ≥ 2ρ−2

(√
k +

√
8 log

4n

δ

)2

log

(
4k

δ

)
,

then with probability at least 1 − δ

0 ≤ trace(A) − trace(T) ≤
(
1 + γ 2q−1 Cr

)
trace(�2),
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and

0 ≤ log det(I + A) − log det(I + T) ≤
log det (I + �2) + log det

(
I + γ 2q−1 Cr �2

)
,

where

Cr ≡ 1

(1 − ρ)

⎡

⎣1 + 3�−1

(√
n − k +

√
8 log

4�

δ

)2

log
4(n − k)

δ

⎤

⎦ .

Proof Substitute the bound for ‖�2‖22‖�†
1‖22 from Theorem 5 into Theorems 6 and 8.

�
The interpretation of Theorem is the same as that of Theorems 1 and 2. In contrast to

Gaussian starting guesses, whose number of columns depends on a fixed oversampling
parameter p, the columns of the Rademacher guess increase with the dimension of
the dominant subspace.

Theorem 1 shows that when Algorithm 1 is run with a Gaussian starting guess, the
resulting estimators for the trace and determinant are biased.We are not able to provide
a similar result for the expectation of the estimators for the Rademacher starting guess.
However, we conjecture that the estimators for trace and determinant are biased even
when the Rademacher starting guess is used in Algorithm 1.

2.3 Comparison with Monte Carlo estimators

The reliability of Monte Carlo estimators is judged by the variance of a single sample.
This variance is 2(‖A‖2F −∑n

j=1A
2
j j ) for the Hutchinson estimator, and 2‖A‖2F for

the Gaussian estimator.
Avron and Toledo [6] were the first to determine the number of Monte Carlo

samples N required to achieve a relative error ε with probability 1 − δ, and defined
an (ε, δ) estimator

P

⎡

⎣

∣∣∣∣∣∣
trace(A) − 1

N

N∑

j=1

z∗
jAz j

∣∣∣∣∣∣
≤ ε trace(A)

⎤

⎦ ≥ 1 − δ.

An (ε, δ) estimator based on Gaussian vectors z j requires N ≥ 20 ε−2 log(2/δ)
samples. In contrast, theHutchinson estimator, which is based onRademacher vectors,
requires N ≥ 6 ε−2 log(2rank(A)/δ) samples.

Roosta-Khorasani and Ascher [35] improve the above bounds for Gaussian estima-
tors to N ≥ 8 ε−2 log(2/δ); and for the Hutchinson estimator to N ≥ 6 ε−2 log(2/δ),
thus removing the dependence on the rank. They also derived bounds on the number
of samples required for an (ε, δ) estimator, using the Hutchinson, Gaussian and the
unit vector random samples, which depend on specific properties of A. All bounds
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retain the ε−2 factor, though, which means that an accurate trace estimate requires
many samples in practice. In fact, even for small matrices, while a few samples can
estimate the trace up to one digit of accuracy, many samples are needed in practice to
estimate the trace to machine precision.

To facilitate comparison between our estimators and the Monte Carlo estimators,
we derive the number of iterations needed for an (ε, δ) estimator. Define the relative
error

Δ ≡ trace(�2)/trace(�). (4)

In practice, the relative error Δ is not known. Instead, it can be estimated as follows:
the bounds trace(�2) ≤ (n − k)λk+1, trace(�1) ≥ kλk , can be combined to give us
the upper bound

Δ ≤ (n − k)γ

nγ + k(1 − γ )
.

Assuming that Δ > 0, abbreviate εΔ ≡ ε/Δ. If Δ = 0, then we have achieved our
desired relative error, i.e., the relative error is less than ε.

We present the following theorem that gives the asymptotic bound on the number
of matrix–vector products needed for an (ε, δ) trace estimator.

Theorem 4 (Asymptotic bounds) With the assumptions in Sect. 2.2.1, let ε be the
desired accuracy and let 0 < Δ < ε ≤ 1. The number of matrix–vector products for
an (ε, δ) estimator is asymptotically

k

(
log

1

εΔ − 1
+ log

2

δ

)
, (5)

for Gaussian starting guess, whereas for a Rademacher starting guess the number of
matrix–vector products is asymptotically

(k + log n) log k

(
log

1

εΔ − 1
+ log

[
(n − k) log

4n

δ

])
. (6)

Proof The number of matrix–vector products in Algorithm 1 is �(q + 1). Recall that
the number of samples required for a Gaussian starting guess are � ∼ k; whereas for a
Rademacher starting guess � ∼ (k + log n) log k. With probability of failure at most
δ, for an (ε, δ) estimator

trace(A) − trace(T)

trace(A)
≤ (1 + γ 2q−1C)Δ.

Here C can either take values Cg for standard Gaussian matrices or Cr for standard
Rademacher matrices. Equating the right hand side to ε gives us (1+γ 2q−1C)Δ = ε.
Assuming ε > Δ, we can solve for q to obtain

q =
⌈
1

2

(
1 + log

(
CΔ

ε − Δ

)/
log γ −1

)⌉
.
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Asymptotically, logCg behaves like log 2/δ and logCr behaves like
log

[
(n − k) log 4n/δ

]
. This proves the desired result. �

Theorem 4 demonstrates both estimators are computationally efficient compared
to the Monte Carlo estimators if Δ is sufficiently small.

3 Structural analysis

We defer the probabilistic part of the analysis as long as possible, and start with
deterministic error bounds for trace(T) (Sect. 3.1) and log det(T) (Sect. 3.2), where
T is the restriction of A computed by Algorithm 1. These deterministic bounds are
called “structural” because they hold for allmatrices� that satisfy the rank conditions
(1) and (2).

3.1 Trace estimator

We derive the following absolute error bounds for Hermitian positive semi-definite
matrices A and matrices T computed by Algorithm 1.

Theorem 5 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by
Algorithm 1. Then

0 ≤ trace(A) − trace(T) ≤ (1 + θ1) trace(�2)

where θ1 ≡ min{γ q−1 ‖�2�
†
1‖2, γ 2q−1 ‖�2�

†
1‖22}.

Proof The lower bound is derived in Lemma 1, and the upper bounds in Theorem 6.
�

Theorem 5 implies that trace(T) has a small absolute error if Algorithm 1 applies
a sufficient number q of power iterations. More specifically, only a few iterations
are required if the eigenvalue gap is large and γ 	 1. The term θ1 quantifies the
contribution of the starting guess � in the dominant subspace U1. The minimum in
θ1 is attained by γ q−1 ‖�2�

†
1‖2 when, relative to the eigenvalue gap and the iteration

count q, the starting guess� has only a “weak” contribution in the dominant subspace.
We start with the derivation of the lower bound, which relies on the variational

inequalities for Hermitian matrices, and shows that the trace of a restriction can never
exceed that of the original matrix.

Lemma 1 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by Algo-
rithm 1. Then

trace(A) − trace(T) ≥ trace(�2) − (λk+1 + · · · + λ�) ≥ 0.
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Randomized matrix-free trace and log-determinant estimators 365

Proof Choose Q⊥ ∈ C
n×(n−�) so that Q̂ ≡ (

Q Q⊥
) ∈ C

n×n is unitary, and partition

Q̂∗AQ̂ =
(

T A12
A∗
12 A22

)
,

where T = Q∗AQ is the important submatrix. The matrices Q̂∗AQ̂ and A have
the same eigenvalues 0 ≤ λn ≤ · · · ≤ λ1. With λ�(T) ≤ · · · ≤ λ1(T) being the
eigenvalues of T, the Cauchy-interlace theorem [33, Section 10-1] implies

0 ≤ λ(n−�)+ j ≤ λ j (T) ≤ λ j , 1 ≤ j ≤ �.

Since λ j ≥ 0, this implies (for � = k we interpret
∑�

j=k+1 λ j = 0)

trace(T) ≤
�∑

j=1

λ j = trace(�1) +
�∑

j=k+1

λ j

= trace(A) − trace(�2) +
�∑

j=k+1

λ j ≤ trace(A),

where the last inequality follows from
∑�

j=k+1 λ j ≤ ∑n
j=k+1 λ j = trace(�2). �

Next we derive the two upper bounds. The first one, (7), is preferable when, relative
to the eigenvalue gap and the iteration count q, the starting guess � has only a “weak”
contribution in the dominant subspace.

Theorem 6 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by
Algorithm 1. Then

trace(A) − trace(T) ≤
(
1 + γ q−1 ‖�2�

†
1‖2

)
trace(�2). (7)

If 0 < ‖�2�
†
1‖2 ≤ γ −q , then the following bound is tighter,

trace(A) − trace(T) ≤
(
1 + γ 2q−1 ‖�2�

†
1‖22

)
trace(�2). (8)

Proof The proof proceeds in six steps. The first five steps are the same for both bounds.

1. Shrinking the space from � to k dimensions If W ∈ C
�×k is any matrix with

orthonormal columns, then Lemma 1 implies

trace(A) − trace(Q∗AQ) ≤ U ≡ trace(A) − trace
(
(QW)∗ A (QW)

)
.

The upper boundU replaces thematrixQ∗AQ of order � by thematrix (QW)∗ A (QW)

of order k ≤ �. The eigendecomposition of A yields

trace
(
(QW)∗ A (QW)

) = t1 + t2,
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where dominant eigenvalues are distinguished from sub-dominant ones by

t1 ≡ trace
(
(U∗

1QW)∗ �1 (U∗
1QW)

)
, t2 ≡ trace

(
(U∗

2QW)∗ �2 (U∗
2QW

)
.

Note that t1 and t2 are real. Now we can write the upper bound as

U = trace(A) − t1 − t2. (9)

2. Exploiting the structure of Q Assumption (1) implies that R is nonsingular, hence
we can solve for Q in Aq � = QR, to obtain

Q = (Aq�)R−1 = U�q U∗ �R−1 = U
(

�
q
1 �1

�
q
2 �2

)
R−1. (10)

3. Choosing W Assumption (2) implies that the k × � matrix �1 has full row rank,
and a right inverse �

†
1 = �∗

1 (�1�
∗
1)

−1. Our choice for W is

W ≡ R�
†
1�

−q
1 (Ik + F∗F)−1/2 where F ≡ �

q
2 �2�

†
1 �

−q
1 ,

so that we can express (10) as

QW = U
(

�
q
1 �1

�
q
2 �2

)
R−1W = U

(
Ik
F

)
(Ik + F∗F)−1/2. (11)

The rightmost expression shows that QW has orthonormal columns. To see that W
itself also has orthonormal columns, show that W∗W = Ik with the help of

R∗R = (QR)∗(QR) = (�
q
1 �1)

∗(�q
1 �1) + (�

q
2 �2)

∗(�q
2 �2).

4. Determining U in (9) From U∗
1QW = (I + F∗F)−1/2 in (11) follows

t1 = trace
(
(I + F∗F)−1/2 �1 (I + F∗F)−1/2

)
= trace

(
�1 (I + F∗F)−1

)
.

From (11) also follows U∗
2QW = F (I + F∗F)−1/2, so that

t2= trace
(
(I+F∗F)−1/2 F∗ �2 F (I + F∗F)−1/2

)
= trace

(
�2 F (I + F∗F)−1 F∗) .

Distinguish dominant from sub-dominant eigenvalues in U via U = U1 + U2, where

U1 ≡ trace(�1) − t1, U2 ≡ trace(�2) − t2.

Since t1 and t2 are real, so are U1 and U2. With the identity

�1

(
I − (I + F∗F)−1

)
= �1 F∗F (I + F∗F)−1,
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and remembering that F = �
q
2 Z�

−q
1 with Z ≡ �2�

†
1, we obtain U = U1 +U2 with

U1 = trace
(
�

1−q
1 Z∗�q

2 F (I + F∗F)−1
)

U2 = trace
(
�2 (I − F (I + F∗F)−1F∗)

)
.

5. Bounding U Since�2 and I−F (I+F∗F)−1F∗ both have dimension (n−k)×(n−k),
the von Neumann trace theorem [23, Theorem 7.4.11] can be applied,

U2 ≤
∑

j

σ j (�2) σ j (I − F (I + F∗F)−1F∗) ≤
∑

j

σ j (�2) = trace(�2).

The last equality is true because the singular values of a Hermitian positive semi-
definite matrix are also the eigenvalues. Analogously, �q

2 Z�
1−q
1 and F (I + F∗F)−1

both have dimension (n − k) × k, so that

U1 ≤
∑

j

σ j

(
�

q
2 Z�

1−q
1

)
σ j

(
F (I + F∗F)−1

)

≤ ‖F (I + F∗F)−1‖2
∑

j

σ j

(
�

q
2 Z�

1−q
1

)
.

Repeated applications of the singular value inequalities [22, Theorem 3.314] for the
second factor yield

∑

j

σ j

(
�

q
2 Z�

1−q
1

)
≤ ‖Z‖2 ‖�1‖1−q

2

∑

j

σ j (�
q
2)

≤ ‖Z‖2 ‖�1‖1−q
2 ‖�2‖q−1

2

∑

j

σ j (�2)=γ q−1 ‖Z‖2 trace(�2).

Substituting this into the bound for U1 gives

U1 ≤ ‖F (I + F∗F)−1‖2 γ q−1 ‖Z‖2 trace(�2).

6. Bounding ‖F (I + F∗F)−1‖2 For (7) we bound ‖F (I + F∗F)−1‖2 ≤ 1, which
yields U1 ≤ γ q−1 ‖Z‖2 trace(�2). For (8) we use

‖F (I + F∗F)−1‖2 ≤ ‖F‖2 ≤ ‖�2‖q2 ‖Z‖2 ‖�1‖−q
2 = γ q ‖Z‖2,

which yields U1 ≤ γ 2q−1‖Z‖22 trace(�2).
Comparing the two preceding bounds for U1 shows that (8) is tighter than (7) if

γ 2q−1 ‖Z‖22 ≤ γ q−1 ‖Z‖2, that is ‖Z‖2 ≤ γ −q . �
Remark 1 The two special cases below illustrate that, even in a best-case scenario,
the accuracy of trace(T) is limited by trace(�2).
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– If � = k and � = U1 then

trace(A) − trace(T) = trace(�2).

This follows from Lemma 1, and from both bounds in Theorem 6 with �1 = Ik
and �2 = 0.

– If � > k and � consists of the columns of U associated with the dominant eigen-
values λ1, . . . , λ� of A, then

trace(�2) − (λk+1 + · · · + λ�) ≤ trace(A) − trace(T) ≤ trace(�2).

This follows from Lemma 1, and from both bounds in Theorem 6 with �1 =(
Ik 0k×(k−�)

)
and �2 = (

0(n−k)×k ∗).
Theorem 6 cannot be tight for � > k because step 3 of the proof deliberately
transitions to a matrix with k columns. Hence the eigenvalues λk+1, . . . , λ� do not
appear in the bounds of Theorem 6.

3.2 Log determinant estimator

Subject to the Assumptions in Sect. 2.2.1, we derive the following absolute error
bounds for Hermitian positive semi-definite matrices A and matrices T computed by
Algorithm 1.

Theorem 7 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by
Algorithm 1. Then

0≤ log det(In + A) − log det(I� + T)≤ log det (In−k + �2)+log det (In−k+θ2 �2)

where θ2 ≡ γ 2q−1 ‖�2�
†
1‖22 min{1, 1

λk
}.

Proof The lower bound is derived in Lemma 2, and the upper bounds in Theorem 8.
�

Theorem 7 implies that log det(I� + T) has a small absolute error if Algorithm 1
applies a sufficient number q of power iterations.As inTheorem6, only a few iterations
are required if the eigenvalue gap is large and γ 	 1. The term θ2 quantifies the
contribution of the starting guess� in the dominant subspaceU1. The two alternatives
differ by a factor of only λ−1

k . The second one is smaller if λk > 1.
Theorem 9 extends Theorem 7 to log det(A) for positive definite A.
As before, we start with the derivation of the lower bound, which is the counter part

of Lemma 1 and shows that the log determinant of the restriction can never exceed
that of the original matrix.

Lemma 2 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by Algo-
rithm 1. Then

log det(In + A) − log det (I� + T) ≥ log det(In−k + �2) − log
�∏

j=k+1

(1 + λ j ) ≥ 0.
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Proof Choose the unitary matrix Q̂ as in the proof of Lemma 1,

Q̂∗(In + A)Q̂ =
(
I� + T A12
A∗
12 In−� + A22

)
,

andproceed likewisewith theCauchy-interlace theorem [33, Section10-1] to conclude

det(I� + T) ≤ det(Ik + �1)

�∏

j=k+1

(1 + λ j )

= det(In + A)

�∏

j=k+1

(1 + λ j )/ det(In−k + �2) ≤ det(In + A),

where for � = kwe interpret
∏�

j=k+1 (1 + λ j ) = 1. Themonotonicity of the logarithm
implies

log det(I� + T) ≤ log det(In + A) − log det(In−k + �2) + log
�∏

j=k+1

(1 + λ j )

≤ log det(In + A).

�
The following auxiliary result, often called Sylvester’s determinant identity, is

required for the derivation of the upper bound.

Lemma 3 (Corollary 2.1 in [31]) If B ∈ C
m×n and C ∈ C

n×m then

det(Im ± BC) = det(In ± CB).

Next we derive two upper bounds. The second one, (13), is preferable when λk > 1
because it reduces the extraneous term.

Theorem 8 With the assumptions in Sect. 2.2.1, let T = Q∗AQ be computed by
Algorithm 1. Then

log det(In + A) − log det(I� + T) ≤
log det (In−k + �2) + log det

(
In−k + γ 2q−1 ‖�2�

†
1‖22 �2

)
. (12)

If λk > 1 then the following bound is tighter

log det(In + A) − log det(I� + T) ≤
log det (In−k + �2) + log det

(
In−k + γ 2q−1

λk
‖�2�

†
1‖22 �2

)
. (13)

Proof The structure of the proof is analogous to that of Theorem 6, and the first three
steps are the same for (12) and (13). Abbreviate f (·) ≡ log det(·).
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1. Shrinking the space Lemma 2 implies

f (In + A) − f (I� + Q∗AQ) ≤ f (In + A) − f (Ik + H),

where

H ≡ W∗TW = W∗ Q∗AQW = (U∗QW)∗
(

�1
�2

)
(U∗QW).

The upper bound for the absolute error equals

f (In + A) − f (Ik + H) = f (Ik + �1) + f (In−k + �2) − f (Ik + H)

= f (In−k + �2) + E .

Since nothing can be done about f (In−k + �2), it suffices to bound

E ≡ f (Ik + �1) − f (Ik + H). (14)

2. Exploiting the structure of Q and choosing W To simplify the expression for H,
we exploit the structure of Q and choose W as in the proof of Theorem 6. From (11)
follows

U∗QW =
(
Ik
F

)
(Ik + F∗F)−1/2, where F ≡ �

q
2 �2�

†
1 �

−q
1 .

Substituting this into the eigendecomposition of H gives

H = (Ik + F∗F)−1/2 (�1 + F∗�2F
)

(Ik + F∗F)−1/2.

3. Lower bound for f (Ik +H)We use the Loewner partial order [23, Definition 7.7.1]
to represent positive semi-definiteness, F∗�2F � 0, which implies

H � H1 ≡ (Ik + F∗F)−1/2 �1 (Ik + F∗F)−1/2. (15)

The properties of the Loewner partial order [23, Corollary 7.7.4] imply

f (Ik + H) ≥ f (Ik + H1).

We first derive (12) and then (13).

Derivation of (12) in Steps 4a–6a

4a. Sylvester’s determinant identity Applying Lemma 3 to H1 in (15) gives

f (Ik + H1) = f (Ik + H2) where H2 ≡ �
1/2
1 (Ik + F∗F)−1�

1/2
1 .
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5a. Upper bound for E in (14) Steps 3 and 4a imply

E ≤ f (Ik + �1) − f (Ik + H2) = f (H3),

where

H3 ≡ (Ik + H2)
−1/2(Ik + �1)(Ik + H2)

−1/2

= (Ik + H2)
−1 + (Ik + H2)

−1/2�1(Ik + H2)
−1/2.

Expanding thefirst summand into (Ik+H2)
−1 = I−(Ik+H2)

−1/2H2(Ik+H2)
−1/2

gives

H3 = Ik + (Ik + H2)
−1/2(�1 − H2)(Ik + H2)

−1/2.

Since Ik − (Ik + F∗F)−1 � F∗F, the center term can be bounded by

�1 − H2 = �
1/2
1

(
Ik − (Ik + F∗F)−1

)
�

1/2
1 � K ≡ �

1/2
1 F∗F�

1/2
1 .

Because the singular values of (Ik +H2)
−1/2 are less than 1, Ostrowski’s Theorem

[23, Theorem 4.5.9] implies

H3 � Ik + (Ik + H2)
−1/2K(Ik + H2)

−1/2 � Ik + K.

Thus E ≤ f (H3) ≤ f (Ik + K).
6a. Bounding f (Ik +K) AbbreviateG1 ≡ �

q−1/2
2 �2�

†
1�

−q+1/2
1 and expandK,

Ik + K = Ik + �
1/2
1 F∗F�

1/2
1 = Ik + G∗

1�2G1.

Applying Lemma 3, gives

det(Ik + G∗
1�2G1) = det(In−k + G1G∗

1�2).

The fact that the absolute value of a determinant is the product of the singular
values, and the inequalities for sums of singular values [22, Theorem 3.3.16]
implies

det(In−k + G1G∗
1�2) ≤

n−k∏

j=1

σ j (In−k + G1G∗
1�2)

≤
n−k∏

j=1

(1 + σ j (G1G∗
1�2)).
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Observe that ‖G1‖2 ≤ γ q−1/2 ‖�2�
†
1‖2 and apply the singular value product

inequalities [22, Theorem 3.3.16(d)]

σ j (G1G∗
1�2) ≤ σ1(G1G∗

1)σ j (�2) ≤ γ 2q−1 ‖�2�
†
1‖22 λk+ j , 1 ≤ j ≤ n − k,

and therefore

det(In−k + G1G∗
1�2) ≤ det

(
In−k + γ 2q−1 ‖�2�

†
1‖22 �2

)
.

Thus

E ≤ f (Ik + K) ≤ f
(
In−k + γ 2q−1 ‖�2�

†
1‖22 �2

)
.

Derivation of (13) in Steps 4b–5b

4b. Upper bound for E in (14) For the matrix H1 in (15) write

Ik + H1 = (Ik + F∗F)−1/2 ((Ik + F∗F) + �1
)

(Ik + F∗F)−1/2

� H4 ≡ (Ik + F∗F)−1/2 (Ik + �1) (Ik + F∗F)−1/2.

Thus f (H4) = f (Ik + �1) − f (Ik +F∗F). The properties of the Loewner partial
order [23, Corollary 7.7.4] imply

E ≤ f (Ik + �1) − f (H4) ≤ f (Ik + F∗F).

5b. Bounding f (Ik + F∗F) Write

Ik + F∗F = Ik + G∗
2�2G2 where G2 ≡ �

q−1/2
2 �2�

†
1�

−q
1 .

Observe that, G2 = G1�
−1/2
1 and therefore, ‖G2‖2 ≤ γ q−1/2√

λk
‖�2�

†
1‖2. The rest

of the proof follows the same steps as Step 6a and will not be repeated here. �
The following discussion mirrors that in Remark 1.

Remark 2 The two special cases below illustrate that, even in a best-case scenario,
the accuracy of log det(I� + T) is limited by log det(In−k + �2).

– If � = k and � = U1 then

log det(In + A) − log det(I� + T) = log det(In−k + �2).

This follows from Lemma 2, and from both bounds in Theorem 8 with �1 = Ik
and �2 = 0.
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– If � > k and � consists of the columns of U associated with the dominant eigen-
values λ1, . . . , λ� of A, then

log det(In−k + �2) − log
�∏

j=k+1

(1 + λ j ) ≤ log det(In + A) − log det(I� + T)

≤ log det(In−k + �2).

This follows from Lemma 2, and from both bounds in Theorem 8 with �1 =(
Ik 0k×(k−�)

)
and �2 = (

0(n−k)×k ∗).
Theorem 8 cannot be tight for the same reasons as in Remark 1.

The proof for the following bounds is very similar to that of Lemma 2 and Theo-
rem 8.

Theorem 9 In addition to the assumptions in Sect. 2.2.1, let A be positive definite;
and let T = Q∗AQ be computed by Algorithm 1. Then

0 ≤ log (detA) − log det(T) ≤
log det (�2) + log det

(
In−k + γ 2q−1

λk
‖�2�

†
1‖22 �2

)
.

4 Probabilistic analysis

We derive probabilistic bounds for ‖�2�
†
1‖2, a term that represents the contribution

of the starting guess � in the dominant eigenspace U1 of A, when the elements of
� are either Gaussian random variables (Sect. 4.1) or Rademacher random variables
(Sect. 4.2).

The theory for Gaussian random matrices suggests the value p � 20, whereas
theory for Rademacher random matrices suggests that � ∼ (k + log n) log k samples
need to be taken to ensure rank(�1) = k. However, the theory forRademacher random
matrices is pessimistic, and numerical experiments demonstrate that a practical value
of p � 20 is sufficient.

4.1 Gaussian random matrices

For the Gaussian starting guess, we present bounds for expectation
We split our analysis into two parts: an average case analysis (Sect. 4.1.1) and a

concentration inequality (Sect. 4.1.1), and prove Theorem 1.

Definition 1 A “standard” Gaussian matrix has elements that are independently and
identically distributed randomN (0, 1) variables, that is normal random variables with
mean 0 and variance 1.

“Appendix 1” summarizes the required results for standard Gaussian matrices. In
particular, we will need the following.
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Remark 3 The distribution of a standard Gaussian matrix G is rotationally invariant.
That is, if U and V are unitary matrices, then U∗GV has the same distribution as G.
Due to this property, the contribution of the starting guess on the dominant eigenspace
does not appear in the bounds below.

4.1.1 Average case analysis

We present bounds for the expected values of ‖G‖22 and ‖G†‖22 for standard Gaussian
matrices G, and then prove Theorem 1.

Lemma 4 Draw two Gaussian random matrices G2 ∈ R
(n−k)×(k+p) and G1 ∈

R
k×(k+p) and let p ≥ 2. With μ defined in (3), then

E

[
‖G2‖22

]
≤ μ2 + 2

(√
π

2
μ + 1

)
. (16)

If, in addition, also k ≥ 2, then

E

[
‖G†

1‖22
]

≤ p + 1

p − 1

(
1

2π (p + 1)

)2/(p+1) (e
√
k + p

p + 1

)2

. (17)

Proof See “Appendix 1”.

We are ready to derive the main theorem on the expectation of standard Gaussian
matrices.

Proof of Theorem 1 We start as in the proof of [19, Theorem 10.5]. The assumptions
in Sect. 2.2.1 and Remark 3 imply that U∗� is a standard Gaussian matrix. Since �1
and �2 are non-overlapping submatrices of U∗�, they are both standard Gaussian
and stochastically independent. The sub-multiplicative property implies ‖�2�

†
1‖2 ≤

‖�2‖2‖�†
1‖2.

We use the independence of �2 and �1 and apply both parts of (17); with μ ≡√
n − k + √

k + p this gives

E

[
‖�2�

†
1‖22

]
≤

[
μ2 + 2

(√
π

2
μ + 1

)]
p + 1

p − 1

(
1

2π(p+1)

) 2
(p+1)

(
e
√
k+ p

p+1

)2

. (18)

Bounding

μ2 + 2

(√
π

2
μ + 1

)
≤ (μ + √

2)2.

givesE
[
‖�2�

†
1‖22

]
≤ Cge. Substituting into the result of Theorem 6 gives the desired

result in Theorem 1.
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For a positive definite matrix log det(A) = trace(log(A)), therefore

log det(I + γ 2q−1‖�2�
†
1‖22�2) =

n∑

j=k+1

log
(
1 + γ 2q−1‖�2�

†
1‖22λ j

)
.

Observe that log(1 + αx) is a concave function. Using Jensen’s inequality, for j =
k + 1, . . . , n

E

[
log(1 + γ 2q−1λ j‖�2�

†
1‖22)

]
≤ log

(
1 + γ 2q−1λ jE

[
‖�2�

†
1‖22

])
.

Since log(1 + αx) is a monotonically increasing function, the second result in
Theorem 1 follows by substituting the above equation into the bounds fromTheorem 8
and simplifying the resulting expressions. �

4.1.2 Concentration inequality

As with the expectation bounds, it is clear that we must focus our attention on the term
‖�2‖2‖�†

1‖2. We reproduce here a result on the concentration bound of this term. The
proof is provided in [16, Theorem 5.8].

Lemma 5 Let �2 ∈ R
(n−k)×(k+p) and �1 ∈ R

k×(k+p) be two independent Gaussian
random matrices and let p ≥ 4. Then for 0 < δ < 1,

P

[
‖�2‖22‖�†

1‖22 ≥ Cg

]
≤ δ, (19)

where Cg is defined in Theorem 2.

The following statements mirror the discussion in [16, Section 5.3]. While the
oversampling parameter p does not significantly affect the expectation bounds as long
as p ≥ 2, it seems to affect the concentration bounds significantly. The oversampling
parameter p can be chosen in order to make (2/δ)2/(p+1) a modest number, say less
than equal to 10. Choosing

p =
⌈
2 log10

(
2

δ

)⌉
− 1,

for δ = 10−16 gives us p = 32. In our experiments, we choose the value for the
oversampling parameter to be p = 20.

4.2 Rademacher random matrices

We present results for the concentration bounds when � is a Rademacher random
matrix. We start with the following definition.
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Definition 2 A Rademacher random matrix has elements that are independently and
identically distributed and take on values ±1 with equal probability.

Note that unlike standard Gaussian matrices, the distribution of a Rademacher
matrix is not rotationally invariant.

As before we partition U = [
U1 U2

]
and let �1 = U∗

1� and �2 = U∗
2�. The

following result bounds the tail of ‖�2‖22‖�†
1‖22. This result can be used to readily

prove Theorem 3.

Theorem 10 Let ρ ∈ (0, 1) and 0 < δ < 1 and integers n, k ≥ 1. Let the number of
samples � be defined as in Theorem 3. Draw a random Rademacher matrix� ∈ R

n×�.
Then

P

[
‖�2‖22‖�†

1‖22 ≥ Cr

]
≤ δ,

where Cr is defined in Theorem 3.

Proof See “Appendix 2”. �
Remark 4 From the proof of Theorem 10, to achieve ‖�†

1‖2 ≥ 3/
√

� with at least
99.5% probability and n = 1024, the number of samples required is

� ≥ 2.54(
√
k + 11)2(log(4k) + 4.7).

Here ρ = 8/9 is chosen to be so that 1/(1 − ρ) = 9.

The imposition that � ≤ n implies that the bound may only be informative for k
small enough. Theorem 10 suggests that the number of samples � ∼ (k + log n) log k
to ensure that ‖�†

1‖2 is small and rank(�1) = k.
We investigate this issue numerically. We generate random Rademacher matrices

�1 ∈ R
k×�; here we assume U = In . Here we choose three different values for k,

namely k = 10, 75, 500. For each value of k, the oversampling � varies from � = k+1
to � = k + 40. We generate 500 runs for each value of �. In Fig. 1 we plot ‖�†

1‖22 and
the percentage of matrices that are rank deficient. For k = 10, a few samples were
rank deficient but the percentage of rank deficient matrices dropped significantly; after
p = 20 there were no rank deficient matrices. For larger values of k we observed that
none of the sampled matrices were rank deficient and p = 20 was sufficient to ensure
that ‖�†

1‖22 � 10. Similar results were observed for randomly generated orthogonal
matrices U. In summary, a modest amount of oversampling p � 20 is sufficient to
ensure that rank(�1) = k for the Rademacher random matrices, similar to Gaussian
random matrices. In further numerical experiments we shall use this particular choice
of oversampling parameter p.

5 Numerical experiments

In this section, we demonstrate the performance of our algorithm and bounds on two
different kinds of examples. In the first example, we focus on small matrices (with
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Fig. 1 The quantity log10(‖�†
1‖2) for different amounts of sampling � = k+1 to � = k+40. We consider

k = 10 (top left), k = 75 (bottom left), and k = 500 (bottom right). The top right plot shows the percentage
of numerically rank deficient sampled matrices

dimension 128) in the non-asymptotic regime. We show that our bounds are informa-
tive and our estimators are accurate with high probability. In the second examples, we
look at medium sized matrices (of dimension 5000) and demonstrate the behavior of
our estimators.

5.1 Small matrices

In this section we study the performance of the proposed algorithms on small test
examples.

The matrix A is chosen to be of size 128× 128 and its eigenvalues satisfy λ j+1 =
γ jλ1 for j = 1, . . . , n − 1. To help interpret the results of Theorems 1–3, we provide
simplified versions of the bounds. The relative error in the trace estimator can be
bounded as

Δt ≡ trace(A) − trace(T)

trace(A)
≤ (1 + γ 2q−1C)

γ k(1 − γ n−k)

1 − γ n
. (20)

Here C can take the value Cg for a Gaussian starting guess and Cr for a Rademacher
starting guess.
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Fig. 2 Accuracy of proposed estimators on a matrix with geometrically decaying eigenvalues. The relative
error is plotted against the sample size. Accuracy of (left) trace and (right) logdet estimators. Here, a
Gaussian starting guess was used

For the logdet estimator, we observe that log(1 + x) ≤ x . Using the relation
log det(I + �) = trace log(I + A), it is reasonable to bound log det(I + �) by
trace(�). With the abbreviation f (·) = log det(·) we can bound the relative error of
the logdet estimator as

Δl ≡ f (I + A) − f (I + T)

f (I + A)
≤ (1 + γ 2q−1C)

γ k(1 − γ n−k)

1 − γ n
.

Consequently, the error in the trace and logdet approximations approaches 0 as
k → n and is equal to 0 if k = n.

In the following examples, we study the performance of the algorithmswith increas-
ing sample size. It should be noted here that, since � = k+ p and p is fixed, increasing
the sample size corresponds to increasing the dimension k; consequently, the location
of the gap is changing, as is the residual error Δ = trace(�2)/trace(�).

1.Effect of eigenvalue gap MatricesA are generatedwith different eigenvalue distribu-
tions. The eigenvalue gap parameter γ varies from 0.98 to 0.86.We consider sampling
from both Gaussian randommatrices. The oversampling was set to be p = 20 for both
distributions. The subspace iteration parameter q was set to be 1. The results are dis-
played in Fig. 2. Clearly, both the trace and logdet become increasingly accurate as the
eigenvalue gap increases. This confirms the theoretical estimate in (20) since the error
goes to zero as k → n. The behavior of the error with both Gaussian and Rademacher
starting guesses is very similar and is not displayed here.

2. Comparison with Monte Carlo estimators We fix the eigenvalue gap to γ = 0.9,
sampling parameter p = 20 and subspace iteration parameter q = 1. We consider
sampling from both Gaussian and Rademacher random matrices and consider their
accuracy against their Monte Carlo counterparts. As mentioned earlier, the Monte
Carlo estimator cannot be directly applied to the logdet estimator; however, using the
following identity
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Fig. 3 Comparison against Monte Carlo estimators for (left) trace and (right) logdet computations. The
relative error is plotted against the sample size

log det(In + A) = trace log(In + A),

the Monte Carlo estimators can be applied to the matrix log(In + A). For a fair
comparison with the estimators proposed in this paper, the number of samples used
equals the target rank plus the oversampling parameter p = 20, i.e., (k + p) samples.
We averaged the Monte Carlo estimators over 100 independent runs. The results are
illustrated in Fig. 3. It can be readily seen that when the matrix has rapidly decaying
eigenvalues, our estimators are much more accurate than the Monte Carlo estimators.
The number of samples required for theMonte Carlo methods for a relative accuracy ε

depends on ε−2, so the number of samples required for an accurate computation can be
large. For the logdet estimator, initially theMonte Carlo estimator seems to outperform
ourmethod for small sample sizes; however, the error in our estimators decays sharply.
It should be noted that for this small problem one can compute log(I + A) but for
a larger problem it may be costly, even prohibitively expensive. For all the cases
described here, Gaussian and Rademacher randommatrices seem to have very similar
behavior.

3. Effect of subspace iteration parameter The matrix A is the same as in the previous
experiment but p is chosen to be 0. The subspace iteration parameter is varied from
q = 1 to q = 5. The results of the relative error as a function of � are displayed in Fig. 4.
The behavior is similar for both Gaussian and Rademacher starting guesses, therefore
we only display results for Gaussian starting guess. We would like to emphasize that
Algorithm 1 is not implemented as is since it is numerically unstable and suscepti-
ble to round-off error pollution; instead a numerically stable version is implemented
based on [16, Algorithm A.1]. As can be seen, increasing the parameter improves the
accuracy for a fixed target rank k. However, both from the analysis and the numerical
results, this is clearly a case of diminishing returns. This is because the overall error
is dominated by trace(�2) and log det(In−k + �2). Increasing the subspace iteration
parameter q only improves the multiplicative factor in front of one of the terms. More-
over, in the case that the eigenvalues are decaying rapidly, one iteration, i.e., q = 1 is
adequate to get an accurate estimator.
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Fig. 4 Effect of subspace iteration parameter q on the (left) trace estimator and (right) logdet estimator.
The relative error is plotted against the sample size. A Gaussian starting guess was used. The behavior is
similar for Rademacher starting guesses
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Fig. 5 Accuracy of the error bounds for the trace estimators. The relative error is plotted against the sample
size. (left) Gaussian and (right) Rademacher random matrices. ‘Est 1’ and ‘Est 2’ refers to the bounds in
Theorem 6. For comparison, we also plot trace(�2)/trace(A)

4. How descriptive are the bounds? In this experiment we demonstrate the accuracy
of the bounds derived in Sect. 3. The matrix is chosen to be the same as the one
in Experiment 2. In Fig. 5 we consider the bounds in the trace estimator derived in
Theorem 6. We consider both the Gaussian (left panel) and Rademacher distributions
(right panel). For comparisonwealso plot the termΔ,which is the theoretical optimum.
‘Est 1’ refers to the first bound in (7) and ‘Est 2’ refers to the second bound in (8). Both
the bounds are qualitatively similar to both the true error and the theoretical estimate
Δ, and also quantitatively within a factor of 10 of the theoretical estimateΔ. Since γ is
close to 1 and ‖�2�

†
1‖2 > 1, γ ‖�2�

†
1‖2 > 1 and therefore ‘Est 1’ is a more accurate

estimator. The error of the logdet estimator is plotted against the theoretical bounds (see
Theorem 8) in Fig. 6; as before, our estimator is both qualitatively and quantitatively
accurate. The conclusions are identical for both Gaussian and Rademacher matrices.
The empirical performance of this behavior is studied in the next experiment.
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Fig. 6 Accuracy of the error
bounds for the logdet estimators.
The relative error is plotted
against the sample size. Both
Gaussian and Rademacher
starting guesses are used. For
comparison, we also plot
log det(I + �2)/ log det(I + A)
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Fig. 7 Empirical distribution of the relative error for the trace estimator. 105 samples were used for the
distribution

5. Concentration of measure We choose the same matrix as in Experiment 2. We
generate 105 starting guesses (both Gaussian and Rademacher) and compute the dis-
tribution of relative errors for the trace (quantified byΔt ) and logdet (quantified byΔl ).
Figures 7 and 8 show the empirical probability density function for the relative errors
in the trace and logdet respectively. We observe that the two distributions are nearly
identical and that the empirical density is concentrated about the mean. Furthermore,
as the sample size � increases, both the mean and variance of the empirical distribution
decrease. These results demonstrate that the randomized methods are indeed effective
with high probability.

5.2 Medium sized example

This example is inspired by a test case from Sorensen and Embree [39]. Consider the
matrix A ∈ R

5000×5000 defined as

A ≡
40∑

j=1

h

j2
x jxTj +

300∑

j=41

l

j2
x jxTj , (21)
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Fig. 8 Empirical distribution of the relative error for the logdet estimator. 105 samples were used for the
distribution
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Fig. 9 Accuracy of trace and logdet computations for the matrix in (21). (left) l = 1, h = 5 and (right)
l = 1, h = 1000

where x j ∈ R
5000 are sparse vectors with random nonnegative entries. In MATLAB

this can be generated using the command xj = sprand(5000,1,0.025). It
should be noted the vectors x j are not orthonormal; therefore, the outer product form
is not the eigenvalue decomposition of the matrix A. However, the eigenvalues decay
like 1/j2 with a gap at index 40, and its magnitude depends on the ratio h/ l. The exact
rank of this matrix is 300.

First we fix l = 1 and consider two different cases h = 5, and 1000. The oversam-
pling parameter p = 20 and the subspace iteration parameter is q = 1. The results are
displayed in Fig. 9. The accuracy of both the trace and the logdet estimators improves
considerably around the sample size � = 40 mark, when the eigenvalues undergo the
large jump for h = 1000; the transition is less sharp when h = 5. This demonstrates
the benefit of having a large eigenvalue gap for the accuracy of the estimators. As an
extreme case, consider l = 0 and h = 2. In this example, the matrix A has exactly
rank 40, and therefore 40 matrix–vector products with A are enough to recover the
trace and logdet to machine precision (see Fig. 10). This result highlights the power
of our proposed estimators.

123



Randomized matrix-free trace and log-determinant estimators 383

Fig. 10 Accuracy of trace and
logdet computations for the
matrix in (21) with l = 0, h = 2
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6 Applications to evaluation of uncertainty quantification measures

As mentioned in the introduction, the computation of traces and log-determinants of
high-dimensional operators is essential is the emerging field of uncertainty quantifi-
cation. In this section, we use the methods developed in this article to compute some
common statistical quantities that appear in the context of Bayesian inverse problems.
In particular, we focus on a time-dependent advection–diffusion equation in which
we seek to infer an uncertain initial condition from measurements of the concentra-
tion at discrete points in space/time; This is a commonly used example in the inverse
problem community; see e.g., [1,3,13,34]. Below, we briefly outline the components
of the Bayesian inverse problem. The model problem used here is adaptated from [3],
and therefore, we refer the readers to that paper for further details.

The forward problem The forward problem models diffusive transport of a contami-
nant in a domainD ⊂ R

2, which is depicted in Fig. 11 (left). The domain boundary ∂D
is a combination of the outer edges of the domain as well as the internal boundaries of
the rectangles that model buildings. The forward operator maps an initial condition θ

to space/time observations of the contaminant concentration, by solving the advection
diffusion equation,

ut − κΔu + v · ∇u = 0 in D × (0, T ),

u(·, 0) = θ in D,

κ∇u · n = 0 on ∂D × (0, T ),

(22)

and extracting solution values at spatial points [sensor locations as indicated in Fig. 11
(left)] and at pre-specified times. Here, κ > 0 is the diffusion coefficient and T > 0
is the final time. In our numerical experiments, we use κ = 0.001. The velocity field
v, shown in Fig. 11, is obtained by solving a steady Navier-Stokes equation with the
side walls driving the flow; see [3] for details. The discretized equations give rise to
a discretized linear solution operator for the forward problem, which is composed
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Fig. 11 Left the computational domain D is the region [0, 1]2 with two rectangular regions (representing
buildings) removed. The black dots indicate the locations of sensors where observations are recorded. Right
the velocity field

with an observation operator to extract the space-time observations. We denote this
discretized forward operator by F.

The Bayesian inverse problem The inverse problem aims to use a vector of observed
data d, which consists of sensor measurements at discrete points in time, to reconstruct
the uncertain initial condition. The dimension of d, which we denote by Nobs, is given
by the product of the number of sensors and the number of points in time where
observations are recorded. In the present example, we use 35 sensors and record
measurements at t = 1, t = 2, and t = 3.5. Therefore,we haved ∈ R

Nobs , with Nobs =
105, n = 1018, and thatF : Rn → R

105.We use a Gaussian prior measureN (θ0,C0),
and use an additive Gaussian noise model. Following [3], the prior covariance is
chosen to be the discretized biharmonic operator. The solution of the Bayesian inverse
problem is the posterior measure, N (θpost,Cpost) with

Cpost = (F∗Γ −1
noiseF + C−1

0 )−1, θpost = Cpost(F∗Γ −1
noised + C−1

0 θ0),

We denote by H ≡ F∗Γ −1
noiseF the Fisher information matrix. In many applications H

has a rapidly decaying spectrum; see Fig. 12 (left). Moreover, in the present setup, the
rank of H is bounded by the dimension of the observations, which in our example is
given by Nobs = 105. The prior-preconditioned Fisher information matrix

H0 = C1/2
0 HC1/2

0

is also of importance in what follows. Notice that preconditioning of H by the prior,
due to the smoothing properties of the priors employed in the present example, results
in a more rapid spectral decay; see Fig. 12 (right).
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Fig. 12 Left first 300 eigenvalues of H; right normalized nonzero eigenvalues of H and H0
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Fig. 13 Left error in estimation of trace(H0); right error in estimation of log det(H0 + I). Computations
were done using p = 20 and the randomized estimators use � = k + p random vectors with increasing
values of k

We point out that the quantity trace(H0) is related to the sensitivity criterion in
optimal experimental design (OED) theory [44]. On the other hand, log det(I+H0) is
related to Bayesian D-optimal design criterion [11]. As shown in [2], log det(I+H0)

is the expected information gain from the posterior measure to the prior measure
in a Bayesian linear inverse problem with Gaussian prior and noise distributions,
and with an inversion parameter that belongs to a Hilbert space. Note that in the
present context, information gain is quantified by the Kullback–Leibler divergence
fromposteriormeasure to priormeasure.Adetailed discussion of uncertaintymeasures
is also provided in [38].

In Fig. 13, we report the error in the approximation of trace(H) and log det(I+H0).
Both of these quantities are of interest in OED theory, where one is interested in
measures of uncertainty in reconstructed parameters [5,44]. Such statistical measures
are then used to guide the experimental configurations used to collect experimental data
so as to maximize the statistical quality of the reconstructed/inferred parameters. Note
that, in the present example, an experimental configuration is given by the placement
of sensors [black dots in Fig. 11 (left) where concentration data is recorded].
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7 Conclusion

We present randomized estimators for the trace and log-determinant of implicitly
definedHermitian positive semi-definitematrices. The estimators are low-rank approx-
imations computed with subspace iteration. We show, theoretically and numerically,
that our estimators are effective for matrices with a large eigenvalue gap or rapidly
decaying eigenvalues.

Our error analyses for the estimators are cleanly separated into two parts: A struc-
tural analysis, which is applicable to any choice of a starting guess, paves the way for
a probabilistic analysis, in this case for Gaussian and Rademacher starting guesses.
In addition, we derive asymptotic bounds on the number of random vectors required
to guarantee a specified accuracy with low probability of failure. We present com-
prehensive numerical experiments to illustrate the performance of the estimators, and
demonstrate their suitability for challenging application problems, such as the compu-
tation of the expected information gain in a Bayesian linear inverse problem governed
by a time-dependent PDE.

Future work will evolve around two main issues.

Rademacher random matrices Our analysis implies that a Gaussian starting guess
can do with a fixed oversampling parameter, while the oversampling amount for a
Rademacher starting guess depends on the dimension of the dominant eigenspace and
the dimension of the matrix. However, the numerical experiments indicate that, for
both types of starting guesses, an oversampling parameter of 20 leads to accurate esti-
mators. We plan to further investigate estimators with Rademacher starting guesses,
and specifically to derive error bounds for the expectation of the corresponding estima-
tors. Another issue to be explored is the tightness of the bound � ∼ (k + log n) log k
for Rademacher starting guesses.

Applications Weplan to integrate our estimators into computationalmethods for large-
scale uncertainty quantification. Our main goal is the computation of OED for large-
scale inverse problems. This can be posed as an optimization problem, where the
objective function is the trace or log-determinant of a high-dimensional operator. Due
to their efficiency and high accuracy, we expect that our estimators are well suited for
OED.

Appendix 1: Gaussian random matrices

In this section, we state a lemma on the pseudo-inverse of a rectangular Gaussian
random matrix, and use this result to prove both parts of Lemma 4.

Pseudo-inverse of a Gaussian random matrix

We state a result on the large deviation bound of the pseudo-inverse of a Gaussian
random matrix [19, Proposition 10.4].
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Lemma 6 Let G ∈ R
k×(k+p) be a random Gaussian matrix and let p ≥ 2. For all

t ≥ 1,

P

[
‖G†‖2 ≥ e

√
k + p

p + 1
· t
]

≤ t−(p+1). (23)

Proof of Lemma 4

Proof From [45, Corollary 5.35] we have

P

[
‖G2‖2 >

√
n − k +√

k + p + t
]

≤ exp(−t2/2).

Recall from (3) μ = √
n − k + √

k + p. From the law of the unconscious statisti-
cian [16, Proposition S4.2],

E

[
‖G2‖22

]
=
∫ ∞

0
2tP [ ‖G2‖2 > t] dt

≤
∫ μ

0
2tdt +

∫ ∞

μ

2tP [ ‖G2‖2 > t] dt

≤ μ2 +
∫ ∞

0
2(u + μ) exp(−u2/2)du = μ2 + 2

(
1 + μ

√
π

2

)
.

This concludes the proof for (16).
Next consider (17). Using Lemma 6, we have for t > 0

P

[
‖G†

1‖2 ≥ t
]

≤ Dt−(p+1) D ≡ 1√
2π(p + 1)

(
e
√
k + p

p + 1

)
. (24)

As before, we have

E

[
‖G†

1‖22
]

=
∫ ∞

0
2tP

[
‖G†

1‖2 > t
]
dt

≤
∫ β

0
2tdt +

∫ ∞

β

2tP
[
‖G†

1‖2 > t
]
dt

≤ β2 +
∫ ∞

β

2t Dt−(p+1)dt = β2 + 2D
β1−p

p − 1
.

Minimizing w.r.t. β, we get β = (D)1/(p+1). Substitute this value for β and simplify.
�
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Appendix 2: Rademacher random matrices

In this section, we state the matrix Chernoff inequalities [43] and other useful concen-
tration inequalities and use these results to prove Theorem 10.

Useful concentration inequalities

The proof of Theorem 10 relies on the matrix concentration inequalities developed
in [43]. We will need the following result [43, Theorem 5.1.1] in what follows.

Theorem 11 (Matrix Chernoff) Let {Xk} be finite sequence of independent, random,
d × d Hermitian matrices. Assume that 0 ≤ λmin(Xk) and λmax(Xk) ≤ L for each
index k. Let us define

μmin ≡ λmin

(
∑

k

E [Xk]

)
μmax ≡ λmax

(
∑

k

E [Xk]

)
,

and let g(x) ≡ ex (1 + x)−(1+x). Then for any ε > 0

P

[
λmax

(
∑

k

Xk

)
≥ (1 + ε)μmax

]
≤ dg(ε)μmax/L ,

and for any 0 ≤ ε < 1

P

[
λmin

(
∑

k

Xk

)
≤(1 − ε)μmin

]
≤ dg(−ε)μmin/L .

The following resultwas first proved byLedoux [25] butwe reproduce the statement
from [42, Proposition 2.1].

Lemma 7 Suppose f : R
n → R is a convex function that satisfies the following

Lipschitz bound

| f (x) − f (y)| ≤ L‖x − y‖2 for all x, y ∈ R
n .

Let z ∈ R
n be a random vector with entries drawn from an i.i.d. Rademacher distri-

bution. Then, for all t ≥ 0,

P [ f (z) ≥ E [ f (z)] + Lt] ≤ e−t2/8.

Lemma 8 Let V be a n × r matrix with orthonormal columns and let n ≥ r . Let z be
an n × 1 vector with entries drawn from an i.i.d. Rademacher distribution. Then, for
0 < δ < 1,
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P

[
‖V∗z‖2 ≥ √

r +
√

8 log

(
1

δ

)]
≤ δ.

Proof Our proof follows the strategy in [42, Lemma 3.3]. Define the function f (x) =
‖V∗x‖2. We observe that f satisfies the assumptions of Lemma 7, with Lipschitz
constant L = 1; the latter follows from

|‖V∗x‖2 − ‖V∗y‖2| ≤ ‖V∗(x − y)‖2 ≤ ‖x − y‖2.

Furthermore, using Hölder’s inequality

E [ f (z)] ≤ [E
[
f (z)2

]
]1/2 = ‖V‖F = √

r .

Using Lemma 7 with tδ = √
8 log (1/δ) we have

P
[
f (z) ≥ √

r + tδ
] ≤ P [ f (z) ≥ E [ f (z)] + tδ] ≤ e−t2δ /8 = δ.

�

Lemma 9 Let Xi for i = 1, . . . , n be a sequence of i.i.d. random variables. If for
each i = 1, . . . , n, P [ Xi ≥ a] ≤ ξ holds, where ξ ∈ (0, 1], then

P

[
max

i=1,··· ,n Xi ≥ a

]
≤ nξ.

Proof Since P [ Xi ≥ a] ≤ ξ then P [ Xi < a] ≥ 1 − ξ . We can bound

P

[
max

i=1,··· ,n Xi ≥ a

]
=
(
1 − P

[
max

i=1,··· ,n Xi < a

])

=
(
1 −

n∏

i=1

P [ Xi < a]

)
≤ 1 − (1 − ξ)n .

The proof follows from Bernoulli’s inequality [40, Theorem 5.1] which states (1 −
ξ)n ≥ 1 − nξ for ξ ∈ [0, 1] and n ≥ 1. �

Proof of Theorem 10

Proof Recall that �1 = U∗
1� and �2 = U∗

2� where � is random matrix with entries
chosen from an i.i.d. Rademacher distribution. The proof proceeds in three steps.
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1. Bound for ‖�2‖22 The proof uses the matrix Chernoff concentration inequality. Let
ωi ∈ R

n×1 be the i-th column of �. Note �2�
∗
2 ∈ C

(n−k)×(n−k) and

E
[
�2�

∗
2

] =
�∑

i=1

U∗
2E

[
ωiω

∗
i

]
U2 = �In−k .

Furthermore, define μmin(�2�
∗
2) ≡ λmin(E

[
�2�

∗
2

]
) and μmax(�2�

∗
2) ≡ λmax

(E
[
�2�

∗
2

]
). Clearly μmin = μmax = �. Note that here we have expressed �2�

∗
2 as

a finite sum of � rank-1 matrices, each with a single nonzero eigenvalue ω∗
i U2U∗

2ωi .
We want to obtain a probabilistic bound for the maximum eigenvalue i.e., L2 =
maxi=1,··· ,� ‖U∗

2ωi‖22. Using Lemma 8 we can write with probability at most e−t2/8

(√
n − k + t

)2 ≤ ‖U∗
2ωi‖22 = ω∗

i U2U∗
2ωi .

Since ‖U∗
2ωi‖22 are i.i.d., applying Lemma 9 gives

P

[
max

i=1,··· ,� ‖U∗
2ωi‖2 ≥ √

n − k + t

]
≤ �e−t2/8.

Take t = √
8 log(4�/δ) to obtain

P

[
L2 ≥ C2

u

]
≤ δ/4, Cu ≡ √

n − k +
√

8 log

(
4�

δ

)
. (25)

The matrix�2 satisfies the conditions of the matrix Chernoff theorem 11; for η ≥ 0
we have

P
[
λmax(�2�

∗
2) ≥ (1 + η)�

] ≤ (n − k)g(η)
�
L2 ,

where the function g(η) is defined in Theorem 11. For η > 1 the Chernoff bounds can
be simplified [30, Section 4.3] since g(η) ≤ e−η/3, to obtain

P
[
λmax(�2�

∗
2) ≥ (1 + η)�

] ≤ (n − k) exp

(
− η�

3L2

)
.

Choose the parameter

ηδ = C�,δC
2
u = 3�−1C2

u log

(
4(n − k)

δ

)
,
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so that

P

[
‖�2‖22 ≥ (1 + ηδ)�

]
≤ (n − k) exp

(
−C2

u

L2
log

4(n − k)

δ

)

= (n − k)

(
δ

4(n − k)

)C2
u/L2

.

Finally, we want to find a lower bound for ‖�2‖22. Define the events

A =
{
�2 | L2 < C2

u

}
, B =

{
�2 | ‖�2‖22 ≥ (1 + ηδ)�

}
.

Note that P
[
Ac
] ≤ δ/4 and under event A we have C2

u > L2 so that

P [ B | A] ≤ (n − k)

(
δ

4(n − k)

)C2
u/L2

≤ δ/4.

Using the law of total probability

P [ B] = P [ B | A]P [ A] + P
[
B | Ac]

P
[
Ac]

≤ P [ B | A] + P
[
Ac] ,

we can obtain a bound for P [ B] as

P

[
‖�2‖22 ≥ �

(
1 + C2

uC�,δ

)]
≤ δ/2.

2. Bound for ‖�†
1‖22 The steps are similar and we again use the matrix Chernoff

concentration inequality. Consider �1�
∗
1 ∈ C

k×k , and as before, write this matrix as
the sum of rank-1 matrices to obtain

E
[
�1�

∗
1

] =
�∑

i=1

U∗
1E

[
ωiω

∗
i

]
U1 = �Ik,

and μmin(�1�
∗
1) = �. Each summand in the above decomposition of �1�

∗
1 has one

nonzero eigenvalue ω∗
i U1U∗

1ωi . Following the same strategy as in Step 1, we define
L1 ≡ maxi=1,...,� ‖U∗

1ωi‖22 and apply Lemma 8 to obtain

P

[
max

i=1,··· ,� ‖U∗
1ωi‖2 ≥ √

k + t

]
≤ �e−t2/8 ≤ ne−t2/8.

Take t = √
8 log(4n/δ) to obtain

P

[
L1 ≥ C2

l

]
≤ δ/4, Cl ≡ √

k +
√

8 log

(
4n

δ

)
. (26)
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A straightforward application of the Chernoff bound in Theorem 11 gives us

P
[
λmin(�1�

∗
1) ≤ (1 − ρ)�

] ≤ kg(−ρ)
�
L1 .

Next, observe that − log g(−ρ) has the Taylor series expansion in the region 0<ρ<1

− log g(−ρ) = ρ + (1 − ρ) log(1 − ρ) = ρ2

2
+ ρ3

6
+ ρ4

12
+ · · ·

so that − log g(−ρ) ≥ ρ2/2 for 0 < ρ < 1 or g(−ρ) ≤ e−ρ2/2. This gives us

P

[
‖�†

1‖22 ≥ 1

(1 − ρ)�

]
≤ k exp

(
− ρ2�

2L1

)
, (27)

where we have used λmin(�1�
∗
1) = 1/‖�†

1‖22 assuming rank(�1) = k.
With the number of samples as defined in Theorem 3

� ≥ 2ρ−2C2
l log

(
4k

δ

)
,

the Chernoff bound (27) becomes

P

[
‖�†

1‖22 ≥ 1

(1 − ρ)�

]
≤ k

(
δ

4k

)C2
l /L1

.

Define the events

C =
{
�1 | ‖�†

1‖22 ≥ 1

(1 − ρ)�

}
, D = {�1 | L1 < C2

� }.

Note that P
[
Dc
] ≤ δ/4 from (26). Then since the exponent is strictly greater than 1,

we have

P [C | D] ≤ k

(
δ

4k

)C2
l /L1

≤ δ/4.

Using the conditioning argument as before gives P [C] ≤ δ/2.

3. Combining bounds Define the event

E =
{
� | ‖�†

1‖22 ≥ 1

(1 − ρ)�

}
, F =

{
� | ‖�2‖22 ≥ (1 + C�,δC

2
u )�

}
,
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where C�,δ is defined in Step 1, P [ E] ≤ δ/2 and from Step 2, P [ F] ≤ δ/2. It can be
verified that

{
� | ‖�2‖22‖�†

1‖22 ≥ 1

1 − ρ
(1 + C�,δC

2
u )

}
⊆ E ∪ F,

and therefore, we can use the union bound

P

[
‖�2‖22‖�†

1‖22 ≥ 1

1 − ρ
(1 + C�,δC

2
u )

]
≤ P [ E] + P [ F] ≤ δ.

Plugging in the value of C�,δ and C2
u from Step 1 gives the desired result. �
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