ECS 231 Gradient descent methods for solving large scale eigenvalue problems

Generalized symmetric definite eigenvalue problem

Generalized symmetric definite eigenvalue problem

 $Au = \lambda Bu$

where A and B are $n \times n$ symmetric, and B positive definite,

- All eigenvalues and eigenvectors are real
- ▶ Denote the eigenvalues by $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and their associated eigenvectors by u_1, u_2, \ldots, u_n and u_i are normalized, i.e., $||u_i||_B = 1$ for $i = 1, 2, \ldots, n$
- $\|\cdot\|_B$ is defined through the *B*-inner product

$$\langle x, y \rangle_B = \langle Bx, y \rangle \equiv y^T Bx.$$

Rayleigh quotient and minimization principles

Rayleigh Quotient is defined by

$$\rho(x) = \frac{x^T A x}{x^T B x}$$

Minimization principle:

$$\lambda_1 = \lambda_{\min} = \min_x \rho(x)$$
$$u_1 = \operatorname{argmin}_x \rho(x)$$

• In general for i > 1

$$\lambda_i = \min_{\substack{x \perp_B u_j, 1 \leq j < i}} \rho(x)$$
$$u_i = \operatorname{argmin}_{x \perp_B u_j, 1 \leq j < i} \rho(x)$$

where by $x \perp_B y$ we mean that $\langle x, y \rangle_B = 0$.

<ロ>・ロ>・(部)・(言)・(言) 言 のQ(で 3/17

Optimization methods for eigen-computation

- By the minimization principles, various optimization techniques can be naturally employed to compute λ₁ or the first few λ_i and their associated eigenvectors.
- Gradient (steepest) Decent (GD) and Conjugate Gradient (CG) methods are based on minimizing the Rayleigh Quotient ρ(x).
- Two useful quantities:
 - The gradient of $\rho(x)$:

$$\nabla \rho(x) = \frac{2}{x^T B x} [A x - \rho(x) B x] = \frac{2}{x^T B x} r(x)$$

• The Hessian of $\rho(x)$:

$$\nabla^2 \rho(x) = \frac{2}{x^T B x} [A - \rho(x) B - \nabla \rho(x) (B x)^T - (B x) \nabla \rho(x)^T]$$

・ロン ・四 と ・ 日 と ・ 日 ・

Line search

• Minimizing the Rayleigh quotient along the direction of the gradient r = r(x) is equivalently to solve the single-variable optimization problem

$$\min_{t} \rho(x + tr) = \rho(x + t_{\text{opt}}r)$$

One step of the SD:

- Given an approximation \mathbf{x} to u_1 and $||x||_B = 1$
- ► Compute the search direction: the (opposite) direction of the gradient r = ∇ρ(x),
- solve the problem

$$\inf_{t} \rho(x + tr) = \rho(x + t_{\text{opt}}r)$$

update

$$x := x + t_{\text{opt}}r.$$

Given an initial approximation x_0 to u_1 , and a relative tolerance rtol, the algorithm attempts to compute an approximate pair to (λ_1, u_1) with the prescribed rtol.

$$\begin{array}{ll} 1 & x_0 = x_0/\|x_0\|_B, \ \rho_0 = x_0^T A x_0, \ r_0 = A x_0 - \rho_0 B x_0 \\ 2 & \text{for } i = 0, 1, \ldots, \ \text{do} \\ 3 & \text{if } \|r_i\|/(\|A x_i\|_2 + |\rho_i| \, \|B x_i\|_2) \leq \texttt{rtol}, \ \texttt{break} \\ 4 & \text{solve } \inf_t \rho(x_i + tr_i) \ \texttt{for } t_{\text{opt}} \\ 5 & \widehat{x} = x_i + t_{\text{opt}} \, r_i, \ x_{i+1} = \widehat{x}/\|\widehat{x}\|_B \\ 6 & \rho_{i+1} = x_{i+1}^T A x_{i+1}, \ r_{i+1} = A x_{i+1} - \rho_{i+1} B x_{i+1} \\ 7 & \text{end} \\ 8 & \text{return } (\rho_i, x_i) \ \texttt{as an approximate eigenpair to} \ (\lambda_1, u_1) \end{array}$$

Alternatively, the SD method can also be reformulated under Rayleigh-Ritz subspace projection framework:

- 1 select initial vector x_0 , and compute $\rho_0 = \rho(x_0)$
- 2 for $i=0,1,\ldots$ until convergence do
- 3 compute $r_i = Ax_i \rho_i Bx_i$
- 4 compute $H = Z^T A Z$ and $S = Z^T B Z$, where $Z = [x_i, r_i]$
- 5 compute the smallest eigenpair (γ_1, w_1) of (H, S)

6 update
$$\rho_{i+1} = \gamma_1$$
, $x_{i+1} = Zw_1$

- 7 end
- 8 return $(
 ho_i, x_i)$ as an approximate eigenpair to (λ_1, u_1)

Remarks:

- 1. Convergence analysis
 - The case B = I, *locally*, the convergence rate is

$$\frac{\rho_{i+1}-\lambda_1}{\rho_i-\lambda_1}\sim \left(\frac{1-\xi}{1+\xi}\right)^2,\quad \xi=\frac{\lambda_2-\lambda_1}{\lambda_n-\lambda_1}.$$

[Faddeev and Faddeeva'63] and [Knyazev and Skorokhodov'91].

- For the case $B \neq I$, [Yang'93].
- 2. Entending the search space

$$\rho_{\text{new}} = \min_{z \in \text{span}\{x_i, r_i\}} \rho(z)$$

$$\downarrow$$

$$\rho_{\text{new}} = \min_{z \in \mathcal{K}_m(A - \rho_i B, x_i)} \rho(z)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

9/17

3. Preconditioning the search direction

 $r_i \implies K_i r_i$

where K_i is a preconditioner (more later)

4. Introducing block implementation

$$R(X) = [r(x_1^{(i)}), r(x_2^{(i)}), \dots, r(x_k^{(i)})]$$

Further reading: R.-C. Li, Rayleigh quotient based optimization methods for eigenvalue problems, in "Matrix Functions and Matrix Equations", Z. Bai et al ed., World Scientific, 2015.

Conjugate gradient method

The Conjugate Gradient (CG) method was originally proposed in 1950s by Hestenes and Stiefel for solving linear system

$$Hx = b$$

where H is symmetric positive definite.

- In the 1960s, it was extended by Fletcher and Reeves as an iterative method for **nonlinear** optimization problems. The extension is almost verbatim.
- ► Because of the optimality properties of Rayleigh quotients, it is natural to apply the CG method to compute a few eigenpairs of $A \lambda B$.

CG for linear systems: review

Define

$$\phi(x) = \frac{1}{2}x^T H x - x^T b.$$
(1)

- ▶ the gradient $\nabla \phi(x) = Hx b = r(x)$ (the residual vector) the Hessian matrix H(x) = H.
- ▶ φ(x) is a quadratic functional in x. It is convex and has a unique local and global minimum at x = H⁻¹b.
- ▶ Given an initial guess x₀, the CG method iteratively produces a sequence of approximations x_i and p_i, such that

$$\phi(x_{i+1}) = \min_{\alpha} \phi(x_i + \alpha p_i).$$

where p_i are conjugate searching directions, i.e., $p_i^T H p_j = 0$ for $i \neq j$, and $p_0 = r(x_0)$.

CG for linear systems: review

CG algorithm:

- 1. Give an initial guess x_0 , compute $r_0 = Ax_0 b$, and set $p_0 = r_0$;
- 2. For i = 0, 1, ..., do

$$\alpha_i = \operatorname{argmin}_{\alpha} \phi(x_i + \alpha p_i) = \frac{r_i^T A r_i}{p_i^T A p_i}$$
$$x_{i+1} = x_i + \alpha_i p_i$$
$$r_{i+1} = r_i - \alpha_i H p_i$$
$$\beta_i = \frac{r_{i+1}^T r_{i+1}}{r_i^T r_i}$$
$$p_{i+1} = r_{i+1} + \beta_i p_i$$

Note that β_i is chosen so that $p_{i+1}^T H p_i = 0$.

CG for linear systems: review

In the absence of roundoff errors, it can be proved that

1.
$$r_i^T r_j = 0$$
, for $0 \le i, j \le \ell$ and $i \ne j$

- 2. subspan{ r_0, r_1, \ldots, r_ℓ } = subspan{ p_0, p_1, \ldots, p_ℓ } = subspan{ $r_0, Hr_0, \ldots, H^\ell r_0$ }
- 3. p_0, p_1, \dots, p_ℓ are linearly independent and $p_i^T H p_j = 0$, for $0 \le i, j \le \ell$ and $i \ne j$

4. $\phi(x_{\ell}) = \min_{t_0, \dots, t_{\ell}} \phi(x_0 + t_0 p_0 + t_1 p_1 + \dots + t_{\ell} p_{\ell}).$

▶ The CG method converges in at most *n* steps, *a direct method*, is a consequence of these properties.

CG method for eigenvalue computation

- In extending the CG method, the key is to recognize that the residual r(x) in the linear system case plays the role of the gradient direction for $\phi(x)$.
- For the eigenproblem of $A \lambda B$, the objective function is the Rayleigh quotient

$$\rho(x) = \frac{x^T A x}{x^T B x}$$

whose gradient $\nabla\rho(x)$ is collinear to

$$r(x) = Ax - \rho(x) Bx.$$

CG method for eigenvalue computation

Given an initial approximation x_0 to u_1 , and a relative tolerance rtol, the algorithm attempts to compute an approximate pair to (λ_1, u_1) with the prescribed rtol.

$$\begin{array}{ll} 1 & x_0 = x_0/\|x_0\|_B, \ \rho_0 = x_0^T A x_0, \ r_0 = A x_0 - \rho_0 B x_0, \ p_0 = r_0; \\ 2 & \text{for } i = 0, 1, \ldots, \text{ do} \\ 3 & \text{if } \|r_i\|/(\|A x_i\|_2 + |\rho_i| \, \|B x_i\|_2) \leq \texttt{rtol}, \text{ break}; \\ 4 & \text{solve } \inf_t \rho(x_i + t p_i) = \rho(x_i + t_{opt} p_i). \\ 5 & \alpha_i = t_{opt} \\ 6 & \hat{x} = x_i + \alpha_i \, p_i, \ x_{i+1} = \hat{x}/\|\hat{x}\|_B; \\ 7 & \rho_{i+1} = x_{i+1}^T A x_{i+1}, \ r_{i+1} = A x_{i+1} - \rho_{i+1} B x_{i+1}, \\ 8 & \text{choose } \beta_i \text{ and update } p_{i+1} = r_{i+1} + \beta_i p_i, \\ 9 & \text{endfor} \\ 10 & \text{Return } (\rho_i, x_i) \text{ as an approximate eigenpair to } (\lambda_1, u_1). \end{array}$$

Conjugate gradient method

Different choice of β_i leads to the different version of the CG method. Common choices:

$$\beta_{i} = \frac{r_{i+1}^{T} r_{i+1}}{r_{i}^{T} r_{i}} \quad \text{or} \quad \beta_{i} = \frac{r_{i+1}^{T} (r_{i+1} - r_{i})}{r_{i}^{T} r_{i}}$$

Choose β_i, together with α_i, to minimize the Rayleigh quotient on the projection subspace

$$subspan\{x_{i+1}, r_{i+1}, p_i\} = subspan\{x_{i+1}, r_{i+1}, x_i\}$$

leads to the locally optimal method. - the state of the art?

Ref.: A. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2):517-541, 2001

 Open problem: no quantitative estimate on the convergence rate of the CG method is available yet.