
ECS 231
Computer Arithmetic

1 / 27

Outline

1 Floating-point numbers and representations

2 Floating-point arithmetic

3 Floating-point error analysis

4 Further reading

2 / 27

Outline

1 Floating-point numbers and representations

2 Floating-point arithmetic

3 Floating-point error analysis

4 Further reading

3 / 27

Floating-point numbers and representations

1. Floating-point (FP) representation of numbers (scientific notation):

− 3.1416× 101

↑
sign

↑
significand

↑
base

← exponent

2. FP representation of a nonzero binary number:

x = ± b0.b1b2 · · · bp−1 × 2E . (1)

I It is normalized, i.e., b0 = 1 (the hidden bit)
I Precision (= p) is the number of bits in the significand (mantissa)

(including the hidden bit).
I Machine epsilon ε = 2−(p−1), the gap between the number 1 and the

smallest FP number that is greater than 1.

3. Special numbers: 0, −0, ∞, −∞, NaN(=“Not a Number”).

4 / 27

IEEE standard

I All computers designed since 1985 use the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), represent each
number as a binary number and use binary arithmetic.

I Essentials of the IEEE standard:
I consistent representation of FP numbers
I correctly rounded FP operations (using various rounding modes)
I consistent treatment of exceptional situation such as division by zero.

5 / 27

IEEE single precision format

I Single format takes 32 bits (=4 bytes) long:

s E f

sign exponent

t
binary point fraction

←− −→8 ←− −→23

I It represents the number

(−1)s · (1.f)× 2E−127

I The leading 1 in the fraction need not be stored explicitly since it is
always 1 (hidden bit)

I Emin = (00000001)2 = (1)10, Emax = (11111110)2 = (254)10.

I “E − 127” in exponent avoids the need for storage of a sign bit.

I The range of positive normalized numbers:

Nmin = 1.00 · · · 0× 2Emin−127 = 2−126 ≈ 1.2× 10−38

Nmax = 1.11 · · · 1× 2Emax−127 ≈ 2128 ≈ 3.4× 1038.

I Special repsentations for 0, ±∞ and NaN.

6 / 27

IEEE double pecision format

I Double format takes 64 bits (= 8 bytes) long:

s E f

sign exponent

t
binary point fraction

←− −→11 ←− −→52

I It represents the numer

(−1)s · (1.f)× 2E−1023

I The range of positive normalized numbers is from

Nmin = 1.00 · · · 0× 21022 ≈ 2.2× 10−308

Nmax = 1.11 · · · 1× 21023 ≈ 21024 ≈ 1.8× 10308.

I Special repsentations for 0, ±∞ and NaN.

7 / 27

Summary I

I Precision and machine epsilon of IEEE single, double and extended
formats

Format Precision p Machine epsilon ε = 2−p−1

single 24 ε = 2−23 ≈ 1.2× 10−7

double 53 ε = 2−52 ≈ 2.2× 10−16

extended 64 ε = 2−63 ≈ 1.1× 10−19

I Extra: Higham’s lecture for additional formats, such as half (16 bits)
and quadruple (128 bits).

8 / 27

Rounding modes

I Let a positive real number x be in the normalized range, i.e.,
Nmin ≤ x ≤ Nmax, and write in the normalized form

x = (1.b1b2 · · · bp−1bpbp+1 . . .)× 2E ,

I Then the closest fp number less than or equal to x is

x− = 1.b1b2 · · · bp−1 × 2E

i.e., x− is obtained by truncating.

I The next fp number bigger than x− (also the next one that bigger
than x) is

x+ = ((1.b1b2 · · · bp−1) + (0.00 · · · 01))× 2E

I If x is negative, the situtation is reversed.

9 / 27

Correctly rounding modes:

I round down:
round(x) = x−

I round up:
round(x) = x+

I round towards zero:

round(x) = x− if x ≥ 0

round(x) = x+ if x ≤ 0

I round to nearest:
round(x) = x− or x+

whichever is nearer to x.1

1except that if x > Nmax, round(x) =∞, and if x < −Nmax, round(x) = −∞. In
the case of tie, i.e., x− and x+ are the same distance from x, the one with its least
significant bit equal to zero is chosen.

10 / 27

Rounding error

I When the round to nearest (IEEE default rounding mode) is in effect,

relerr(x) =
|round(x)− x|

|x|
≤ 1

2
ε.

I Therefore, we have

relerr =


1
2 · 2

1−24 = 2−24 ≈ 5.96 · 10−8, single

1
2 · 2

−52 ≈ 1.11× 10−16, double.

11 / 27

Outline

1 Floating-point numbers and representations

2 Floating-point arithmetic

3 Floating-point error analysis

4 Further reading

12 / 27

Floating-point arithmetic

I IEEE rules for correctly rounded fp operations:
if x and y are correctly rounded fp numbers, then

fl(x+ y) = round(x+ y) = (x+ y)(1 + δ)

fl(x− y) = round(x− y) = (x− y)(1 + δ)

fl(x× y) = round(x× y) = (x× y)(1 + δ)

fl(x/y) = round(x/y) = (x/y)(1 + δ)

where

|δ| ≤ 1

2
ε

I IEEE standard also requires that correctly rounded remainder and
square root operations be provided.

13 / 27

Floating-point arithmetic, cont’d

IEEE standard response to exceptions

Event Example Set result to

Invalid operation 0/0, 0×∞ NaN
Division by zero Finite nonzero/0 ±∞
Overflow |x| > Nmax ±∞ or ±Nmax

underflow x 6= 0, |x| < Nmin ±0, ±Nmin or subnormal
Inexact whenever fl(x ◦ y) 6= x ◦ y correctly rounded value

14 / 27

Floating-point arithmetic error

I Let x̂ and ŷ be the fp numbers and that

x̂ = x(1 + τ1) and ŷ = y(1 + τ2), for |τi| ≤ τ � 1

where τi could be the relative errors in the process of
“collecting/getting” the data from the original source or the previous
operations, and

I Question: how do the four basic arithmetic operations behave?

15 / 27

Floating-point arithmetic error: +,−
Addition and subtraction:

fl(x̂+ ŷ) = (x̂+ ŷ)(1 + δ)

= x(1 + τ1)(1 + δ) + y(1 + τ2)(1 + δ)

= x+ y + x(τ1 + δ +O(τε)) + y(τ2 + δ +O(τε))

= (x+ y)

(
1 +

x

x+ y
(τ1 + δ +O(τε)) +

y

x+ y
(τ2 + δ +O(τε))

)
≡ (x+ y)(1 + δ̂),

where

|δ| ≤ 1

2
ε, |δ̂| ≤ |x|+ |y|

|x+ y|

(
τ +

1

2
ε+O(τε)

)
.

16 / 27

Floating-point arithmetic error: +,−
Three possible cases:

1. If x and y have the same sign, i.e., xy > 0, then |x+ y| = |x|+ |y|;
this implies

|δ̂| ≤ τ +
1

2
ε+O(τε)� 1.

Thus fl(x̂+ ŷ) approximates x+ y well.

2. If x ≈ −y ⇒ |x+ y| ≈ 0, then (|x|+ |y|)/|x+ y| � 1; this implies

that |δ̂| could be nearly or much bigger than 1. This is so called
catastrophic cancellation, it causes relative errors or uncertainties
already presented in x̂ and ŷ to be magnified.

3. In general, if (|x|+ |y|)/|x+ y| is not too big, fl(x̂+ ŷ) provides a
good approximation to x+ y.

17 / 27

Catastrophic cancellation: example 1

I Computing
√
x+ 1−

√
x straightforward causes substantial loss of

significant digits for large n
x fl(

√
x + 1) fl(

√
x) fl(fl(

√
x + 1) − fl(

√
x)

1.00e+10 1.00000000004999994e+05 1.00000000000000000e+05 4.99999441672116518e-06

1.00e+11 3.16227766018419061e+05 3.16227766016837908e+05 1.58115290105342865e-06

1.00e+12 1.00000000000050000e+06 1.00000000000000000e+06 5.00003807246685028e-07

1.00e+13 3.16227766016853740e+06 3.16227766016837955e+06 1.57859176397323608e-07

1.00e+14 1.00000000000000503e+07 1.00000000000000000e+07 5.02914190292358398e-08

1.00e+15 3.16227766016838104e+07 3.16227766016837917e+07 1.86264514923095703e-08

1.00e+16 1.00000000000000000e+08 1.00000000000000000e+08 0.00000000000000000e+00

I Catastrophic cancellation can sometimes be avoided if a formula is
properly reformulated.

I In the present case, one can compute
√
x+ 1−

√
x almost to full

precision by using the equality

√
x+ 1−

√
x =

1√
x+ 1 +

√
x
.

18 / 27

Catastrophic cancellation: example 2

I Consider the function

f(x) =
1− cosx

x2

Note that
0 ≤ f(x) < 1/2 for all x 6= 0

I Let x = 1.2× 10−8, then the computed

fl(f(x)) = 0.770988...

is completely wrong!

I Alternatively, the function can be re-written as

f(x) =

(
sin(x/2)

x/2

)2

.

Consequently, for x = 1.2× 10−8, then the computed
fl(f(x)) = 0.499999... < 1/2 is fine!

19 / 27

Floating-point arithmetic error: ×, /
Multiplication and Division:

fl(x̂× ŷ) = (x̂× ŷ)(1 + δ)

= xy(1 + τ1)(1 + τ2)(1 + δ)

≡ xy(1 + δ̂×),

fl(x̂/ŷ) = (x̂/ŷ)(1 + δ)

= (x/y)(1 + τ1)(1 + τ2)−1(1 + δ)

≡ xy(1 + δ̂÷),

where

δ̂× = τ1 + τ2 + δ +O(τε), δ̂÷ = τ1 − τ2 + δ +O(τε).

Thus

|δ̂×| ≤ 2τ +
1

2
ε+O(τε), |δ̂÷| ≤ 2τ +

1

2
ε+O(τε)

we can conclude that multiplication and division are very well-behaved!

20 / 27

Outline

1 Floating-point numbers and representations

2 Floating-point arithmetic

3 Floating-point error analysis

4 Further reading

21 / 27

Floating-point error analysis

I Illustrate the basic idea of error analysis through a simple example.
Consider the inner product:

xT y = x1y1 + x2y2 + x3y3,

assuming already xi’s and yj ’s are fp numbers.

I fl(xT y) is computed in the following order:

fl(xT y) = fl
(

fl(fl(x1y1) + fl(x2y2)) + fl(x3y3)
)
.

I By the fp arithmetic model, we have

fl(x
T
y) = fl

(
fl(x1y1(1 + ε1) + x2y2(1 + ε2)) + x3y3(1 + ε3)

)
= fl

(
(x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3)

)
=

(
(x1y1(1 + ε1) + x2y2(1 + ε2))(1 + δ1) + x3y3(1 + ε3)

)
(1 + δ2)

= x1y1(1 + ε1)(1 + δ1)(1 + δ2) + x2y2(1 + ε2)(1 + δ1)(1 + δ2)

+x3y3(1 + ε3)(1 + δ2),

where |εi| ≤ 1
2ε and |δj | ≤ 1

2ε.

22 / 27

Floating-point error analysis, cont’d

There are two ways to interpret the errors in the computed fl(xT y):

I Forward error analysis

I Backward error analysis

23 / 27

Forward error analysis

I We have
fl(xT y) = xT y + E,

where

E =x1y1(ε1 + δ1 + δ2) + x2y2(ε2 + δ1 + δ2)

+ x3y3(ε3 + δ2) +O(ε2).

I It implies that

|E| ≤ 1

2
ε(3|x1y1|+ 3|x2y2|+ 2|x3y3|) +O(ε2)

≤ 3

2
ε · |x|T |y|+O(ε2).

I This bound on E tells the worst-case difference between the “exact”
xT y and its computed value.

24 / 27

Backward error analysis

I We can also write

fl(xT y) = x̂T ŷ = (x+∆x)T (y +∆y),

where

x̂1 = x1(1 + ε1), ŷ1 = y1(1 + δ1)(1 + δ2) ≡ y1(1 + δ̂1),

x̂2 = x2(1 + ε2), ŷ2 = y2(1 + δ1)(1 + δ2) ≡ y2(1 + δ̂2),

x̂3 = x3(1 + ε3), ŷ3 = y3(1 + δ2) ≡ y3(1 + δ̂3).

and

|δ̂1| = |δ̂2| ≤ ε+O(ε2) and |δ̂3| ≤
1

2
ε.

I This says the computed value fl(xT y) is the “exact” inner product of a
slightly perturbed x̂ and ŷ.

25 / 27

Outline

1 Floating-point numbers and representations

2 Floating-point arithmetic

3 Floating-point error analysis

4 Further reading

26 / 27

Further reading

1. D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 18(1):5–48, 1991.

2. Rencet lecture by N. Higham on the latest development on low
precision and multiprecision arithmetic.
http://bit.ly/kacov18

3. Discussion of numerical disasters:

I T. Huckle, Collection of software bugs
http://www5.in.tum.de/∼huckle/bugse.html

I “Bits and Bugs: A Scientific and Historical Review of Software Failures
in Computational Science” by T. Huckle and T. Neckel, SIAM, March
2019.

27 / 27

	Floating-point numbers and representations
	Floating-point arithmetic
	Floating-point error analysis
	Further reading

