ECS 231
Computer Arithmetic

Outline

@ Floating-point numbers and representations

© Floating-point arithmetic

© Floating-point error analysis

@ Further reading

Outline

@ Floating-point numbers and representations

© Floating-point arithmetic

© Floating-point error analysis

@ Further reading

=} = = E = DA
3/27

Floating-point numbers and representations
1. Floating-point (FP) representation of numbers (scientific notation):

— 3.1416 x 101§ exponent
T T T

sign significand base

2. FP representation of a nonzero binary number:

T = :l:bo.blbg cee bp—l X 2E (1)

> It is normalized, i.e., bo = 1 (the hidden bit)

> Precision (= p) is the number of bits in the significand (mantissa)
(including the hidden bit).

» Machine epsilon e = 2P~V the gap between the number 1 and the
smallest FP number that is greater than 1.

3. Special numbers: 0, —0, oo, —oco, NaN(="Not a Number").

27

|[EEE standard

» All computers designed since 1985 use the |EEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), represent each
number as a binary number and use binary arithmetic.

» Essentials of the IEEE standard:

» consistent representation of FP numbers
» correctly rounded FP operations (using various rounding modes)
> consistent treatment of exceptional situation such as division by zero.

o
N

IEEE single precision format

» Single format takes 32 bits (=4 bytes) long:

| +— 8 — |+ 23 — |
B e f |
sign exponent binary point fraction

> It represents the number
(_1)3 . (1f) X 2E—127

» The leading 1 in the fraction need not be stored explicitly since it is
always 1 (hidden bit)

» Epmin = (00000001)2 = (1)10, Emax = (11111110)2 = (254)10.

» “E — 127" in exponent avoids the need for storage of a sign bit.

> The range of positive normalized numbers:
Nppin = 1.00- -+ 0 x 2Fmin =127 — 97126 ~ 1 9 5 10738

N = 111 -+ 1 x 2Fmax—127 9128 3 4 5« 1038,

» Special repsentations for 0, +0o and NaN.

6 /27

IEEE double pecision format

» Double format takes 64 bits (= 8 bytes) long:
| ¢«— 11 — | +— 52 — |
LB] |
sign exponent binary point fraction

v

It represents the numer
(_1)8 . (1f) % 9£—1023
» The range of positive normalized numbers is from

Npin = 1.00---0 x 21922 2.9 % 107308

N = 111 -1 x 21023 x5 21024 1 8 10308,

v

Special repsentations for 0, +£0o and NaN.

27

Summary |

» Precision and machine epsilon of IEEE single, double and extended
formats

’ Format \ Precision p \ Machine epsilon ¢ = 2771 ‘

single 24 e=2"8x~12x107"
double 53 e=2522292x10"16
extended 64 e=2"6~11x10"1

» Extra: Higham's lecture for additional formats, such as half (16 bits)
and quadruple (128 bits).

Rounding modes

> Let a positive real number = be in the normalized range, i.e.,
Nmin < 2 < Npax, and write in the normalized form

T = (1.b1b2 s bp_lbpbp+1 ..) X QE,
» Then the closest fp number less than or equal to z is
r_ = 1.b1[)2 c 'bp—l X 2E

i.e., x_ is obtained by truncating.

> The next fp number bigger than z:_ (also the next one that bigger
than) is

24 = ((1.biby -+ -bp_1) + (0.00---01)) x 27

» If x is negative, the situtation is reversed.

9/27

Correctly rounding modes:
> round down:
round(z) = x_

» round up:
round(z) = x4

> round towards zero:
round(z) = x_ if x > 0
round(z) = x4 if 2 <0

» round to nearest:
round(z) =x_ or x4

whichever is nearer to z.1

Lexcept that if £ > Nmax, round(z) = oo, and if z < —Nmax, round(z) = —co. In
the case of tie, i.e., z— and x4 are the same distance from z, the one with its least

significant bit equal to zero is chosen.

Rounding error

> When the round to nearest (IEEE default rounding mode) is in effect,

_ Iround(z) — 2 _

1
I —e€.
relerr(x) 2] < 3¢

» Therefore, we have

521720 =272~ 5961075, single

relerr =

N|—=

22752~ 1.11 x 10716, double.

11/27

Outline

© Floating-point numbers and representations
© Floating-point arithmetic
© Floating-point error analysis

@ Further reading

o = = = = 9Dae
12/27

Floating-point arithmetic

» |EEE rules for correctly rounded fp operations:
if x and y are correctly rounded fp numbers, then

fi(z +y) = round(z+y) = (z+y)(1+)

iz —y) = round(z —y)=(x—y)(1+90)

fllz xy) = round(z xy) = (z xy)(1+9)
fi(z/y) = round(z/y) = (x/y)(1+)

where 1
ol < =
81 < 5e

» |EEE standard also requires that correctly rounded remainder and
square root operations be provided.

13 /27

Floating-point arithmetic, cont'd

IEEE standard response to exceptions

Event Example Set result to

Invalid operation | 0/0, 0 x oo NaN

Division by zero | Finite nonzero/0 +oo

Overflow || > Nmax +00 or £Nmax
underflow z #0,|z| < Nmin +0, £Nmin or subnormal
Inexact whenever fl(z o y) # x oy | correctly rounded value

Floating-point arithmetic error

> Let Z and y be the fp numbers and that
T=z(l+mn) and g=y(l+m), for|n<r<1

where 7; could be the relative errors in the process of
“collecting/getting” the data from the original source or the previous
operations, and

» Question: how do the four basic arithmetic operations behave?

15 /27

Floating-point arithmetic error: -+, —
Addition and subtraction:
i@+y) = @+y(I+9)

z(1+ 7)1 +0) +y(l+72)(1+9)
= z4+y+z(mi+5+0(1e)) +y(r2 + 6 + O(7¢))

= (z+vy) <1+ y(7'2+6+0(7'e))>

T

Y
x+y(ﬁ+6+o(7€))+x+

-~

= (z+y)A+9),

where

T |x|+|y|(1 >
ol < =e, ol < T+ —e+ O(7e) | .
o< ge Bl T E (r4 e+ 0o

16 /27

Floating-point arithmetic error: -+, —

Three possible cases:
1. If z and y have the same sign, i.e., xy > 0, then |z + y| = |z| + |y|;
this implies

~ 1
0] <74 56—}—0(7’6) < 1.

Thus fI(Z + y) approximates x + y well.

2. Ifz~—y=|z+y|~0, then (|z|+ |y|)/|z + y| > 1; this implies
that |§| could be nearly or much bigger than 1. This is so called
catastrophic cancellation, it causes relative errors or uncertainties
already presented in T and ¥ to be magnified.

3. In general, if (|z]| + |y|)/|z + y| is not too big, fi(Z + y) provides a
good approximation to x + y.

17 /27

Catastrophic cancellation: example 1

» Computing v/ + 1 — /T straightforward causes substantial loss of

significant digits for large n

= AV T 1) (V) [0/ D =~ /o)
1.00e+10 1.00000000004999994e+05 1.00000000000000000e+05 4.99999441672116518e-06
1.00e+11 3.16227766018419061e+05 3.16227766016837908e+05 1.58115290105342865e-06
1.00e+12 1.00000000000050000e+06 1.00000000000000000e+06 5.00003807246685028e-07
1.00e+13 3.16227766016853740e+06 3.16227766016837955e+06 1.57859176397323608e-07
1.00e+14 1.00000000000000503e+07 1.00000000000000000e+07 5.02914190292358398e-08
1.00e+15 3.16227766016838104e+07 3.16227766016837917e+07 1.86264514923095703e-08
1.00e+16 1.00000000000000000e+08 1.00000000000000000e+08 0.00000000000000000e+00

» Catastrophic cancellation can sometimes be avoided if a formula is

properly reformulated.

> In the present case, one can compute vz + 1 — y/x almost to full
precision by using the equality

1

verl-ves oS

18 /27

Catastrophic cancellation: example 2

» Consider the function
_ 1—coszx

f(l') - {172
Note that
0< f(x)<1/2 forallz#0

> Let z = 1.2 x 1078, then the computed
f(f(z)) = 0.770988...

is completely wrong!

» Alternatively, the function can be re-written as

Consequently, for z = 1.2 x 1078, then the computed
fi(f(x)) = 0.499999... < 1/2 is fine!

19/27

Floating-point arithmetic error: X,/

Multiplication and Division:

1Ex9) = @x)(1+0)

zy(L+ 7)1+) (1+9)

xy(1l +Z§X),

(@/y)(1+6)

(@/y)(A+ 7)1+ 72) 7 (1 +)
xy(1 —&-3%),

f(z/y)

where

~ ~

Ox =T+ +0+0(7e), 0: =71 —72+0+0(Te).

Thus 1 L
0x| < 27 + 7€ + O(re), 0] <27+ 7€ + O(re)

we can conclude that multiplication and division are very well-behaved!

20/27

Outline

© Floating-point numbers and representations

© Floating-point arithmetic

© Floating-point error analysis

@ Further reading

CIRY= = = z 9ac
21/27

Floating-point error analysis

» lllustrate the basic idea of error analysis through a simple example.

Consider the inner product:
oy = z1y1 + T2y2 + T3y,

assuming already x;'s and y;'s are fp numbers.
» fl(xTy) is computed in the following order:
T
A(z"y) = A(A(A(z1y1) + A(22y2)) + A(z3Y3)).
> By the fp arithmetic model, we have
fTy) = A(fe1y1(+ 1) + w2y (1 + e2)) + 2393(1 + €3))
= f((z1y1(1+e1) + z2y2(1 + €2))(1 4 81) + z3y3(1 + €3))
= ((e1y1(1+e1) +22ya(1 + €2))(1 +61) + z3y3(1 + €3)) (1 + 52)
= w1y1(1+ €)@ +81)(1+682) +xoya(l +e2)(1+51)(1 + 62)

+z3y3(1 + €e3)(1 + d2),

where |€;| < e and |§;] < 1.

N
N

o
N}

Floating-point error analysis, cont'd

There are two ways to interpret the errors in the computed fl(z7y):
» Forward error analysis

» Backward error analysis

Forward error analysis

» We have
fi(z"y) = 2"y + E,

where

E =z1y1(€1 + 61 + 2) + zay2(e2 + 61 + d2)
+ z3y3(€3 + 62) + O(€?).

» |t implies that

IN

1
56(3|$1y1\ + 3|ways| + 2|lzsys|) + O(€%)

3
Zelal Iyl + O().

E|

IN

”

» This bound on E tells the worst-case difference between the “exact
2Ty and its computed value.

24 /27

Backward error analysis

» We can also write
ﬂ(xTy) =71y = (z+ Ax)T(y + Ay),
where

(1+6y),

~

Tr=m1(l+e), p=unl+06)1+0)=n
Ay2(1+6)7
d3).

To=22(1+e€), To=12(1+01)(1+3)=
Ty =z3(1+e€3), Us=ys(1+0) =ys(1+
and X

61] = [02] < e +O(?) and |d3] < 3¢

» This says the computed value fl(z7y) is the “exact” inner product of a
slightly perturbed Z and 7.

Outline

@ Floating-point numbers and representations
© Floating-point arithmetic
© Floating-point error analysis

@ Further reading

o = = = = 9Dae
26 /27

Further reading

1. D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 18(1):5-48, 1991.

2. Rencet lecture by N. Higham on the latest development on low

precision and multiprecision arithmetic.
http://bit.ly/kacovi8

3. Discussion of numerical disasters:

» T. Huckle, Collection of software bugs
http://www5.in.tum.de/~huckle/bugse.html

» "Bits and Bugs: A Scientific and Historical Review of Software Failures
in Computational Science” by T. Huckle and T. Neckel, SIAM, March

2019.

	Floating-point numbers and representations
	Floating-point arithmetic
	Floating-point error analysis
	Further reading

