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Motivation

Image segmentation in computer vision
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.1 Graph
An (undirected) graph is G = (V, E), where

» V = {v;} is a set of vertices;
» E = {(vi,vj), vi,v; € V}is a subset of V x V.

Remarks:

> An edge is a pair {v;, v;} with v; # v; (no self-loop);

» There is at most one edge from v; to v; (simple graph).

5/42



.1 Graph

» For every vertex v; € V, the degree d(v;) of v; is the number of
edges adjacent to v:

d(vi) = {v; € V{vj,vi} € E}|.
» Let d; = d(v;), the degree matrix

D = D(G) = diag(dy, ..., dn).
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.1 Graph

» Given a graph G = (V, E), with |V| = n and |E| = m, the

incidence matrix D(G) of G is an n x m matrix with
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.1 Graph

» Given a graph G = (V, E), with |V| = n and |E| = m, the
adjacency matrix A(G) of G is a symmetric n X n matrix with

= 1, if {Ui,’Uj}EE
71 0, otherwise ’
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1.2 Weighted graph
A weighted graph is G = (V, W) where

» V = {v;} is a set of vertices and |V| = n;

> W € R™ ™ is called weight matrix with
o wjl-ZO Ifl#j
Wi = { 0 ifi=j
The underlying graph of G is G= (V, E) with

E = {{vi, vj}wi; > 0}.

> If Wij S {0,1}, W:A,

» Since wy = 0, there is no self-loops in G.
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1.2 Weighted graph

» For every vertex v; € V, the degree d(v;) of v; is the sum of
the weights of the edges adjacent to v;:

d(vz) = Z wij.
7j=1

» Let d; = d(v;), the degree matrix
D = D(G) = diag(ds, . .., dy).
> Let d = diag(D) and denote 1 = (1,...,1)7, then

d=W1.
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1.2 Weighted graph

» Given a subset of vertices A C V, we define the volume by
vol(A) = > d(v) = > [ D wij |-
v;€EA v, €A \j=1

» If vol(A) = 0, all the vertices in A are isolated.
Example:

If A= {Ul,vg}, then
vol(A) = d(v1) + d(v3)

= (w12 + w13)+

S (w31 + w3z + w3q)
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1.2 Weighted graph
» Given two subsets of vertices A, B C V, the links is defined by

links(A,B) = wj.
v;€Aw;€EB
Remarks:
» A and B are not necessarily distinct;
» Since W is symmetric, links(A, B) = links(B, A);
» vol(A) = links(A, V).
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1.2 Weighted graph
» The quantity cut(A) is defined by
cut(A) = links(A,V — A).
» The quantity assoc(A) is defined by
assoc(A) = links(A, A).

Remarks:
» cut(A) measures how many links escape from A;
» assoc(A) measures how many links stay within A;
» cut(A) + assoc(A) = vol(A).
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1.3 Graph Laplacian

Given a weighted graph G = (V, W), the (graph) Laplacian L of G
is defined by
L=D-W.

where D is the degree matrix of G, and D = diag(W - 1).
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1.3 Graph Laplacian

Properties of Laplacian
1 n
T 2
1. 2" Lz = 3 Z wij(x; — x5)” for Vo € R”,
i,7=1
2. LZO |fw2] ZOfOI’ all ’i,j,
3. L-1=0,
4. If the underlying graph of GG is connected, then

0:)\1<)\2§)\3§...§)\n,

where \; are the eigenvalues of L.

5. If the underlying graph of G is connected, then the dimension of
the nullspace of L is 1.
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1.3 Graph Laplacian
Proof of Property 1. Since L = D — W, we have

2 'Ly =2" Dy — 2" Wx

n n
2
= g dix; — g Wi T T
i=1 ij=1
1 n n n
_ 2 y 2
= Q(E dix; —2 E Wi Txj + g djac])
A 2,7=1 7j=1
1 n n n
= 2(5 wiT; — 2 g wijTxj + g wlj:v])
i,j=1 i,7=1 i,j=1
n
1
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1.3 Graph Laplacian

Proof of Property 2.
» Since L' =D - W' =D —W = L, L is symmetric.
» Since 27 Lz = %szzl w;j(w; — x5)? and w;; > 0 for all 4, j,
we have 27 Lz > 0.
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1.3 Graph Laplacian
Proof of Property 3.

L1=D-W)1=D1-Wl=d—-d=0.

Proofs of Properties 4 and 5 are skipped, see §2.2 of [Gallier'13].

18 /42



QOutline

I. Graph and graph Laplacian
» Graph
» Weighted graph
» Graph Laplacian
Il. Graph clustering
» Graph clustering
» Normalized cut
» Spectral clustering

19/42



1.1 Graph clustering
k-way partitioning: given a weighted graph G = (V, W), find a
partition Ay, Ao, ..., Ay of V, such that
> AfUAU...UA, =TV,
» AiNAyN...NA, =g,

» for any i and j, the edges between (A;, A;) have low weight
and the edges within A; have high weight.

If kK =2, itis a two-way partitioning.
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1.1 Graph clustering

» Recall: (two-way) cut:

cut(A) =links(A,V —A) = > wy
’UZ'EA,’UJ'GV—A
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1.1 Graph clustering problems

The mincut is defined by

mincut(A) = mjn g Wi
v;i€A,v;€V—-A

In practice, the mincut typically yields unbalanced partitions.

mincut(A)

mincut(4) =142 =3;
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11.2 Normalized cut

The normalized cut! is defined by

_cut(A4)  cut(A)

Ncut(A) j;l

~ vol(A) + vol(

where A=V — A.

! Jianbo Shi and Jitendra Malik, 2000

3
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11.2 Normalized cut

Minimal Ncut:
min Ncut(A)

Example:

Ncut(A)

mincut(A)

min Ncut(A)

_ 4 + 4 _ 4
~ 376+6+3 | 3164613 _ O°
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11.2 Normalized cut

Let z = (x1,...,x,) be the indicator vector, such that

o 1 ifv, € A
T 21 ifye A=V —A

Then
L. A+2)'DA+2) = 43 .eadi =4-vol(A);
2. 1+z)TW1 +2)= 4> icameawij =4 -assoc(A).
3. (14 2)TL(1+x) =4- (vol(A) — assoc(A)) = 4 - cut(A);
4. (1 —-2)'D(1 —2) = 4 eadi=4- vol(A);
5. 1 —2)"W@ —z)=4 DA, ed Wij =4 assoc(A).
6. (1 —2)TL(1 —x)=4-(vol(A) — assoc(A)) = 4 - cut(A).
7. vol(V) =17D1.
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11.2 Normalized cut

» With the above basic properties, Ncut(A) can now be written as

1 ((1+2)"L(1+2)  (1-2)TL1-2)
_ 1 (A +2) = b1 —a)TL((1 + ) - b(1 — x))
4 b(17D1) '

where k = vol(A)/vol(V), b= k/(1 — k) and vol(V) = 17 D1.
» Let y = (14+2) — b(1 — ), we have

y' Ly

1

where

o 2 ifv, € A
Yi=\ —2b ifv;e A -

26
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11.2 Normalized cut
» Since b = k/(1 — k) = vol(A)/vol(A), we have

TDy Z d; + b Z d; = vol(A) + b*vol(A)
UzeA 7.11614
= b(vol(A) 4 vol(A)) = b- (17 D1).

» |n addition,

y'Dl=y"d=2-) di—2b-> d

v;€A v €A
=2-vol(A) — 2b-vol(A) =
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11.2 Normalized cut

In summary, the minimal normalized cut is to solve the following
binary optimization:
T
.y Ly
min 1
st. y(i) € {2,—2b}
y'D1=0

By Relaxation, we solve
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11.2 Normalized cut

Variational principle

» Let ABeR™™ AT = A BT =B>0and M1 <X < ...\,
be the eigenvalues of Au = ABu with corresponding

eigenvectors ui, ua, . .., Uy,
» then
T Ax 2T Ax
min Thy AL, arg min Thy U1
and
. 2T Az . 2T Az
gy < WE i g =

» More general form exists.
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11.2 Normalized cut

» For the matrix pair (L, D), it is known that (A1,y1) = (0,1).

» By the variational principle, the relaxed minimal Ncut (2) is
equivalent to finding the second smallest eigenpair (Ao, 1) of

Ly = ADy (3)

Remarks:
» L is extremely sparse and D is diagonal;

» Precision requirement for eigenvectors is low, say O(107%).
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11.2 Normalized cut

Image segmentation: original graph
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11.2 Normalized cut

Image segmentation: heatmap of eigenvectors
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11.2 Normalized cut

Image segmentation: result of min Ncut
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1.3 Spectral clustering

Ncut remaining issues

» Once the indicator vector is computed, how to search the

splitting point that the resulting partition has the minimal
Ncut(A) value?

» How to use the extreme eigenvectors to do the k-way
partitioning?

The above two problems are addressed in spectral clustering
algorithm.
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1.3 Spectral clustering

Spectral clustering algorithm [Ng et al, 2002]
Given a weighted graph G = (V, W),

1.

compute tlhe normalizedlLapIacian
L,=D"2(D—-W)D 2,

. find k eigenvectors X = [x1,..., x| corresponding to

the k smallest eigenvalues of Ly;

. form'Y € R™* by normalizing each row of X such

that Y (i,:) = X (i,;)/[1 X ()5

. treat each Y (i,:) as a point, cluster them into k

clusters via K-means with label ¢; = {1,...,k}.

The label ¢; indicates the cluster that v; belongs to.
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1.3 Spectral clustering

Synthetic example: original data
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1.3 Spectral clustering

Synthetic example:

computed eigenvectors
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1.3 Spectral clustering

Synthetic example: 2-way clustering
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1.3 Spectral clustering

Synthetic example: 3-way clustering
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1.3 Spectral clustering

Synthetic example: 4-way clustering
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Extension: constrained spectral clustering
Spectral clustering

original image Ncut segmentation

Constrained spectral clustering

constraint Ncut

constrained segmentation
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