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Motivation
Image segmentation in computer vision
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Motivation
Community detection in network analysis
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I.1 Graph

An (undirected) graph is G = (V,E), where

I V = {vi} is a set of vertices;

I E = {(vi, vj), vi, vj ∈ V } is a subset of V × V .

Remarks:

I An edge is a pair {vi, vj} with vi 6= vj (no self-loop);

I There is at most one edge from vi to vj (simple graph).
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I.1 Graph

I For every vertex vi ∈ V , the degree d(vi) of vi is the number of
edges adjacent to v:

d(vi) = |{vj ∈ V |{vj , vi} ∈ E}|.

I Let di = d(vi), the degree matrix

D = D(G) = diag(d1, . . . , dn).

D =


2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

 .
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I.1 Graph

I Given a graph G = (V,E), with |V | = n and |E| = m, the
incidence matrix D̃(G) of G is an n×m matrix with

d̃ij =

{
1, if ∃ k s.t. ej = {vi, vk}
0, otherwise

D̃(G) =

e1 e2 e3 e4 e5


v1 1 1 0 0 0
v2 1 0 1 1 0
v3 0 1 1 0 1
v4 0 0 0 1 1
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I.1 Graph

I Given a graph G = (V,E), with |V | = n and |E| = m, the
adjacency matrix A(G) of G is a symmetric n× n matrix with

aij =

{
1, if {vi, vj} ∈ E
0, otherwise

.

A(G) =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


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I.2 Weighted graph

A weighted graph is G = (V,W ) where

I V = {vi} is a set of vertices and |V | = n;

I W ∈ Rn×n is called weight matrix with

wij =

{
wji ≥ 0 if i 6= j
0 if i = j

The underlying graph of G is Ĝ = (V,E) with

E = {{vi, vj}|wij > 0}.

I If wij ∈ {0, 1}, W = A,

I Since wii = 0, there is no self-loops in Ĝ.
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I.2 Weighted graph

I For every vertex vi ∈ V , the degree d(vi) of vi is the sum of
the weights of the edges adjacent to vi:

d(vi) =

n∑
j=1

wij .

I Let di = d(vi), the degree matrix

D = D(G) = diag(d1, . . . , dn).

I Let d = diag(D) and denote 1 = (1, . . . , 1)T , then

d = W1.

10 / 42



I.2 Weighted graph

I Given a subset of vertices A ⊆ V , we define the volume by

vol(A) =
∑
vi∈A

d(vi) =
∑
vi∈A

 n∑
j=1

wij

 .

I If vol(A) = 0, all the vertices in A are isolated.
Example:

If A = {v1, v3}, then

vol(A) = d(v1) + d(v3)

= (w12 + w13)+

(w31 + w32 + w34)
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I.2 Weighted graph

I Given two subsets of vertices A,B ⊆ V , the links is defined by

links(A,B) =
∑

vi∈A,vj∈B
wij .

Remarks:

I A and B are not necessarily distinct;

I Since W is symmetric, links(A,B) = links(B,A);

I vol(A) = links(A, V ).
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I.2 Weighted graph

I The quantity cut(A) is defined by

cut(A) = links(A, V −A).

I The quantity assoc(A) is defined by

assoc(A) = links(A,A).

Remarks:

I cut(A) measures how many links escape from A;

I assoc(A) measures how many links stay within A;

I cut(A) + assoc(A) = vol(A).
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I.3 Graph Laplacian

Given a weighted graph G = (V,W ), the (graph) Laplacian L of G
is defined by

L = D −W.

where D is the degree matrix of G, and D = diag(W · 1).
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I.3 Graph Laplacian

Properties of Laplacian

1. xTLx =
1

2

n∑
i,j=1

wij(xi − xj)2 for ∀x ∈ Rn,

2. L ≥ 0 if wij ≥ 0 for all i, j,

3. L · 1 = 0,

4. If the underlying graph of G is connected, then

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn,

where λi are the eigenvalues of L.

5. If the underlying graph of G is connected, then the dimension of
the nullspace of L is 1.
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I.3 Graph Laplacian

Proof of Property 1. Since L = D −W , we have

xTLx = xTDx− xTWx

=

n∑
i=1

dix
2
i −

n∑
i,j=1

wijxixj

=
1

2
(

n∑
i

dix
2
i − 2

n∑
i,j=1

wijxixj +

n∑
j=1

djx
2
j )

=
1

2
(

n∑
i,j=1

wijx
2
i − 2

n∑
i,j=1

wijxixj +

n∑
i,j=1

wijx
2
j )

=
1

2

n∑
i,j=1

wij(xi − xj)2.
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I.3 Graph Laplacian

Proof of Property 2.

I Since LT = D −W T = D −W = L, L is symmetric.

I Since xTLx = 1
2

∑n
i,j=1wij(xi − xj)2 and wij ≥ 0 for all i, j,

we have xTLx ≥ 0.
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I.3 Graph Laplacian

Proof of Property 3.

L · 1 = (D −W )1 = D1−W1 = d− d = 0.

Proofs of Properties 4 and 5 are skipped, see §2.2 of [Gallier’13].
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II.1 Graph clustering

k-way partitioning: given a weighted graph G = (V,W ), find a
partition A1, A2, . . . , Ak of V , such that

I A1 ∪A2 ∪ . . . ∪Ak = V ;

I A1 ∩A2 ∩ . . . ∩Ak = ∅;

I for any i and j, the edges between (Ai, Aj) have low weight
and the edges within Ai have high weight.

If k = 2, it is a two-way partitioning.
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II.1 Graph clustering

I Recall: (two-way) cut:

cut(A) = links(A, V −A) =
∑

vi∈A, vj∈V−A
wij
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II.1 Graph clustering problems

The mincut is defined by

min cut(A) = min
A

∑
vi∈A, vj∈V−A

wij .

In practice, the mincut typically yields unbalanced partitions.

min cut(A) = 1 + 2 = 3;
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II.2 Normalized cut

The normalized cut1 is defined by

Ncut(A) =
cut(A)

vol(A)
+

cut(Ā)

vol(Ā)
.

where Ā = V −A.

1Jianbo Shi and Jitendra Malik, 2000
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II.2 Normalized cut

Minimal Ncut:
min Ncut(A)

Example:

min Ncut(A) = 4
3+6+6+3 + 4

3+6+6+3 = 4
9 .
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II.2 Normalized cut

Let x = (x1, . . . , xn) be the indicator vector, such that

xi =

{
1 if vi ∈ A
−1 if vi ∈ Ā = V −A

Then

1. (1 + x)TD(1 + x) = 4
∑

vi∈A di = 4 · vol(A);

2. (1 + x)TW (1 + x) = 4
∑

vi∈A,vj∈Awij = 4 · assoc(A).

3. (1 + x)TL(1 + x) = 4 · (vol(A)− assoc(A)) = 4 · cut(A);

4. (1− x)TD(1− x) = 4
∑

vi∈Ā di = 4 · vol(Ā);

5. (1− x)TW (1− x) = 4
∑

vi∈Ā,vj∈Āwij = 4 · assoc(Ā).

6. (1− x)TL(1− x) = 4 · (vol(Ā)− assoc(Ā)) = 4 · cut(Ā).

7. vol(V ) = 1TD1.
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II.2 Normalized cut

I With the above basic properties, Ncut(A) can now be written as

Ncut(A) =
1

4

(
(1 + x)TL(1 + x)

k(1TD1)
+

(1− x)TL(1− x)

(1− k)(1TD1)

)
=

1

4
· ((1 + x)− b(1− x))TL((1 + x)− b(1− x))

b(1TD1)
.

where k = vol(A)/vol(V ), b = k/(1− k) and vol(V ) = 1TD1.

I Let y = (1 + x)− b(1− x), we have

Ncut(A) =
1

4
· yTLy

b(1TD1)

where

yi =

{
2 if vi ∈ A
−2b if vi ∈ Ā

.
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II.2 Normalized cut

I Since b = k/(1− k) = vol(A)/vol(Ā), we have

1

4
(yTDy) =

∑
vi∈A

di + b2
∑
vi∈Ā

di = vol(A) + b2vol(Ā)

= b(vol(Ā) + vol(A)) = b · (1TD1).

I In addition,

yTD1 = yTd = 2 ·
∑
vi∈A

di − 2b ·
∑
vi∈Ā

di

= 2 · vol(A)− 2b · vol(Ā) = 0
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II.2 Normalized cut

In summary, the minimal normalized cut is to solve the following
binary optimization:

min
y

yTLy

yTDy
(1)

s.t. y(i) ∈ {2,−2b}
yTD1 = 0

By Relaxation, we solve

min
y

yTLy

yTDy
(2)

s.t. y ∈ Rn

yTD1 = 0
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II.2 Normalized cut

Variational principle

I Let A,B ∈ Rn×n, AT = A, BT = B > 0 and λ1 ≤ λ2 ≤ . . . λn
be the eigenvalues of Au = λBu with corresponding
eigenvectors u1, u2, . . . , un,

I then

min
x

xTAx

xTBx
= λ1 , arg min

x

xTAx

xTBx
= u1

and

min
xTBu1=0

xTAx

xTBx
= λ2 , arg min

xTBu1=0

xTAx

xTBx
= u2.

I More general form exists.
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II.2 Normalized cut

I For the matrix pair (L,D), it is known that (λ1, y1) = (0,1).

I By the variational principle, the relaxed minimal Ncut (2) is
equivalent to finding the second smallest eigenpair (λ2, y2) of

Ly = λDy (3)

Remarks:

I L is extremely sparse and D is diagonal;

I Precision requirement for eigenvectors is low, say O(10−3).
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II.2 Normalized cut
Image segmentation: original graph
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II.2 Normalized cut
Image segmentation: heatmap of eigenvectors
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II.2 Normalized cut
Image segmentation: result of minNcut
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II.3 Spectral clustering
Ncut remaining issues

I Once the indicator vector is computed, how to search the
splitting point that the resulting partition has the minimal
Ncut(A) value?

I How to use the extreme eigenvectors to do the k-way
partitioning?

The above two problems are addressed in spectral clustering
algorithm.
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II.3 Spectral clustering

Spectral clustering algorithm [Ng et al, 2002]

Given a weighted graph G = (V,W ),

1. compute the normalized Laplacian
Ln = D−

1
2 (D −W )D−

1
2 ;

2. find k eigenvectors X = [x1, . . . , xk] corresponding to
the k smallest eigenvalues of Ln;

3. form Y ∈ Rn×k by normalizing each row of X such
that Y (i, :) = X(i, ; )/‖X(i, :)‖;

4. treat each Y (i, :) as a point, cluster them into k
clusters via K-means with label ci = {1, . . . , k}.

The label ci indicates the cluster that vi belongs to.
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II.3 Spectral clustering

Synthetic example: original data
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II.3 Spectral clustering

Synthetic example: computed eigenvectors
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II.3 Spectral clustering

Synthetic example: 2-way clustering
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II.3 Spectral clustering

Synthetic example: 3-way clustering
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II.3 Spectral clustering

Synthetic example: 4-way clustering
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Extension: constrained spectral clustering
Spectral clustering

original image Ncut segmentation

Constrained spectral clustering

constraint Ncut constrained segmentation
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