
ECS231
Intro to High Performance Computing

April 13, 2019

1 / 33

Algorithm design and complexity - as we know

Example. Computing the nth Fibonacci number:

F (n) = F (n− 1) + F (n− 2), for n = 2, 3, . . .

F (0) = 0, F (1) = 1

Algorithms and complexity:

1. Recursive

2. Iterative

3. Divide-and-conquer

4. Approximation

2 / 33

Algorithms design and communication

Examples:

I Matrix-vector multiplication y ← y +A · x
1. Row-oriented
2. Column-oriented

I Solving triangular linear system Tx = b

1. Row-oriented
2. Column-oriented

3 / 33

Matrix storage

I A matrix is a 2-D array of elements, but memory addresses are “1-D”.

I Conventions for matrix layout
I by column, or “column major” – Fortran default
I by row, or “row major” – C default

13

Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory
addresses are “1-D”

• Conventions for matrix layout

• by column, or “column major” (Fortran default)

• by row, or “row major” (C default)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

4 / 33

Memory hierarchy

I Most programs have a high degree of locality in their memory
accesses:

I spatial locality
accessing things nearby previous accesses

I temporal locality
reusing an item that was previously accessed

I Memory hierarchy tries to exploit locality

I By taking advantage of the principle of locality:

I present the user with as much memory as is available in the cheapest
technology

I provide access at the speed offered by the fastest technology

5 / 33

Memory hierarchy

4

Memory Hierarchy

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

1s 10,000,000s

 (10s ms)

Speed (ns): 10s 100s

100s Gs Size (bytes): Ks Ms

Tertiary

Storage

(Disk/Tape)

10,000,000,000s

 (10s sec)

Ts

6 / 33

Idealized processor model

I Processor names bytes, words, etc. in its address space

I these represent integers, floats, pointers, arrays, etc
I exist in the program stack, static region, or heap

I Operations include
I read and write (given an address/pointer)
I arithmetic and other logical operations

I Order specified by program
I read returns the most recently written data
I compiler and architecture translate high level expressions into

“obvious” lower level instructions
I Hardware executes instructions in order specified by compiler

I Cost
I Each operations has roughly the same cost (read, write, add, multiply,

etc.)

7 / 33

Processor in the real world

I Processors have
I registers and caches

I small amounts of fast memory
I store values of recently used or nearby data
I different memory ops can have very different costs

I parallelism
I multiple “functional units” that can run in parallel
I different orders, instruction mixes have different costs

I pipelining
I a form of parallelism, like an assembly line in a factory

I Why is this your program?
I In theory, compilers understand all of this and can optimize your

program, in practice, they don’t.

8 / 33

Processor-DRAM gap (latency)

Memory hierarchies are getting deeper, processors get faster more quickly
than memory access.

8

Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

• Memory hierarchies are getting deeper

• Processors get faster more quickly than memory

Communication is the bottleneck!

9 / 33

Communication bottleneck

I Time to run code = clock cycles running code + clock cycles waiting
for memory

I For many years, CPU’s have sped up an average of 50% per year over
memory chip speed ups.

I Hence, memory access is the computing bottleneck. The
communication cost of an algorithm has already exceed arithmetic
cost by orders of magnitude, and the gap is growing.

10 / 33

Example: matrix-matrix multiply

Otimized vs. näıve triple-loop algorithms for matrix multiply

9

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
11 / 33

Cache and its importance in performance

I Data cache was designed with two key concepts in mind
I Spatial locality

I when an element is referenced, its neighbors will be referenced too,
I cache lines are fetched together,
I work on consecutive data elements in the same cache line.

I Temporal locality
I when an element is referenced, it might be referenced again soon,
I arrange code so that data in cache is reused often.

I Actual performance of a program can be complicated function of the
architecture. We will use a simple model to help us design efficient
algorithm.

I Is this possible? we will illustrate with a common technique for
improving catch performance, called blocking or tiling.

12 / 33

A simple model of memory

I Assume just 2 levels in the hierachy: fast and slow

I All data initially in slow memory
I m = number of memory elements (words) moved between fast and

slow memory
I tm = time per slow memory operation
I f = number of arithmetic operations
I tf = time per arithmetic operation
I q = f/m average number of flops per slow element access

I Minimum possible time = f · tf when all data in fast

I Total time = f · tf +m · tm
= f · tf (1 + tm/tf · 1/q)

I Larger q means “Total time” closer to minimum f · tf
I tm/tf = key to machine efficiency

I q = key to algorithm efficiency

13 / 33

Matrix-vector multiply y ← y + Ax

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

15

Matrix-vector multiplication

{implements y = y + A*x}

for i = 1:n

 for j = 1:n

 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

14 / 33

Matrix-vector multiply y ← y + Ax

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

15

Matrix-vector multiplication

{implements y = y + A*x}

for i = 1:n

 for j = 1:n

 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

15 / 33

Matrix-vector multiply y ← y + Ax

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

I m = number of slow memory refs = 3n+ n2

I f = number of arithm ops = 2n2

I q = f/m ≈ 2

I Matrix-vector multiplication limited by slow memory speed!

16 / 33

Näıve matrix-matrix multiply C ← C + AB

for i = 1:n

for j = 1:n

for k = 1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j)

17

“Naïve” Matrix Multiply

{implements C = C + A*B}

for i = 1 to n

 for j = 1 to n

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

17 / 33

Näıve matrix-matrix multiply C ← C + AB

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j)

{write C(i,j) back to slow memory}

17

“Naïve” Matrix Multiply

{implements C = C + A*B}

for i = 1 to n

 for j = 1 to n

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

18 / 33

Näıve matrix-matrix multiply C ← C + AB

for i = 1:n

{read row i of A into fast memory}

for j = 1:n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j)

{write C(i,j) back to slow memory}

Number of slow memory references:

m = n2(read each row of A once)

+ n3(read each column of B n times)

+ 2n2(read and write each element of C once) = n3 + 2n2

Therefore, q = f/m = 2n3/(n3 + 3n2) ≈ 2. There is no improvement over
matrix-vector multiply!

19 / 33

Block matrix-matrix multiply

Consider A,B,C to be N ×N matrices of b× b subblocks, where b = n/N
is called the blocksize

for i = 1:N

for j = 1:N

for k = 1:N

C(i,j) = C(i,j) + A(i,k)*B(k,j) {on blocks}

20

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is
called the block size

 for i = 1 to N

 for j = 1 to N

 {read block C(i,j) into fast memory}

 for k = 1 to N

 {read block A(i,k) into fast memory}

 {read block B(k,j) into fast memory}

 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

20 / 33

Block matrix-matrix multiply

Consider A,B,C to be N ×N matrices of b× b subblocks, where b = n/N
is called the blocksize

for i = 1:N

for j = 1:N

{read block C(i,j) into fast memory}

for k = 1:N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k)*B(k,j) {on blocks}

{read block C(i,j) back to slow memory}

20

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is
called the block size

 for i = 1 to N

 for j = 1 to N

 {read block C(i,j) into fast memory}

 for k = 1 to N

 {read block A(i,k) into fast memory}

 {read block B(k,j) into fast memory}

 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

21 / 33

Block matrix-matrix multiply
for i = 1:N

for j = 1:N

{read block C(i,j) into fast memory}

for k = 1:N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k)*B(k,j) {on blocks}

{read block C(i,j) back to slow memory}

Number of slow memory references:

m = N3 · n/N · n/N(read each block of A N3 times)

+N3 · n/N · n/N(read each block of B N3 times)

+ 2n2(read and write each block of C once) = (2N + 2)n2

and average number of flops per slow memory access

q =
f

m
=

2n3

(2N + 2)n2
≈ n

N
= b.

Hence, we can improve performance by increasing the blocksize b!

22 / 33

Limits to optimizing matrix multiply

The blocked algorithm has the ratio q ≈ b:
I The larger the blocksize, the more efficient the blocked algorithm will

be.

I Limit: all three blocks from A,B,C must fit in fast memory (cache),
so we cannot make these blocks arbitrarily large:

3b2 ≤M =⇒ q ≈ b ≤
√
M/3.

23 / 33

Fast linear algebra kernels: BLAS

I Simple linear algebra kernels such as matrix multiply

I More complicated algorithm can be built from these kernels

I The interface of these kernels havebeen standardized as the Basic
Linear Algebra Subroutines (BLAS).

24 / 33

BLAS: advantages

I Clarity: code is shorter and easier to read

I Modularity: gives programmer larger building blocks

I Performance: manufacturers provide tuned machine-specific BLAS

I Portability: machine dependencies are confined to the BLAS

25 / 33

Level 1 BLAS

I Operate on vectors or pairs of vectors
perform O(n) operations
return either a vector or a scalar

I xAXPY

y ← ax+ y

I xSCAL

y = ax

I xDOT

s = xT y

I ...

26 / 33

Level 2 BLAS

I Operate on a matrix and a vector:
perform O(n2) operations
return a matrix or a vector

I xGEMV

y ← y +Ax

I xGER

A← A+ yxT rank-one update

I xTRSV

Solves Tx = b for x, where T is triangular

I ...

27 / 33

Level 3 BLAS

I Operate on a pair or triple of matrices
perform O(n3) operations
return a matrix

I xGEMM

C ← αC + βAB

I xTRSM

solves TX = B for X, where T is trianglar

I ...

28 / 33

Why higher level BLAS?

I Can only do arithmetic on data at the top of hierarchy

I Higher level BLAS let us do this

30

Why Higher Level BLAS?

• Can only do arithmetic on data at the top of the
hierarchy

• Higher level BLAS lets us do this

BLAS Memory
Refs

Flops Flops/M
emory
Refs

Level 1
y=y+ax

3n 2n 2/3

Level 2
y=y+Ax

n2 2n2 2

Level 3
C=C+AB

4n2 2n3 n/2

Registers

L 1

Cache

L 2

Cache

Local

Memory

Remote

Memory

Secondary

Memory

29 / 33

Typical BLAS Performance

32

BLAS for Performance

• Development of blocked algorithms important for performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

0

50

100

150

200

250

10 100 200 300 400 500

Order of vector/Matrices

M
fl

o
p

/s

Level 3 BLAS

Level 2 BLAS

Level 1 BLAS

Further reading:

https://github.com/flame/how-to-optimize-gemm/wiki/

30 / 33

Mini project – Homework

Algorithms for the matrix multiply C = C +A ·B with different BLAS-type
operation kernels:

1. triple-loop

2. dot product (inner product), i.e., the inner loop use the vector inner
product xT y.

3. saxpy, i.e., the inner loop use Level 1 BLAS: y := a ∗ x+ y

4. matrix-vector, i.e., the inner loop use Level 2 BLAS: y := y +A ∗ x
5. Outer product, i.e., the inner loop use Level 2 BLAS: C := C + xyT .

What we learned here

1. The weakness of flop counting: methods for the same problem that
involve the same number of flops can perform very differently.

2. The nature of the kernel operations (BLAS 1, 2, 3) is more important
than the amount of arithmetic involved.

31 / 33

Numerical software engineering

I documentation
an integral part of programming

I Software design
modular design

I Validation and debugging
write a program to validate a function that you have written

I Efficiency
array (matrix)-level computing
make use of BLAS, and high-performance libraries such as Intel’s MKL

32 / 33

Further Reading

I Berkeley CS267 Lecture on “Single Processor Machines: Memory
Hierarchies and Processor Features by J. Demmel

33 / 33

