
ECS 231
Subspace projection methods for LS

1 / 38



Part I. Basics

The landscape of solvers for linear systems of equations

Ax = b,

more robust← −−− → less storage

Direct Iterative
(u = Av)

Nonsymmetric A LU GMRES

Symmetric positive definite A Cholesky CG

more general
↑
|
|
|
↓

more robust
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Part I. Basics

A framework for subspace projection methods.

I The basic idea:
I extract an approximate solution x̃ from a subspace of Rn.
I a technique of dimension reduction.

I Mathematically, let W,V ⊆ Rn, and x0 is an initial guess of the
solution, then the subspace projection technique is to

find x̃ ∈ x0 + z, z ∈W s.t. b−Ax̃⊥V. (1)

In other words, let r0 = b−Ax0, then

b−Ax̃ = b−A(x0 + z) = r0 −Az.

(1) is equivalent to

find z ∈W s.t. r0 −Az⊥V. (1a)

I Orthogonal projection: W = V,

I Oblique projection: W 6= V,
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Part I. Basics

In matrix notation, let V = [v1, v2, . . . , vm] be a basis of V, and
W = [w1, w2, . . . , wm] be a basis of W. Then any approximation solution

x̃ = x0 + z = x0 +Wy

and the orthogonality condition (1a) implies

V T (r0 −Az) = 0.

Thus we have
V TAW y = V T r0.

Thus assuming V TAW is invertible, a new approximate solution x̃:

x̃ = x0 +W (V TAW )−1V T r0.
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Part I. Basics

Prototype iterative subspace projection technique:

Prototype Projection Method:
0. Let x0 be an initial approximation
1. Iterate until convergence:
2. Select a pair of subspaces V and W of Rn
3. Generate basis matrices V and W for V and W

4. r0 ← b−Ax0
5. y ← (V TAW )−1V T r0
6. x0 ← x0 +Wy

5 / 38



Part I. Basics

Prototype iterative subspace projection technique, cont’d
Remarks:

1. The matrix V TAW does not have to be formed explicitly, typically a
by-product of Steps 2 and 3.

2. There are two important cases where the nonsingularity of V TAW is
guaranteed:

1. If A is symmetric positive definite (SPD) and W = V, then
V TAW = WTAW is also SPD (and nonsingular).

2. If A is nonsingular, and V = AW, then V TAW = WTATAW , which
is SPD (and nonsingular).
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Part I. Basics

Prototype iterative subspace projection technique in one-dimension:

W = span{w} and V = span{v},

The new approximation takes form

x0 ← x0 + z = x0 + αw

and the orthogonality condition (1a) implies

vT (r0 −Az) = vT (r0 − αAw) = 0,

and thus

α =
vT r0
vTAw

.

7 / 38



Part I. Basics

Steepest Descent (SD) method
When A is SPD, at each step, take

v = w = r0 = b−Ax0

This yields

Steepest Descent (SD) Algorithm:
1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk
4. αk =

rTk rk
rTk Ark

5. xk+1 = xk + αkrk
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Part I. Basics

Steepest Descent (SD) method, cont’d

Remarks:

I Since A is SPD, rTk Ark > 0 except rk = 0.

I Let x∗ = A−1b, then k-th step of the SD iteration minimizes

f(x) ≡ 1

2
‖x∗ − x‖2A =

1

2
(x∗ − x)TA(x∗ − x), x∗ = A−1b

over all vectors of the form xk − α(∇f(xk)), known as line search.
This is equivalent to

αk = argminαf (xk−1 − α · ∇f(xk)) ,

where ∇f(xk) = b−Axk is the gradient of f at xk.

I Recall that from Calculus, the negative of the gradient direction is
locally the direction that yields the fastest rate of decrease for f .
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Part I. Basics

Minimal Residual (MR) Iteration.
For a general nonsingular matrix A, at each step, let

w = r0 and v = Ar0,

It yields

Minimal Residual (MR) Algorithm:
1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk
4. αk =

rTk A
T rk

rTk A
TArk

5. xk+1 = xk + αkrk

Remark: each iteration minimizes

f(x) ≡ ‖r‖22 = ‖b−Ax‖22
over all vectors of the form xk − αrk, namely line search, which is
equivalent to solve the least squares problem

min
α
‖b−A(xk − αrk)‖2.
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Part II: Krylov subspace and GMRES

Krylov subspace is defined as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v},

Note that if x ∈ Km(A, v), then

x = p(A)v,

where p(A) is a polynomial of degree not exceeding m− 1.
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Part II: Krylov subspace and GMRES

Arnoldi procedure is an algorithm for building an orthonormal basis
{v1, v2, . . . , vm} of the Krylov subspace Km(A, v) using a modified
Gram-Schmidt orthogonalization process.

1. v1 = v/‖v‖2
2. for j = 1, 2, . . . ,m
3. compute w = Avj
4. for i = 1, 2, . . . , j
5. hij = vTi w
6. w := w − hijvi
7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, stop
10. vj+1 = w/hj+1,j

11. endfor
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Part II: Krylov subspace and GMRES

Proposition. Assume that hj+1,j 6= 0 for j = 1, 2, . . . ,m, then the vectors
{v1, v2, . . . , vm} form an orthonormal basis of the Krylov subspace
Km(A, v):

span{v1, v2, . . . , vm} = Km(A, v).

Proof. By induction.
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Part II: Krylov subspace and GMRES

Let

Vm = [v1, v2, . . . , vm] and Hm = (hij) = Upper Hessenberg.

Then in the matrix form, the Arnoldi procedure can be expressed by the
following order-m Arnoldi decompositions:

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1Ĥm, (2)

where V TmVm = Im, V Tmvm+1 = 0 and ‖vm+1‖2 = 1.

In addition, we denote

Vm+1 = [Vm vm+1] and Ĥm =

[
Hm

hm+1,me
T
m

]
,
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Part II: Krylov subspace and GMRES

Remarks:

1. the matrix A is only referenced via the matvec Avj . Therefore, it is
ideal for large sparse or dense structure matrices. Any sparsity or
structure of a matrix can be exploited in the matvec.

2. The main storage requirement is n(m+ 1) for storing Arnoldi vectors
{vi} plus the storage requirements for A or the required matvec.

3. The primary arithmetic cost is the cost of m matvecs plus 2m2n for
the rest. It is common that the matvec is the dominant cost.

4. The procedure breaks down when hj+1,j = 0 for some j. If it breaks
down at step j (i.e. hj+1,j = 0), we have

AVj = VjHj .

This indicates that Kj is an invariant subspace of A.

5. Care must be taken to insure that the vectors vj remain orthogonal to
working accuracy in the presence of rounding error. The usual
technique is called reorthogonalization.
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Part II: Krylov subspace and GMRES

I The Generalized Minimum Residual (GMRES)1 is a generalization of
the one-dimensional MR iteration.

I GMRES uses the following pair of Krylov subspaces as pair of
projection subspaces:

W = Km(A, r0) and V = AW = AKm(A, r0).

and can be derived under the framework of the subspace projection
technique

1Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal RESidual algorithm for
solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, Vol.7, pp.856–869, 1986.
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Part II: Krylov subspace and GMRES

Derivation of GMRES using subspace projection

I Let
x ∈ x0 +W = x0 + Vmy.

Then by the orthogonality condition, we have

V TmA
T (b−Ax) = 0.

i.e.,
V TmA

T (r0 −AVmy) = 0.

which is equivalent to

V TmA
TAVmy = V TmA

T r0

I By order-m Arnoldi decompositions, we have

ĤT
mĤmy = ĤT

mV
T
m+1r0 = ĤT

m(βe1)

I This is equivalent to solve the LS problem

min
y
‖βe1 − Ĥmy‖2.

for y
17 / 38



Part II: Krylov subspace and GMRES

An alternative derivation of GMRES by exploitng the optimality property.
I A vector x in x0 +Km can be written as x = x0 + Vmy
I Define J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy)‖2
I Using the Arnoldi decomposition (2), we have

b−Ax = b−A(x0 + Vmy) = r0 −AVmy
= βv1 − Vm+1Ĥmy = Vm+1(βe1 − Ĥmy).

I Since the column vectors of Vm+1 are orthonormal, then

J(y) = ‖b−A(x0 + Vmy)‖2 = ‖βe1 − Ĥmy‖2.

I Therefore, the GMRES approximation xm is the unique vector

xm = x0 + Vmy,

where y the solution of the least squares (LS) problem

min
y
‖βe1 − Ĥmy‖2.

I The LS problem is inexpensive to compute since m is small.
18 / 38



Part II: Krylov subspace and GMRES

Restarting GMRES method.
As m increases, the computational cost increases at least as O(m2n). The
memory cost increases as O(mn). For large n this limits the largest value
of m that can be used. The popular remedy is to restart the algorithm
periodically for a fixed m.

Restarted GMRES:
1. compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β
2. call Arnoldi procedure with A, v1 and m

3. solve miny ‖βe1 − Ĥmy‖2
. 4. xm = x0 + Vmym

5. test for convergence, if satisfied, then stop
6. set x0 := xm and go to 1.
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Part II: Krylov subspace and GMRES

Breakdown of GMRES:

Since the least squares problem always has solution, the only
possibility of the breakdown of the GMRES is in the Arnoldi
procedure when hj+1,j at some step j. However, in this case, the
residual norm of xj is zero, b−Axj = 0. xj is the exact solution
of the linear system Ax = b. This is called lucky breakdown.

Proposition. Let A be a nonsingular matrix. Then the GMRES algorithm
breaks down at step j, i.e., hj+1,j = 0, if and only if xj is an exact solution
of Ax = b.
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Part III. Lanczos process, Conjugate Gradient method

I The Lanczos procedure can be regarded as a simplification of Arnoldi’s
procedure when A is symmetric.

I By an order-m Arnoldi decomposition, we know that

Hm = V TmAVm.

If A is symmetric, then Hm becomes symmetric tridiagonal.

I This simple observation leads to the following procedure to compute
an orthonormal basis Vm of Krylov subspace Km(A, v) when A is
symmetric

21 / 38



Part III. Lanczos process, Conjugate Gradient method

Lanczos procedure2:

1. v1 = v/‖v‖2, set β1 = 0, v0 = 0
2. for j = 1, 2, . . . ,m
3. w = Avj − βjvj−1

4. αj = vTj w
5. w := w − αjvj
8. βj+1 = ‖w‖2
9. If βj+1 = 0, then stop
10. vj+1 = w/βj+1

11. endfor

2Note that we change the notation αj = hjj and βj+1 = hj−1,j , comparing with the
Arnoldi procedure.
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Part III. Lanczos process, Conjugate Gradient method

Remarks:

I Only three vectors must be saved in the inner loop of the procedure.
This is sometimes referred to as a three-term recurrence.

I In the presence of finite precision, it could start losing such
orthogonality of vj rapidly with the increase of j. There has been
much research devoted to understanding the effect of loss of the
orthogonality, and finding ways to either recover the orthogonality, or
to at last diminish its effects3

3An excellent reference on the subject is [B. N. Parlett, The Symmetric Eigenvalue
Problem, SIAM Press, 1998].
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Part III. Lanczos process, Conjugate Gradient method

In the matrix form, the Lanczos procedure can be expressed in the following
governing equations, referred to as an order−m Lanczos decomposition:

AVm = VmTm + βm+1vm+1e
T
m = Vm+1T̂m

where Vm = [v1, v2, . . . , vm], Vm+1 = [Vm, vm+1], and

Tm =



α1 β2

β2 α2

.
.
.

β3

.
.
. βm−1

.
.
. αm−1 βm

βm αm


and T̂m =

[
Tm

βm+1e
T
m

]
.

By the orthogonlity properties V TmVm = I and V Tmvm+1 = 0, we have
V TmAVm = Tm.
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Part III. Lanczos process, Conjugate Gradient method

I The Conjugate Gradient (CG) method is the best known iterative
technique for solving large scale SPD linear system Ax = b4

I There are several ways to derive the CG method. In terms of our
familiar subspace projection technique, we can describe the CG
method in one sentence:

The CG method is a realization of an orthogonal projection
technique onto the Krylov subspace Km(A, r0), where
r0 = b−Ax0 with initial guess x0.

In this note, we provide a derivation of the CG method under this
algorithmic framework.

I An alternative derivation is given by Shewchuk5

4M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49:409–436, 1952.

5J. Shewchuk, An Introduction to Conjugate Gradient Method Without the
Agonizing Pain. 1994 (64 pages), pdf file is available at the class website
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Part III. Lanczos process, Conjugate Gradient method

I Before we derive the CG method, we first derive a so-called direct
Lanczos method.

I Using the subspace projection technique, with an initial guess x0, the
approximate solution obtained from an orthogonal projection method
onto x0 +Km(A, r0) is given by

xm = x0 + Vmym, (3)

where ym is the solution of the tridiagonal system

Tmym = ‖r0‖2e1. (4)
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Part III. Lanczos process, Conjugate Gradient method

I Now, let’s try to solve the tridiagonal system (4) progressively along
with the Lanczos procedure.

I Let’s write the LU factorization of Tm as

Tm = LmUm,

i.e. the Gaussian elimination without pivoting:

Tm = LmUm =



1
λ2 1

λ3 1

.
.
.

.
.
.

λm 1





η1 β2
η2 β3

.
.
.

.
.
.

ηm−1 βm
ηm


,

where η1 = α1, and for j = 2, 3, . . . ,m,

λj = βj/ηj−1, ηj = αj − λjβj .

I Then xm is given by

xm = x0 + VmU
−1
m L−1

m (‖r0‖2e1) ≡ x0 + Pmzm.

where Pm = VmU
−1
m and zm = L−1

m (‖r0‖2e1).
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Part III. Lanczos process, Conjugate Gradient method

The following two observations connect Pm and zm of the mth step with
Pm−1 and zm−1 of the previous step.

Observation A. Let us write Pm = [Pm−1 pm], where pm is the last column
of Pm, then we have

Pm = [Pm−1 pm] = VmU
−1
m =

[
Vm−1 vm

] [ Um−1 βmem−1

ηm

]−1

=
[
Vm−1 vm

] [ U−1
m−1 −U−1

m−1(βmem−1)η
−1
m

η−1
m

]
=

[
Vm−1U

−1
m−1 −Vm−1U

−1
m−1(βmem−1)η

−1
m + vmη

−1
m

]
=

[
Pm−1 −Pm−1(βmem−1)η

−1
m + vmη

−1
m

]
=

[
Pm−1 η−1

m (vm − βmpm−1)
]

Therefore, we see that the vector pm can be computed from previous pm−1

and vm by the simple update

pm = η−1
m (vm − βmpm−1), (5)
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Part III. Lanczos process, Conjugate Gradient method

Observation B. By the definition of the vector zm, we have

zm = L−1
m (‖r0‖2e1) =

[
L−1
m−1

−λmeTm−1L
−1
m−1 1

] [
‖r0‖2e1

0

]
=

[
L−1
m−1(‖r0‖2e1)

−λmeTm−1L
−1
m−1(‖r0‖2e1)

]
≡
[
zm−1

ζm

]
where ζm = −λmζm−1.

29 / 38



Part III. Lanczos process, Conjugate Gradient method

As a result of these two observations, xm can be written in an updated form

xm = x0 + Pmzm

= x0 + [Pm−1 pm]

[
zm−1

ζm

]
= x0 + Pm−1zm−1 + ζmpm

= xm−1 + ζmpm. (6)
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Part III. Lanczos process, Conjugate Gradient method

This gives the following direct Lanczos algorithm:

Direct Lanczos Method
1. compute r0 = b−Ax0, ζ1 = ‖r0‖2, and v=r0/ζ1
2. set λ1 = β1 = 0, p0 = 0
3. for m = 1, 2, . . . ,
4. w := Avm − βmvm−1 and αm = vTmw
5. If m > 1 then compute λm = βm/ηm−1 and ζm = −λmζm−1

6. ηm = αm − λmβm
7. pm = η−1

m (vm − βmpm−1)
8. xm = xm−1 + ζmpm
9. If xm has converged, then Stop
10. w := w − αmvm
11. βm+1 = ‖w‖2 and vm+1 = w/βm+1

12. endfor
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Part III. Lanczos process, Conjugate Gradient method

Toward the CG method

I The residual vector rm:

rm = b−Axm = b−A(x0 + Vmym) = r0 −AVmym
= r0 − (VmTm + βm+1vm+1e

T
m)ym

= r0 − VmTmym − βm+1vm+1(e
T
mym)

= −βm+1(e
T
mym)vm+1.

Therefore the residual vector rm is in the direction of vm+1.

I Since {vi} are orthogonal, we conclude that the residual vectors {ri}
are orthogonal, i.e.,

rTj ri = 0 for i 6= j. (7)
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Part III. Lanczos process, Conjugate Gradient method

Toward the CG method, cont’d,

I Note that PTmAPm is a diagonal matrix:

PTmAPm = U−T
m V TmAVmU

−1
m

= U−T
m TmU

−1
m

= U−T
m LmUmU

−1
m

= U−T
m Lm.

Since U−TLm is a lower triangular which is also symmetric. Therefore
PTmAPm i must be a diagonal matrix.

I By the fact that PTmAPm is diagonal, we conclude that the vectors
{pi} are A-conjugate, i.e.,

pTj Api = 0 and i 6= j. (8)
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Part III. Lanczos process, Conjugate Gradient method

Toward the CG method, cont’d,

A consequence of the orthogonality condition (7) and conjugacy
condition (8) is that a version of the algorithm can be derived by
directly imposing the conditions (7) and (8). This gives us the
Conjugate Gradient (CG) algorithm.
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Part III. Lanczos process, Conjugate Gradient method

The CG method

I By the relation (6), let us express the j + 1-th approximate vector
xj+1 as

xj+1 = xj + θjpj ,

I Then the corresponding residual vector satisfies

rj+1 = b−Axj+1 = b−A(xj + θjpj) = rj − θjApj . (9)

I Since the rj ’s are orthogonal, i.e., rTj rj+1 = 0, then it gives

θj =
rTj rj

rTj Apj
(10)
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Part III. Lanczos process, Conjugate Gradient method

The CG method, cont’d

I By the relation (5) and noting that vj is in the direction of rj+1, it is
known that the next search direction pj+1 is a linear combination of
rj+1 and pj .

I Therefore, we can write

pj+1 = rj+1 + τjpj .

I first consequence

rTj Apj = (pj − τj−1pj−1)
TApj = pTj Apj .

Therefore the scalar θj in (10) can be rewritten as

θj =
rTj rj

pTj Apj
.
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Part III. Lanczos process, Conjugate Gradient method

The CG method, cont’d

I second consequence: by imposing A-conjugacy pTj+1Apj = 0, we have

τj = −
pTj Arj+1

pTj Apj

Note that from (9),

Apj = −
1

θj
(rj+1 − rj)

and therefore we have the following simplified expression for the scalar
τj :

τj =
1

θj

(rj+1 − rj)T rj+1

pTj Apj
=
rTj+1rj+1

rTj rj
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Part III. Lanczos process, Conjugate Gradient method

The CG method, cont’d

Conjugate Gradient (CG) Method
1. select initial x0, compute r0 = b−Ax0 and set p0 := r0
2. for j = 0, 1, 2, . . . , until convergence do
3. θj = rTj rj/(p

T
j Apj)

4. xj+1 = xj + θjpj
5. rj+1 = rj − θjApj
6. τj = rTj+1rj+1/(r

T
j rj)

7. pj+1 = rj+1 + τjpj
8. endfor

Remark: in addition to the matrix A, only four vectors of storage
(workspace) are required: x, p,Ap and r.
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