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A framework for subspace projection methods.

» The basic idea:

> extract an approximate solution Z from a subspace of R™.
» a technique of dimension reduction.

» Mathematically, let W,V C R™, and z is an initial guess of the
solution, then the subspace projection technique is to

findz €xg+2, 2€Wst. b— AT LV.
In other words, let rg = b — Axg, then
b— AT =b— A(zg+2) =79 — Az.

(1) is equivalent to
find ze Wsit. rg — Az L V.
» Orthogonal projection: W =V,
» Oblique projection: W # 'V,
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Part |. Basics

In matrix notation, let V = [v1,va,...,v;,] be a basis of V, and
W = [wy,wa, ..., wy] be a basis of W. Then any approximation solution

T=x9+z=x0+ Wy
and the orthogonality condition (1a) implies
VT(rg — Az) = 0.

Thus we have
VIAW y = V.

Thus assuming VT AW is invertible, a new approximate solution Z:

T=x0+WWVTAW) V.



Part |. Basics
Prototype iterative subspace projection technique:

ProOTOTYPE PROJECTION METHOD:

0. Let zg be an initial approximation

1. lterate until convergence:

Select a pair of subspaces V and W of R"
Generate basis matrices V and W for V and W
rg < b— Al‘o

y «— (VIAW)=tv Ty,

xo < o+ Wy

oo wN
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Prototype iterative subspace projection technique, cont'd
Remarks:

1. The matrix VT AW does not have to be formed explicitly, typically a
by-product of Steps 2 and 3.
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Prototype iterative subspace projection technique, cont'd
Remarks:

1. The matrix VT AW does not have to be formed explicitly, typically a
by-product of Steps 2 and 3.
2. There are two important cases where the nonsingularity of VT AW is
guaranteed:
1. If Ais symmetric positive definite (SPD) and W =V, then
VT AW = WT AW is also SPD (and nonsingular).
2. If Ais nonsingular, and V = AW, then VTAW = WT AT AW, which
is SPD (and nonsingular).

6



Part |. Basics

Prototype iterative subspace projection technique in one-dimension:

W =span{w} and V =span{v},
The new approximation takes form
To <— To+ 2 =x9+ qw
and the orthogonality condition (1a) implies
vl (rg — Az) = 0T (rg — aAw) = 0,

and thus
o ’UT7"0

o= )
vT Aw




Part |. Basics

Steepest Descent (SD) method
When A is SPD, at each step, take

This yields

v=w=1r9=0b— Axg

STEEPEST DESCENT (SD) ALGORITHM:
1. Pick an initial guess xq

2. For k=0,1,2,... until convergence do
3. Ty = b— Al‘k
T
— Tk Tk
4. A = rgArk
5 Th4+1 = T + OgTg
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Steepest Descent (SD) method, cont'd

Remarks:
» Since A is SPD, r} Ar; > 0 except 7, = 0.
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Remarks:

» Since A is SPD, r} Ar; > 0 except 7, = 0.
> Let 2, = A~'b, then k-th step of the SD iteration minimizes

flz) =

1
2. = 2l% = 5 (@ —2)" A(w. —2), 2= A7TD

N | =

over all vectors of the form z; — a(V f(xy)), known as line search.
This is equivalent to

ap = argmin,, f (xx_1 — a - Vf(z)),

where V f(x) = b — Axy is the gradient of f at xy.
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Steepest Descent (SD) method, cont'd

Remarks:
» Since A is SPD, r} Ar; > 0 except 7, = 0.
> Let 2, = A~'b, then k-th step of the SD iteration minimizes

1
2. = 2l% = 5 (@ —2)" A(w. —2), 2= A7TD

DN | =

flz) =

over all vectors of the form z; — a(V f(xy)), known as line search.
This is equivalent to

ap = argmin,, f (xx_1 — a - Vf(z)),

where V f(x) = b — Axy is the gradient of f at xy.

> Recall that from Calculus, the negative of the gradient direction is
locally the direction that yields the fastest rate of decrease for f.
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Minimal Residual (MR) Iteration.
For a general nonsingular matrix A, at each step, let

w=ry and v = Arg,
It yields

MiNIMAL RESIDUAL (MR) ALGORITHM:
1. Pick an initial guess xg

2. For k=0,1,2,... until convergence do
3. Ty = b— A:Ck
T AT
_ rp Aty
4. Qg = TEATArk
5 Tht1 = Tk + OTk

Remark: each iteration minimizes
f@)=|rl3 = [Ib— Axf3

over all vectors of the form x; — arg, namely line search, which is
equivalent to solve the least squares problem

min ||b — A(zg — arg)||e.



Part II: Krylov subspace and GMRES

Krylov subspace is defined as
Ko (A, v) = span{v, Av, A%v,..., A" v},
Note that if z € K,,,(4, v), then
x = p(A)v,

where p(A) is a polynomial of degree not exceeding m — 1.
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Part II: Krylov subspace and GMRES

Arnoldi procedure is an algorithm for building an orthonormal basis
{v1,v2,...,0m} of the Krylov subspace X,,(A,v) using a modified
Gram-Schmidt orthogonalization process.

L v =v/[lv2

2. forj=1,2,....m

3 compute w = Awv;
4, fori=1,2,...,j
5. hij = U;-T’u)

6 wi=w — hij’Ul‘
7 end for

8. hjt1 = lwll2

9. If hj+1,j = O, StOp
10. Vj41 = w/thrLj
11. endfor



Part II: Krylov subspace and GMRES

Proposition. Assume that hjq ; # 0 for j = 1,2,...,m, then the vectors
{v1,v2,...,0m} form an orthonormal basis of the Krylov subspace
K (A,v):

Span{vlyv% s 7Um} - JCm(Avv)'

Proor. By induction.

13/38



Part II: Krylov subspace and GMRES

Let
Vi = [v1,02,...,0m] and  Hp, = (h;;) = Upper Hessenberg.

Then in the matrix form, the Arnoldi procedure can be expressed by the
following order-m Arnoldi decompositions:

AVm =V,H,, + hm+17mvm+1€£ = m—&-lﬁm) (2)
where V.I'V,, = I,, VI v, 01 = 0 and [[vpq1]l2 = 1.

In addition, we denote

-~ H
Vint1 = [Vin Vm+1] and Hp, = [ L o } ,

m+1,mem

14 /38



Part II: Krylov subspace and GMRES

Remarks:

1. the matrix A is only referenced via the matvec Av;. Therefore, it is
ideal for large sparse or dense structure matrices. Any sparsity or
structure of a matrix can be exploited in the matvec.
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Part II: Krylov subspace and GMRES

Remarks:

1.

the matrix A is only referenced via the matvec Av;. Therefore, it is
ideal for large sparse or dense structure matrices. Any sparsity or
structure of a matrix can be exploited in the matvec.

. The main storage requirement is n(m + 1) for storing Arnoldi vectors

{v;} plus the storage requirements for A or the required matvec.

The primary arithmetic cost is the cost of m matvecs plus 2m?2n for
the rest. It is common that the matvec is the dominant cost.

The procedure breaks down when hjy; ; = 0 for some j. If it breaks
down at step j (i.e. hjy1,; =0), we have

AV, = V;Hj.

This indicates that X; is an invariant subspace of A.

. Care must be taken to insure that the vectors v; remain orthogonal to

working accuracy in the presence of rounding error. The usual
technique is called reorthogonalization.
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Part II: Krylov subspace and GMRES

» The Generalized Minimum Residual (GMRES)! is a generalization of
the one-dimensional MR iteration.

» GMRES uses the following pair of Krylov subspaces as pair of
projection subspaces:

W =%K,n(A,79) and V=AW = AK,,(A, 7).

and can be derived under the framework of the subspace projection
technique

1Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal RESidual algorithm for
solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, Vol.7, pp.856—-869, 1986.
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Part II: Krylov subspace and GMRES

Derivation of GMRES using subspace projection

> Let
r€xg+W=2x9+ Vny.

Then by the orthogonality condition, we have
VEAT (b — Az) = 0.

i.e.,
VAT (rg — AV,y) = 0.

which is equivalent to
Vi AT A,y = Vi ATrg
» By order-m Arnoldi decompositions, we have
Hy Hyy = HViaro = Hy (Ber)
» This is equivalent to solve the LS problem

min||fer = Hpylla.

for y

17 /38



Part II: Krylov subspace and GMRES

An alternative derivation of GMRES by exploitng the optimality property.

>

v Yy

v

v

v

A vector x in g + K,,, can be written as . = z¢ + V,,,y
Define J(y) = ||b — Azl|j2 = ||b — A(xo + Viny)|l2
Using the Arnoldi decomposition (2), we have

b—Ax = b—Alxo+ Vpy) =ro— AVy
= Bv1 = Vi1 Hpny = Vin1(Ber — Hyy).
Since the column vectors of V,,, 11 are orthonormal, then
T(y) = [[b— Ao + Viny)ll2 = [1Ber = Hunyll2-
Therefore, the GMRES approximation z,, is the unique vector
Ty = o + Viny,
where y the solution of the least squares (LS) problem

min||fer — Hpnylla-

The LS problem is inexpensive to compute since m is small.



Part II: Krylov subspace and GMRES

Restarting GMRES method.

As m increases, the computational cost increases at least as O(m?n). The
memory cost increases as O(mn). For large n this limits the largest value
of m that can be used. The popular remedy is to restart the algorithm
periodically for a fixed m.

REsTARTED GMRES:

compute 1o = b — Axg, S = ||roll2 and vy = ro/f
call Arnoldi procedure with A, v; and m

solve min, ||Se; — ﬁmyHg

Tm = To + mem

test for convergence, if satisfied, then stop

set g := x,, and go to 1.

ook W

19/38



Part II: Krylov subspace and GMRES

Breakdown of GMRES:
Since the least squares problem always has solution, the only
possibility of the breakdown of the GMRES is in the Arnoldi
procedure when h;1 ; at some step j. However, in this case, the
residual norm of x; is zero, b — Ax; = 0. x; is the exact solution
of the linear system Ax = b. This is called lucky breakdown.

Proposition. Let A be a nonsingular matrix. Then the GMRES algorithm

breaks down at step j, i.e., hj;1; =0, if and only if x; is an exact solution
of Ax = b.



Part Ill. Lanczos process, Conjugate Gradient method

» The Lanczos procedure can be regarded as a simplification of Arnoldi’s
procedure when A is symmetric.

» By an order-m Arnoldi decomposition, we know that
H,, =V AV,

If A is symmetric, then H,,, becomes symmetric tridiagonal.

» This simple observation leads to the following procedure to compute
an orthonormal basis V;;,, of Krylov subspace X,,(A,v) when A is
symmetric



Part Ill. Lanczos process, Conjugate Gradient method

Lanczos procedure?:

1. u»n :’U/H’UHQ, set 1 =0,v9=0
2. forj=1,2,....m

3. w = A’Uj — ,Bj’Uj_l

4. a; = v]Tw

5 W =W — QU

8. Bj+1 = [wll2

9. If Bj4+1 =0, then stop

10. Vj41 = w/ﬁjH

11. endfor

?Note that we change the notation a; = hj; and B;411 = hj_1,;, comparing with the
Arnoldi procedure.



Part Ill. Lanczos process, Conjugate Gradient method

Remarks:

> Only three vectors must be saved in the inner loop of the procedure.
This is sometimes referred to as a three-term recurrence.

» In the presence of finite precision, it could start losing such
orthogonality of v; rapidly with the increase of j. There has been
much research devoted to understanding the effect of loss of the
orthogonality, and finding ways to either recover the orthogonality, or
to at last diminish its effects®

3An excellent reference on the subject is [B. N. Parlett, The Symmetric Eigenvalue
Problem, SIAM Press, 1998].



Part Ill. Lanczos process, Conjugate Gradient method

In the matrix form, the Lanczos procedure can be expressed in the following
governing equations, referred to as an order—m Lanczos decomposition:

AVm = Vme + ﬂm+1vm+lez; = m+1fm

where V,;, = [v1,v2, ..., ), Vint1 = [Vin, Um1], and
aq B2
Bz ag
Tm = 5 - and f,,b=[ B’":’YEZL ]

Am—1  Bm
Bm am

By the orthogonlity properties V,1'V,,, = I and V.1 v,, .1 = 0, we have
VIAV,, = T),.



Part Ill. Lanczos process, Conjugate Gradient method

» The Conjugate Gradient (CG) method is the best known iterative
technique for solving large scale SPD linear system Ax = b*

> There are several ways to derive the CG method. In terms of our
familiar subspace projection technique, we can describe the CG
method in one sentence:
The CG method is a realization of an orthogonal projection
technique onto the Krylov subspace X, (A, o), where
ro = b — Axq with initial guess x.
In this note, we provide a derivation of the CG method under this
algorithmic framework.

» An alternative derivation is given by Shewchuk®

4M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49:409-436, 1952.

5J. Shewchuk, An Introduction to Conjugate Gradient Method Without the
Agonizing Pain. 1994 (64 pages), pdf file is available at the class website
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Part Ill. Lanczos process, Conjugate Gradient method

» Before we derive the CG method, we first derive a so-called direct
Lanczos method.

» Using the subspace projection technique, with an initial guess xg, the
approximate solution obtained from an orthogonal projection method
onto zg + XK,,,(4, o) is given by

Ty = To + mema (3)
where y.,,, is the solution of the tridiagonal system

Tnym = |IToll2e1- (4)

26 /38



Part Ill. Lanczos process, Conjugate Gradient method

> Now, let's try to solve the tridiagonal system (4) progressively along
with the Lanczos procedure.

» Let's write the LU factorization of T, as
Tm = LmUm7

i.e. the Gaussian elimination without pivoting:

1 n1 B2
Ao 1 n2 B3
X3 1
Tym = LmUm = .
. N —1 Bm
Am 1 nm
where 71 = a1, and for j =2,3,...,m,

Aj = Bi/nj-1, ;=5 = AB;
» Then x,, is given by
T = XTo + VmUn_»LlL;1<||r0||2el> =20+ Pnzm-

where P, = V,,,U..1 and z,, = L} (||ro]|2€1).



Part Ill. Lanczos process, Conjugate Gradient method

The following two observations connect P,, and z,, of the mth step with
P,,_1 and z,,_1 of the previous step.

Observation A. Let us write P, = [Pr—1 Dm|, Where p,, is the last column
of P,,, then we have

-1

Pm — [mel pm} — VmU;LI — [ Vm_l Vi ] |: Um—l ﬁmem—l :|
I

_ U_ ‘ U;zl—l(ﬂmem—l)n;zl

= [Vomr om ][] 2

Nm

= [ m— 1U 1 —Vm-— 1U 1(ﬂmem 1)77m +vm77m ]

- [ m 1(Bm6m 1)77m +Um77m ]

- [ Pm—l 77m ( Um _Bmpm—l) ]

Therefore, we see that the vector p,, can be computed from previous p,,_1
and v,, by the simple update

Pm = 77;11 (Um - Bmpm—l)a (5)



Part Ill. Lanczos process, Conjugate Gradient method
Observation B. By the definition of the vector z,,, we have

* Lots | [ ol
) 1 ) -1 oll2e1
zm = L '(||rollze1) = { —Amel LT 1 } { 0

_ {_A LY 1 (lIrollzen) ] Hm]

mm_1 Ly ([[oll2e1)

where (o, = —AmCm_1.



Part Ill. Lanczos process, Conjugate Gradient method

As a result of these two observations, x,, can be written in an updated form

Tm

zo + Ppzm

ZTo + [mel pm] |: zZLil

To + melszl + Cmpm
Tm—1+ <mpm

|
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Part Ill. Lanczos process, Conjugate Gradient method
This gives the following direct Lanczos algorithm:

DirRECT LANCZOS METHOD

1. compute rg =b— Axg, (1 = HTQHQ, and ’U:’I“()/Cl
2. set Ay =81=0,po=0

3. form=1,2,...,

4. w = Avy, — BmUm_1 and o, = vl w

5. If m > 1 then compute Ay, = B /Nm—1 and (= —AmCm—1
6. Nm = Om — )\mﬁm

7. Pm = 777;1 (Um - 6mpm—1)

8. Tm = Tm—1 + (mPm

9. If 2, has converged, then Stop

10. W= W — QU

1. Butr = |lwl2 and vimi1 = w/Bims1

12. endfor
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Part Ill. Lanczos process, Conjugate Gradient method
Toward the CG method

» The residual vector 7,,:

rm = b— Az, =0b- A(xO + mem) =To — Amem
= To— (Vme + 5m+1vm+le£)ym
= 10— VieTon¥m — Bims1Vm+1 (e ym)

—Bm+1 (egzym)vm-&-l .

Therefore the residual vector 7, is in the direction of v,41.

» Since {v;} are orthogonal, we conclude that the residual vectors {r;}
are orthogonal, i.e.,

riri=0 for i#j. (7)



Part Ill. Lanczos process, Conjugate Gradient method

Toward the CG method, cont'd,
» Note that PLAP,, is a diagonal matrix:

PrAP, =U, VI AV, Ut
=Uu. T, Ut
=U. 'L, U,U!
=U, " L.

Since U=TL,), is a lower triangular which is also symmetric. Therefore
PLAP,, i must be a diagonal matrix.

» By the fact that PL AP, is diagonal, we conclude that the vectors
{p;} are A-conjugate, i.e.,

p;‘-FApi =0 and i#}j. (8)
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Part Ill. Lanczos process, Conjugate Gradient method
Toward the CG method, cont'd,

A consequence of the orthogonality condition (7) and conjugacy
condition (8) is that a version of the algorithm can be derived by
directly imposing the conditions (7) and (8). This gives us the
Conjugate Gradient (CG) algorithm.
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Part Ill. Lanczos process, Conjugate Gradient method

The CG method

> By the relation (6), let us express the j + 1-th approximate vector
Tj41 as
Tjp1 =z + 0;p;,

» Then the corresponding residual vector satisfies
Tj41 =b— Avj1 =b— A(z; +0;p;) =r; —0;Ap;.  (9)
> Since the r;'s are orthogonal, i.e., roer =0, then it gives

Ty,
T T

J =TT
TjApj

(10)
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Part Ill. Lanczos process, Conjugate Gradient method

The CG method, cont'd

» By the relation (5) and noting that v; is in the direction of 7,1, it is
known that the next search direction p;1 is a linear combination of

rj41 and p;.
> Therefore, we can write
Pj+1 = Tj+1 + T5P;-
» first consequence
i Ap; = (pj — 7jpj—1)" Apj = pj Ap;.

Therefore the scalar 6; in (10) can be rewritten as

Ty
Ty

T plApy

36

38



Part Ill. Lanczos process, Conjugate Gradient method
The CG method, cont'd

» second consequence: by imposing A-conjugacy p;ﬂrlApj =0, we have

T
pj Arjia

o
! p! Ap;

Note that from (9),

1
Apj = — =141 = 1))
J
and therefore we have the following simplified expression for the scalar
Tj:

T T
(rje1 = 75) 41 Tl

1
S
T P} Ap; riT
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Part Ill. Lanczos process, Conjugate Gradient method
The CG method, cont'd

CONJUGATE GRADIENT (CG) METHOD
1. select initial zg, compute rg = b — Az and set pg := 1y

2. for 5 =0,1,2,..., until convergence do
3. 0; =r1r;/(p] Ap;)

4 Tjt1 = T+ 0;p;

5 ’I“j+1 = 7“]‘ — GjApj

6. m=rlarin/ ()

7 Pj+1 = Tj+1 + Tjpj

8. endfor

Remark: in addition to the matrix A, only four vectors of storage
(workspace) are required: x,p, Ap and 7.
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