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1. PCA for lossy data compression

2. PCA for learning a representation of data

3. Extra: learning XOR
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1. PCA for lossy data compression1

I Data compression:

given data points {x(1), ..., x(m)} ∈ Rn, for each x(i) ∈ Rn,
find the code vector c(i) ∈ R`, where ` < n.

I Encoding function f : x→ c

I Lossy decoding function g : c; x

I Reconstruction: x ≈ g(c) = g(f(x))

I PCA is defined by choicing decoding function:

g(c) = Dc

where D ∈ Rn×` defines the decoding and is constrained to have
column orthonormal, i.e., DTD = I`.

I Questions:

1. How to generate optimal code point c∗ for each input point x?
2. How to choose the decoding matrix D?

1Section 2.12 of I. Goodfellow, Y. Bengio and A. Courville, Deep Learning,
deeplearningbook.org
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1. PCA for lossy data compression, cont’d

Question 1: How to generate optimal code point c∗ for each input point x?
i.e., solve

c∗ = argmin
c
‖x− g(c)‖22.

I By vector calculus and the first-order necessary condition for
optimality, we conclude

c∗ = DTx.

I To encode x, we just need the mat-vec product

f(x) = DTx

I PCA reconstruction operation

r(x) = g(f(x)) = g(DTx) = DDTx.
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1. PCA for lossy data compression, cont’d

Question 2: How to choose the decoding matrix D?

I Idea: minimize the L2 distance between inputs and reconstructions:{
D∗ = argminD

√∑
i,j(x

(i)
j − r(x(i))j)2

s.t. DTD = I`

I For simplicity, consider ` = 1 and D = d ∈ Rn, then{
d∗ = argmind

∑
i ‖x(i) − ddTx(i)‖22

s.t. dT d = 1.

I Let X ∈ Rm×n with X(i,:) = (x(i))T , then{
d∗ = argmind ‖X −XddT ‖2F

s.t. dT d = 1.
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1. PCA for lossy data compression, cont’d

I Equivalently,{
d∗ = argmaxdtr(XTXddT ) = argmaxd‖Xd‖22

s.t. dT d = 1.

I Let (σ,u1, v1) be the largest singular triplet of X, i.e.,

Xv1 = σ1u1.

Then we have
d∗ = argmaxd‖Xd‖22 = v1.

I In the general case, when ` > 1, the matrix D is given by the ` right
singular vectors of X corresponding to the ` largest singular values of
X. (Exercise: write out the proof.)
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1. PCA for lossy data compression, cont’d

MATLAB demo code: pca4ldc.m

>> ...

>> % SVD

>> [U,S,V] = svd(X,0);

>> %

>> % Decode matrix D = V(:,1)

>> %

>> % PCA reconstruction

>> % Xpca = (X*V(:,1))*V(:,1)’ = sigma(1)*U(:,1)*V(:,1)’;

>> %

>> Xpca = (X*V(:,1))*V(:,1)’

>> ...
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1. PCA for lossy data compression, cont’d
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22. PCA for learning a repesentation of data2

I PCA as an unsupervised learning algorithm that learns a representation
of data:

I learns a representation that has lower dimensionality than the original
input.

I learns a representation whose element have no linear correlation with
each other (but may still have nonlinear relationships between
variables).

I Consider m× n “design” matrix X of data x with

E[x] = 0

Var[x] =
1

m− 1
XTX.

I PCA finds a representation of x via an orthogonal linear transformation

z = xTW

such that
Var[z] = diag,

where the transformation matrix W satisfying WTW = I.
2Section 5.8.1 of I. Goodfellow, Y. Bengio and A. Courville, Deep Learning,

deeplearningbook.org
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2. PCA for learning a repesentation of data, cont’d

Question: how to find W?

I Let X = UΣWT be the SVD of X

I Then

Var[x] =
1

m− 1
XTX

=
1

m− 1
(UΣWT )TUΣWT

=
1

m− 1
WTΣTUTUΣWT

=
1

m− 1
WTΣTΣWT
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2. PCA for learning a repesentation of data, cont’d

I Therefore, if we take
z = xTW

Then

Var[z] =
1

m− 1
ZTZ

=
1

m− 1
WTXTXW

=
1

m− 1
WTWΣTΣWTW

=
1

m− 1
ΣTΣ
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2. PCA for learning a repesentation of data, cont’d

I The individual elements of z are mutually uncorrelated — disentangle
the unknown factors of variation underlying the data.

I While correlation is an important category of dependency between
element of data, we are also interested in learning more representation
that disentangle more complicated forms of feature dependencies. For
this, we will need to more than what can be done with a simple linear
transformation.
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2. PCA for learning a repesentation of data, cont’d

MATLAB demo code: pca4dr.m

>> ...

>> % make E(x) = 0

>> X1 = X - ones(m,1)*mean(X);

>> %

>> % SVD

>> [U,S,W] = svd(X1);

>> %

>> %PCA

>> Z = X1*W;

>> %

>> % covariance of the new variable z

>> var_z = Z’*Z

>> ...
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2. PCA for learning a repesentation of data, cont’d
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Topic: extra
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Learning XOR3

I The first (simplest) example of “Deeping Learning”

I The XOR function (“exclusive or”)

x1 x2 y
0 0 0
1 0 1
0 1 1
1 1 0

I Task: find function f∗ such that
y = f∗(x) for x ∈ X = {(0, 0), (1, 0), (0, 1), (1, 1)}.

I Model: ŷ = f(x; θ), where θ are parameters

I Measure: MSE loss function

J(θ) =
1

4

∑
x∈X

(f∗(x)− f(x; θ))2.

3Section 6.1 of I. Goodfellow, Y. Bengio and A. Courville, Deep Learning,
deeplearningbook.org
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Learning XOR, cont’d

I Linear model:
f(x; θ) = f(x;w, b) = xTw + b

I Solution of the minimization of the MSE loss function

w = 0 and b =
1

2
.

I A linear model is not able to represent the XOR function
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Learning XOR, cont’d

I Two-layer model:

f(x; θ) = f (2)
(
f (1)(x;W, c);w, b

)
where θ ≡ {W, c,w, b} and

f (1)(x;W, c) = max{0,WTx+ c} ≡ h
f (2)(h;w, b) = wTh+ b,

max{0, z} is called an “activation function”.

I Then by taking

θ∗ =

{
W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

}
we can verify that the two-layar model (“neural network”) obtains the
correct answer for any x ∈ X.

I Question: how to find θ∗?

18 / 18


