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Review: optimak rank-k approximation
» The SVD of an m x n matrix A is defined by
A=UxVT,

where U and V' are m x m and n X n orthogonal matrices,
respectively, X' = diag(o1,02,...) and 01 > 09 > -+ > 0.
» Computational cost O(mn?), assuming m > n.
» Rank-k truncated SVD of A:

A = Uty - Zakasm) - Vi



Review: optimak rank-k approximation

» Eckart-Young theorem.

min ||A = Bl = [|A — Agllz = ok41
rank(B)<k
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min A-Bllp=||A-A = o2
rank(B)gk” lF = kllF j§1 k1

» Theorem A.

min |4 - QB|% = [|A - @Byl %,
rank(B)<k

where @ is an m X p orthogonal matrix, and By, is the rank-k
truncated SVD of QT A4, and 1 < k < p.

Remark: Given m X n matrix A = (aij ), the Frobineous norm of A is defined by

lallp = (S, =7y afj)l/z = (trace(AT A))1/2.



Prototype randomized SVD algorithm

By Theorem A, we immediately have the following a prototype randomized
SVD (low-rank approximation) algorithm:

» Input: m X n matrix A with m > n, integers k >0and k <{ <n

» Steps:

1.

o wnN

6.

Draw a random n x ¢ test matrix 2.
Compute Y = Af2 — “sketching”.

Compute an orthonormal basis @ of Y.
Compute £ x n matrix B = QT A.

Compute By, = the rank-truncated SVD of B.
Compute Ay = QDBy.

» Output: Xk a rank-k approximation of A.



Prototype randomized SVD algorithm
MATLAB demo code: randsvd.m

>> ..

>> Omega = randn(n,l);

>> C = AxOmega;

>> Q = orth(C);

>> [Ua,Sa,Va] = svd(Q’*A);

>> Ak = (Q*Ua(:,1:k))*Sa(l:k,1:k)*Va(:,1:k)’;
>> ..
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Prototype randomized SVD algorithm

» Theorem. With proper choice of an m x O(k/e) sketch §2,

min |4 —- QX[ < (1+¢)]A— Al
rank(x)<k

holds with high probability.
> Reading: Halko et al, SIAM Rev., 53:217-288, 2011.



Accelerated randomized SVD algorithm 1

The basic subspace iteration
» Input: m x n matrix A with m > n, n x £ starting matrix {2 and
positive integers k,¢,q and n > ¢ > k.
» Steps:

1. Compute Y = (AAT)7A0.

2. Compute an orthonormal basis Q of Y.

3. Compute ¢ x n matrix B = QT A.

4. Compute By = the rank-truncated SVD of B.
5. Compute Zk = @QBx.

» Output: Ek a rank-k approximation of A.

Remark: When k= ¢ = 1. This is the classical power method.



Accelerated randomized SVD algorithm 2

Remarks on the basic subspace iteration:

» The orthonormal basis Q of Y = (AAT)7A(2 should be stably
computed by the following loop:
compute Y = A2
compute Y = QR (QR decompostion)
forj=1,2,...,q
compute Y = ATQ
compute Y = QR (QR decompostion)
compute Y = AQ
compute Y = QR (QR deompostion)

» Convergence results:
Under mild assumption of the starting matrix (2,
(a) the basic subspace iteration converges as q — oc.
2q+1
O¢+1
(8) o)~ o,(QB)| <O ((;)
Reading: M. Gu, Subspace iteration randomization and
singular value problems, arXiv:1408.2208, 2014
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Accelerated randomized SVD algorithm 3

» Input: m x n matrix A with m > n, positive integers k, ¢, ¢ and

n>{>k.
» Steps:
1. Draw a random n X £ test matrix (2.
2. Compute Y = (AAT)91AN — “sketching” .
3. Compute an orthogonal columns basis @ of Y.
4. Compute £ x n matrix B = QT A.
5. Compute Bj, = the rank-truncated SVD of B.
6. Compute Ax = QBk.

» OQutput: Ek a rank-k approximation of A.
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Accelerated randomized SVD algorithm 4
MATLAB demo code: randsvd2.m

>> ...
>> Omega = randn(n,l);
>> C = Ax*Omega;

>> Q = orth(C);

>> for i = 1:q

>> C = A'%Q;

>> Q = orth(C);
>> C = AxQ;

>> Q = orth(C);
>> end

>> [Ua2,8a2,Va2] = svd(Q’*A);
>> Ak2 = (Q*Ua2(:,1:k))*Sa2(1:k,1:k)*Va2(:,1:k)’;
>> ..
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The CUR decomposition

The CUR decomposition: find an optimal intersection U such that

A~ CUR,

where C' is the selected ¢ columns of A, and R is the selected r rows of A.



The CUR decomposition

Theorem.

(a) |[A—=CCTA| <||A—-CX]|| for any X

(b) ||[A—CCTARTR| < ||[A— CXR)| for any X
(c) U, = argminy||A — CUR||% = CTAR"

where || - || is a unitarily invariant norm.

Remark: Let A = U VT is the SVD of an m x n matrix A with m > . Then the pseudo-inverse (also called generalized inverse)
At of Aisgivenby AT = VETUT where 1+ = diag(aj', ...) and oj— =1/0; ifoj # 0, otherwise aj— —0.1fAis

of full column rank, then At = (ATA)71 AT In MATLAB, pinv(A) is a built-in function of compute the pseudo-inverse of A.
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The CUR decomposition
MATLAB demo code: randcur.m

>> ..

>> bound = n*log(n)/m;

>> sampled_rows = find(rand(m,1) < bound);
>> R = A(sampled_rows,:);

>> sampled_cols = find(rand(n,1) < bound);
>> C = A(:,sampled_cols);

>> U = pinv(C)*A*pinv(R);

>> ..
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The CUR decomposition

» Theorem. With ¢ = O(k/e) columns and r = O(k/e) rows selected
by adapative sampling to for C' and R,

min ||[A - CXR[F < (1+ )| A = A%

holds in expectation.

» Reading: Boutsidis and Woodruff, STOC, pp.353-362, 2014
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