ECS231

Low-rank approximation - revisited

(Introduction to Randomized Algorithms)

May 23, 2019

Outline

- 1. Review: low-rank approximation
- 2. Prototype randomized SVD algorithm
- 3. Accelerated randomized SVD algorithms
- 4. CUR decomposition

Review: optimak rank-k approximation

• The SVD of an $m \times n$ matrix A is defined by

$$A = U\Sigma V^T,$$

where U and V are $m \times m$ and $n \times n$ orthogonal matrices, respectively, $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots)$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$.

- Computational cost $O(mn^2)$, assuming $m \ge n$.
- ▶ Rank-k truncated SVD of A:

$$A_{k} = U_{(:,1:k)} \cdot \Sigma_{(1:k,1:k)} \cdot V_{(:,1:k)}^{T}$$

Review: optimak rank-k approximation

Eckart-Young theorem.

$$\min_{\substack{\mathsf{rank}(B) \le k}} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}$$
$$\min_{\substack{\mathsf{rank}(B) \le k}} \|A - B\|_F = \|A - A_k\|_F = \left(\sum_{j=k+1}^n \sigma_{k+1}^2\right)^{1/2}$$

Theorem A.

$$\min_{\mathsf{rank}(B) \le k} \|A - QB\|_F^2 = \|A - QB_k\|_F^2,$$

where Q is an $m \times p$ orthogonal matrix, and B_k is the rank-k truncated SVD of $Q^T A$, and $1 \le k \le p$.

Remark: Given $m \times n$ matrix $A = (a_{ij})$, the Frobineous norm of A is defined by

 $\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2} = (\operatorname{trace}(A^T A))^{1/2}.$

・ロン ・四 と ・ 日 と ・ 日 ・

Prototype randomized SVD algorithm

By Theorem A, we immediately have the following a prototype randomized SVD (low-rank approximation) algorithm:

▶ Input: $m \times n$ matrix A with $m \ge n$, integers k > 0 and $k < \ell < n$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Steps:

- 1. Draw a random $n \times \ell$ test matrix Ω .
- 2. Compute $Y = A\Omega "sketching"$.
- 3. Compute an orthonormal basis Q of Y.
- 4. Compute $\ell \times n$ matrix $B = Q^T A$.
- 5. Compute B_k = the rank-truncated SVD of B.
- 6. Compute $\widehat{A}_k = QB_k$.

• Output: \widehat{A}_k , a rank-k approximation of A.

Prototype randomized SVD algorithm

MATLAB demo code: randsvd.m

```
>> ...
>> Omega = randn(n,1);
>> C = A*Omega;
>> Q = orth(C);
>> [Ua,Sa,Va] = svd(Q'*A);
>> Ak = (Q*Ua(:,1:k))*Sa(1:k,1:k)*Va(:,1:k)';
>> ...
```

Prototype randomized SVD algorithm

► Theorem. With proper choice of an $m \times O(k/\epsilon)$ sketch Ω ,

$$\min_{\mathsf{rank}(X) \le k} \|A - QX\|_F^2 \le (1+\epsilon) \|A - A_k\|_2^2$$

holds with high probability.

▶ Reading: Halko et al, SIAM Rev., 53:217-288, 2011.

The basic subspace iteration

▶ Input: $m \times n$ matrix A with $m \ge n$, $n \times \ell$ starting matrix Ω and positive integers k, ℓ, q and $n > \ell \ge k$.

► Steps:

- 1. Compute $Y = (AA^T)^q A \Omega$.
- 2. Compute an orthonormal basis Q of Y.
- 3. Compute $\ell \times n$ matrix $B = Q^T A$.
- 4. Compute B_k = the rank-truncated SVD of B.
- 5. Compute $\widehat{A}_k = QB_k$.
- Output: \hat{A}_k , a rank-k approximation of A.

Remark: When $k = \ell = 1$. This is the classical power method.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Remarks on the basic subspace iteration:

• The orthonormal basis Q of $Y = (AA^T)^q A\Omega$ should be stably computed by the following loop: compute $Y = A\Omega$ compute Y = QR (QR decomposition) for j = 1, 2, ..., qcompute $Y = A^T Q$ compute Y = QR (QR decomposition) compute Y = AQcompute Y = QR (QR decomposition)

Convergence results:

Under mild assumption of the starting matrix Ω , (a) the basic subspace iteration converges as $q \to \infty$. (b) $|\sigma_j - \sigma_j(Q^T B_k)| \le O\left(\left(\frac{\sigma_{\ell+1}}{\sigma_k}\right)^{2q+1}\right)$

Reading: M. Gu, Subspace iteration randomization and singular value problems, arXiv:1408.2208, 2014

▶ Input: $m \times n$ matrix A with $m \ge n$, positive integers k, ℓ, q and $n > \ell > k$.

Steps:

- 1. Draw a random $n \times \ell$ test matrix Ω .
- 2. Compute $Y = (AA^T)^q A\Omega$ "sketching".
- 3. Compute an orthogonal columns basis Q of Y.
- 4. Compute $\ell \times n$ matrix $B = Q^T A$.
- 5. Compute B_k = the rank-truncated SVD of B.
- 6. Compute $\widehat{A}_k = QB_k$.
- Output: \widehat{A}_k , a rank-k approximation of A.

MATLAB demo code: randsvd2.m

```
>> ...
>> Omega = randn(n,1);
>> C = A*Omega;
>> Q = orth(C);
>> for i = 1:q
>> C = A' * Q;
>> Q = orth(C);
>> C = A*Q:
>> Q = orth(C);
>> end
>> [Ua2,Sa2,Va2] = svd(Q'*A);
>> Ak2 = (Q*Ua2(:,1:k))*Sa2(1:k,1:k)*Va2(:,1:k)';
>> ...
```

The CUR decomposition: find an optimal intersection \boldsymbol{U} such that

 $A \approx CUR$,

where C is the selected c columns of A, and R is the selected r rows of A.

Theorem.

(a) $||A - CC^+A|| \le ||A - CX||$ for any X

(b)
$$||A - CC^+AR^+R|| \le ||A - CXR||$$
 for any X

(c) $U_* = \operatorname{argmin}_U ||A - CUR||_F^2 = C^+ AR^+$

where $\|\cdot\|$ is a unitarily invariant norm.

Remark: Let $A = U\Sigma V^T$ is the SVD of an $m \times n$ matrix A with $m \ge n$. Then the pseudo-inverse (also called generalized inverse) A^+ of A is given by $A^+ = V\Sigma^+ U^T$, where $\Sigma^+ = \operatorname{diag}(\sigma_1^+, \ldots)$ and $\sigma_j^+ = 1/\sigma_j$ if $\sigma_j \ne 0$, otherwise $\sigma_j^+ = 0$. If A is of full column rank, then $A^+ = (A^T A)^{-1} A^T$. In MATLAB, pinv(A) is a built-in function of compute the pseudo-inverse of A.

MATLAB demo code: randcur.m

```
>> ...
>> bound = n*log(n)/m;
>> sampled_rows = find(rand(m,1) < bound);
>> R = A(sampled_rows,:);
>> sampled_cols = find(rand(n,1) < bound);
>> C = A(:,sampled_cols);
>> U = pinv(C)*A*pinv(R);
>> ...
```

► Theorem. With c = O(k/ε) columns and r = O(k/ε) rows selected by adapative sampling to for C and R,

$$\min_{X} \|A - CXR\|_{F}^{2} \le (1+\epsilon) \|A - A_{k}\|_{F}^{2}$$

holds in expectation.

▶ Reading: Boutsidis and Woodruff, STOC, pp.353-362, 2014