
ECS231
Low-rank approximation – revisited

(Introduction to Randomized Algorithms)

May 23, 2019

1 / 15

Outline

1. Review: low-rank approximation

2. Prototype randomized SVD algorithm

3. Accelerated randomized SVD algorithms

4. CUR decomposition

2 / 15

Review: optimak rank-k approximation

I The SVD of an m× n matrix A is defined by

A = UΣV T ,

where U and V are m×m and n× n orthogonal matrices,
respectively, Σ = diag(σ1, σ2, . . .) and σ1 ≥ σ2 ≥ · · · ≥ 0.

I Computational cost O(mn2), assuming m ≥ n.

I Rank-k truncated SVD of A:

Ak = U(:,1:k) ·Σ(1:k,1:k) · V T
(:,1:k)

3 / 15

Review: optimak rank-k approximation

I Eckart-Young theorem.

min
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

min
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

 n∑
j=k+1

σ2
k+1

1/2

I Theorem A.

min
rank(B)≤k

‖A−QB‖2F = ‖A−QBk‖2F ,

where Q is an m× p orthogonal matrix, and Bk is the rank-k
truncated SVD of QTA, and 1 ≤ k ≤ p.

Remark: Given m × n matrix A = (aij), the Frobineous norm of A is defined by

‖A‖F =
(∑m

i=1
∑n
j=1 a

2
ij

)1/2
= (trace(ATA))1/2 .

4 / 15

Prototype randomized SVD algorithm

By Theorem A, we immediately have the following a prototype randomized
SVD (low-rank approximation) algorithm:

I Input: m× n matrix A with m ≥ n, integers k > 0 and k < ` < n

I Steps:

1. Draw a random n× ` test matrix Ω.
2. Compute Y = AΩ – “sketching”.
3. Compute an orthonormal basis Q of Y .
4. Compute `× n matrix B = QTA.
5. Compute Bk = the rank-truncated SVD of B.
6. Compute Âk = QBk.

I Output: Âk, a rank-k approximation of A.

5 / 15

Prototype randomized SVD algorithm

MATLAB demo code: randsvd.m

>> ...

>> Omega = randn(n,l);

>> C = A*Omega;

>> Q = orth(C);

>> [Ua,Sa,Va] = svd(Q’*A);

>> Ak = (Q*Ua(:,1:k))*Sa(1:k,1:k)*Va(:,1:k)’;

>> ...

6 / 15

Prototype randomized SVD algorithm

I Theorem. With proper choice of an m×O(k/ε) sketch Ω,

min
rank(X)≤k

‖A−QX|2F ≤ (1 + ε)‖A−Ak‖22

holds with high probability.

I Reading: Halko et al, SIAM Rev., 53:217-288, 2011.

7 / 15

Accelerated randomized SVD algorithm 1

The basic subspace iteration

I Input: m× n matrix A with m ≥ n, n× ` starting matrix Ω and
positive integers k, `, q and n > ` ≥ k.

I Steps:

1. Compute Y = (AAT)qAΩ.
2. Compute an orthonormal basis Q of Y .
3. Compute `× n matrix B = QTA.
4. Compute Bk = the rank-truncated SVD of B.
5. Compute Âk = QBk.

I Output: Âk, a rank-k approximation of A.

Remark: When k = ` = 1. This is the classical power method.

8 / 15

Accelerated randomized SVD algorithm 2

Remarks on the basic subspace iteration:

I The orthonormal basis Q of Y = (AAT)qAΩ should be stably
computed by the following loop:

compute Y = AΩ
compute Y = QR (QR decompostion)
for j = 1, 2, . . . , q

compute Y = ATQ
compute Y = QR (QR decompostion)
compute Y = AQ
compute Y = QR (QR deompostion)

I Convergence results:

Under mild assumption of the starting matrix Ω,
(a) the basic subspace iteration converges as q →∞.

(b) |σj − σj(QTBk)| ≤ O

((
σ`+1

σk

)2q+1
)

Reading: M. Gu, Subspace iteration randomization and
singular value problems, arXiv:1408.2208, 2014

9 / 15

Accelerated randomized SVD algorithm 3

I Input: m× n matrix A with m ≥ n, positive integers k, `, q and
n > ` > k.

I Steps:

1. Draw a random n× ` test matrix Ω.
2. Compute Y = (AAT)qAΩ – “sketching”.
3. Compute an orthogonal columns basis Q of Y .
4. Compute `× n matrix B = QTA.
5. Compute Bk = the rank-truncated SVD of B.
6. Compute Âk = QBk.

I Output: Âk, a rank-k approximation of A.

10 / 15

Accelerated randomized SVD algorithm 4

MATLAB demo code: randsvd2.m

>> ...

>> Omega = randn(n,l);

>> C = A*Omega;

>> Q = orth(C);

>> for i = 1:q

>> C = A’*Q;

>> Q = orth(C);

>> C = A*Q;

>> Q = orth(C);

>> end

>> [Ua2,Sa2,Va2] = svd(Q’*A);

>> Ak2 = (Q*Ua2(:,1:k))*Sa2(1:k,1:k)*Va2(:,1:k)’;

>> ...

11 / 15

The CUR decomposition

The CUR decomposition: find an optimal intersection U such that

A ≈ CUR,

where C is the selected c columns of A, and R is the selected r rows of A.

12 / 15

The CUR decomposition

Theorem.

(a) ‖A− CC+A‖ ≤ ‖A− CX‖ for any X

(b) ‖A− CC+AR+R‖ ≤ ‖A− CXR‖ for any X

(c) U∗ = argminU‖A− CUR‖2F = C+AR+

where ‖ · ‖ is a unitarily invariant norm.

Remark: Let A = UΣV T is the SVD of an m × n matrix A with m ≥ n. Then the pseudo-inverse (also called generalized inverse)

A+ of A is given by A+ = VΣ+UT , where Σ+ = diag(σ
+
1 , ...) and σ

+
j

= 1/σj if σj 6= 0, otherwise σ
+
j

= 0. If A is

of full column rank, then A+ = (ATA)−1AT . In MATLAB, pinv(A) is a built-in function of compute the pseudo-inverse of A.

13 / 15

The CUR decomposition

MATLAB demo code: randcur.m

>> ...

>> bound = n*log(n)/m;

>> sampled_rows = find(rand(m,1) < bound);

>> R = A(sampled_rows,:);

>> sampled_cols = find(rand(n,1) < bound);

>> C = A(:,sampled_cols);

>> U = pinv(C)*A*pinv(R);

>> ...

14 / 15

The CUR decomposition

I Theorem. With c = O(k/ε) columns and r = O(k/ε) rows selected
by adapative sampling to for C and R,

min
X
‖A− CXR|2F ≤ (1 + ε)‖A−Ak‖2F

holds in expectation.

I Reading: Boutsidis and Woodruff, STOC, pp.353-362, 2014

15 / 15

