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Outline

1. linear least squares – review

2. Solving LS by sampling

3. Solving LS by randomized preconditioning

4. Gradient-based optimization – review

5. Solving LS by gradient-descent

6. Solving LS by stochastic gradient-descent
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Review: Linear least squares

I Linear least squares problem

min
x
‖Ax− b‖2

I Normal equation
ATAx = AT b

I Optimal solution
x = A+b
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Solving LS by sampling

I MATLAB demo code: lsbysampling.m

>> ...

>> A = rand(m,n); b = rand(m,1);

>> sampled_rows = find( rand(m,1) < 10*n*log(n)/m );

>> A1 = A(sampled_rows,:);

>> b1 = b(sampled_rows);

>> x1 = A1\b1;

>> ...

I Further reading: Avron et al, SIAM J. Sci. Comput., 32:1217-1236,
2010
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Solving LS by randomized preconditioning

I Linear least squares problem

min
x
‖ATx− b‖2

I Normal equation
(AAT )x = Ab

I If we can find a P such that P−1A is well-conditioned, then it yields

x = (AAT )−1Ab

= P−T · (P−1A · (P−1A)T )−1 · P−1A · b
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Solving LS by randomized preconditioning

I MATLAB demo code: lsbyrandprecond.m

>> ...

>> ell = m+4;

>> G = randn(n,ell);

>> S = A*G; % sketching of A

>> [Q,R,E]=qr(S’); % QR w. col. pivoting S’*E = Q*R

>> P = E*R(1:m,1:m)’; % preconditioner P

>> B = P\A;

>> PAcondnum = cond(B) % the condition number

>> ...

I Further reading: Coakley et al, SIAM J. Sci. Comput., 33:849-868,
2011
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Review: Gradient-based optimization

I Optimization problem

x∗ = argmin
x

f(x)

I Gradient: ∇xf(x)
The first-order approximation

f(x+∆x) = f(x) +∆xT∇xf(x) +O(‖∆x‖22)

Directional derivative: ∂
∂αf(x+ αu) = uT∇xf(x)

I To min f(x), we would like to find the direction u in which f
decreases the fastest. Using the directional derivative,

f(x+ αu) = f(x) + αuT∇xf(x) +O(α2)

Note that

min
u,uTu=1

uT∇xf(x) = min
u,uTu=1

‖u‖2‖∇xf(x)‖2 cos θ

= −‖∇xf(x)‖2
when u is the opposite of ∇xf(x). Therefore, the steepest descent
direction u = −∇xf(x).
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Review: Gradient-based optimization, cont’d

I The method of steepest descent

x′ = x− ε · ∇xf(x),

where the “learning rate” ε can be chosen as follows:

1. ε = small const.
2. minε f(x− ε · ∇xf(x))
3. evaluate f(x− ε∇xf(x)) for several different values of ε and choose

the one that results in the smallest objective function value.
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Solving LS by gradient-descent

I Minimization problem

min
x
f(x) = min

x

1

2
‖Ax− b‖22

I Gradient: ∇xf(x) = ATAx−AT b
I The method of gradient descent:

I set the stepsize ε and tolerance δ to small positive numbers.
I while ‖ATAx−AT b‖2 > δ do

x← x− ε · (ATAx−AT b)

I end while
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Solving LS by gradient-descent

MATLAB demo code: lsbygd.m

>> ...

>> r = A’*(A*x - b);

>> xp = x - tau*r;

>> res(k) = norm(r);

>> if res(k) <= tol, ... end

>> ...

>> x = xp;

>> ...
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Solve LS by stochastic gradient descent

I Minimization problem:

x∗ = argmin
x

1

2
‖Ax− b‖22 = argmin

x

1

n

n∑
i=1

fi(x) = argmin
x

Efi(x)

where fi(x) =
n
2 (〈ai, x〉 − bi)

2 and a1, a2... are the rows of A.

I Gradient: ∇xfi(x) = n(〈ai, x〉 − bi)ai.
I The stochastic gradient descent (SGD) method solves the LS problem

by iterative moving in the gradient direction of a selected function fik :

xk+1 ← xk − γ · ∇fik(xk)

where index ik is selected randomly in the kth iteration:
I uniformally at random, or
I weighted sampling 1

1D. Needell et al, Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm, Math. Program. Ser. A (2016) 155:549-573.
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Solve LS by stochastic gradient descent

MATLAB demo code: lsbysgd.m

>> ...

>> s = rand;

>> i = sum(s >= cumsum([0, prob])); % with probability prob(i)

>> dx = n*(A(i,:)*x0 - b(i))*A(i,:);

>> x = x0 - (gamma/(n*prob(i)))*dx’; % weighted SGD

>> ...
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