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Review: Linear least squares

» Linear least squares problem
min || Az — b||2
xT

» Normal equation
AT Az = ATp

» Optimal solution
z=A"b



Solving LS by sampling

» MATLAB demo code: 1sbysampling.m
>> ..
>> A = rand(m,n); b = rand(m,1);
>> sampled_rows = find( rand(m,1) < 10*n*log(n)/m );
>> Al = A(sampled_rows,:);

>> bl = b(sampled_rows);
>> x1 = A1\Db1;
>>

> Further reading: Avron et al, SIAM J. Sci. Comput., 32:1217-1236,
2010



Solving LS by randomized preconditioning

» Linear least squares problem
min | ATz — b||,
xT

» Normal equation
(AAT)x = Ab
» If we can find a P such that P! A is well-conditioned, then it yields
T = (AAT)’IAb
=P T (PtA-(PtAT)L.PtAD



Solving LS by randomized preconditioning

» MATLAB demo code: 1sbyrandprecond.m
>> ...
>> ell = m+4;
>> G = randn(n,ell);

>> S = A*G; % sketching of A

>> [Q,R,E]l=qr(8’); % QR w. col. pivoting S’#E = Q*R
>> P = ExR(1:m,1:m)’; % preconditioner P

>> B = P\A;

>> PAcondnum = cond(B) % the condition number

>>

> Further reading: Coakley et al, SIAM J. Sci. Comput., 33:849-868,
2011
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Review: Gradient-based optimization

» Optimization problem
2* = argmin f(x)
> Gradient: V, f(z)
The first-order approximation
fla+ Az) = f(x) + Az"V, f(z) + O(|| Az]3)

Directional derivative: %f(x +au) =uTV, f(x)
» To min f(x), we would like to find the direction u in which f
decreases the fastest. Using the directional derivative,

fl@+au) = f(z) + au’V, f(z) + O(a?)
Note that
min uTfo( )= . mln ||u|| IV f(x)]|2cosb

w,uTu=1
= —||sz($)||2

when w is the opposite of V. f(x). Therefore, the steepest descent
direction u = —V, f(z).



Review: Gradient-based optimization, cont'd

» The method of steepest descent
¥ =x—¢€ V,f(x),

where the “learning rate” € can be chosen as follows:

1. € = small const.

2. min f(z —€- Vo f(z))

3. evaluate f(z — €V, f(z)) for several different values of € and choose
the one that results in the smallest objective function value.



Solving LS by gradient-descent
» Minimization problem
. 1 2
min f(z) = min §||A:v = b3

» Gradient: V, f(z) = AT Az — ATb
» The method of gradient descent:

> set the stepsize € and tolerance ¢ to small positive numbers.

> while ||[AT Az — ATb||2 > § do
x—ax—e- (AT Az — ATb)

» end while
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Solving LS by gradient-descent
MATLAB demo code: 1sbygd.m

>> ..

>>r = Ax(A*x - b);
>> Xp = X — tauxr;
>> res(k) = norm(r);

>> if res(k) <= tol, ... end
>> ...
>> X = xp;

>> ...
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Solve LS by stochastic gradient descent

» Minimization problem:

1 I
r, = argmin = || Az — b||3 = argmin — Z fi(x) = argmin E f;(z)
x 2 T n P T

where f;(z) = 2({(a;, ) — b;)* and a1, as... are the rows of A.
> Gradient: V. fi(z) = n({a;, ) — b;)a;.
> The stochastic gradient descent (SGD) method solves the LS problem

by iterative moving in the gradient direction of a selected function f;, :

Thy1 o — 7 - Vi, (21)

where index i is selected randomly in the kth iteration:
> uniformally at random, or
» weighted sampling ?

1D. Needell et al, Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm, Math. Program. Ser. A (2016) 155:549-573.
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Solve LS by stochastic gradient descent
MATLAB demo code: 1sbysgd.m

>> ...

>> s = rand;

>> i = sum(s >= cumsum([0, probl)); 7 with probability prob(i)
>> dx = n¥(A(i,:)*x0 - b(1))*A(i,:);

>> x = x0 - (gamma/(n*prob(i)))*dx’; % weighted SGD

>> ...



