- 1. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^m and assume that $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$, prove that $\|x\|_A = \|Ax\|$ is a vector norm on \mathbb{R}^n .
- 2. Verify that $||xy^H||_F = ||xy^H||_2 = ||x||_2 ||y||_2$ for any $x, y \in \mathbb{C}^n$.
- 3. (a) Define $||A||_{\max} = \max_{1 \le i,j \le n} \{|a_{ij}|\}$. Show that $||A||_{\max}$ is a matrix norm.

(b) Show by example that it is not a consistent norm, i.e., it does not satisfy the property $||AB||_{\max} \leq ||A||_{\max} ||B||_{\max}$.

4. Given $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ sthe *trace* of A is $tr(A) = \sum_{i=1}^{n} a_{ii}$. Prove the following facts about the trace:

the trace:

- (1) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B).$
- (2) $\operatorname{tr}(CE) = \operatorname{tr}(EC)$ for all $n \times m \ C$ and $m \times n \ E$.
- (3) Show that if B is similar to A, i.e., $B = S^{-1}AS$ for a nonsingular matrix S, then tr(B) = tr(A).
- (4) Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A, then $\operatorname{tr}(A) = \sum_{j=1}^n \lambda_j$.
- 5. Let Q and Z be orthogonal matrices.
 - (a) Show that $||QAZ||_F = ||A||_F$.
 - (b) Show that $||QAZ||_2 = ||A||_2$, where $||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$.

Therefore, we can conclude that the Frobenius norm and 2-norm are invariant under orthogonal transformation.

6. Let A be an $n \times n$ nonsingular matrix, U and V be $n \times k$ matrices with $k \leq n$, verify that if $T = I + V^{\mathrm{H}}A^{-1}U$ is nonsingular, then

$$(A + UV^{\mathrm{H}})^{-1} = A^{-1} - A^{-1}UT^{-1}V^{\mathrm{H}}A^{-1}.$$

This formula is called the *Sherman-Morrison-Woodbury* formula, widely used in applications.

7. Given $n \times n$ nonsingular matrix A and $m \times m$ matrix D, show that

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(A) \cdot \det(D - CA^{-1}B).$$

The matrix $D - CA^{-1}B$ is called the Schur complement of A in $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

8. (1). Let A be symmetric positive definite and suppose that $A = LDL^T$, where L is unit lower triangular and D is diagonal. Prove that the main-diagonal entries of D are all positive.

(2). Conversely, suppose $A = LDL^T$, where L is unit lower triangular and D is diagonal. Prove that if the main-diagonal entries of D are positive, then A is positive definite.

- 9. If A is a nonsingular symmetric matrix, and has the factorization $A = LDM^T$, where L and M are unit lower triangular matrices and D is a diagonal matrix, show that L = M.
- 10. Given an $n \times n$ nonsingular matrix A, how do you *efficiently* solve the following problems by using the LU with partial pivoting:
 - (1) solve the linear system $A^k x = b$, where k is a positive integer, $b \in \mathbb{R}^n$.
 - (2) solve the matrix equation AX = B, where $B \in \mathbb{R}^{n \times m}$.

You should (i) describe your algorithms, (ii) present them in pseudo-code (Matlib-like language. You may use the LU with partial pivoting as a building block), and (iii) give the required flops (The flops of the LU with partial pivoting is $2/3n^3$).

- 11. Let A be nonsingular, and let $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$ be its singular values.
 - (1) Find the SVD of A^{-1} in terms of the SVD of A. What are the singular values and singular vectors of A^{-1} ?
 - (2) Deduce that $||A^{-1}||_2 = \sigma_n^{-1}$ and $\kappa(A) = ||A||_2 ||A^{-1}||_2 = \sigma_1/\sigma_n$. $\kappa(A)$ is referred to as the condition number of A.
- 12. (Mini-project) The nuclear norm of $A \in \mathbb{R}^{n \times n}$ is defined by

$$\|A\|_* = \sum_{i=1}^n \sigma_i$$

where σ_i is the *i*-th singular value of A.

- (a) Show that $||A||_* = \operatorname{tr}(\sqrt{A^T A})$. Here the square root of a symmetric positive semidefinite matrix M is defined by $\sqrt{M} = QA^{1/2}Q^T$, $M = QAQ^T$ is a spectral decomposition of M and $A^{1/2} = \operatorname{diag}(\lambda_i^{1/2})$.
- (b) Show that $||A||_* = \max_{Q^T Q = I} tr(AQ).$
- (c) Show that $||A + B||_* \le ||A||_* + ||B||_*$
- (c) The nuclear norm is popular in machine learning. Provide an application of the nuclear norm.