
 1

  

Abstract 
 
As the complexity of processor architectures increases, there 
is a widening gap between peak processor performance and 
sustained processor performance so that programs now tend 
to exploit only a fraction of available performance. While 
there is a tremendous amount of literature on program 
optimizations, compiler optimizations lack efficiency because 
they are plagued by three flaws: (1) they often implicitly use 
simplified, if not simplistic, models of processor architecture, 
(2) they usually focus on a single processor component (e.g., 
cache) and ignore the interactions among multiple 
components, (3) the most heavily investigated components 
(e.g., caches) sometimes have only a small impact on overall 
performance. Through the in-depth analysis of a simple 
program kernel, we want to show that understanding the 
complex interactions between programs and the numerous 
processor architecture components is both feasible and 
critical to design efficient program optimizations. 

I. INTRODUCTION 
To accommodate a constantly increasing clock frequency, 
computer architecture needs to be increasingly complex (long 
pipelines, cache hierarchy, branch prediction, trace cache, 
hardware prefetching,…) and it is increasingly difficult for 
compilers to generate programs that take full advantage of 
these architectures. As a result, the gap between peak 
performance and sustained performance rapidly increases. 
Bridging this gap is bound to become a critical technical and 
economic issue, highlighting the need for more efficient 
compiler program optimizations, or techniques and tools to 
assist end-users in optimizing their programs. 
There is already a tremendous amount of literature on program 
optimizations and especially loop nest optimizations 
[1],[2],[3],[4],[9],[10],[11],[15]. Though a large fraction of 
this research work aims at improving program behavior on 
processor architecture, most of this research work actually 
target one specific architecture component like the cache 
[2],[3],[10],[18], the registers [23] or less frequently the TLB 
[24], but few attempt to consider several architecture 
components together and their possible interactions. And 
optimizations focused on one processor component that ignore 
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most or all other processor components are likely to be much 
less effective than expected, if not totally useless. 
Besides, most research work on compiler optimizations for 
processor architectures use simplified models (which are more 
tractable) of the different architecture components, ignoring 
many architecture phenomena and resulting in poor 
performance improvements. For instance, studies on cache 
conflicts started [2] way after caches were introduced [6], and 
only recently, Malik et al. [7] proposed a reliable method for 
taking into account the cache mapping function and addressing 
cache conflicts at compile-time. 
 
More perversely, certain research topics on program 
optimizations for processor architecture are considered almost 
closed, e.g., memory optimizations, simply because we have 
been working on them for a long time. However, because of 
the rapidly increasing processor complexity, program behavior 
on processor architecture changes as well, and program 
optimizations need to be revisited accordingly or the gap 
between peak and sustained performance will keep increasing. 
One of the goals of this article is to highlight this issue and to 
show the task is tractable, provided program optimizations 
become more “architecture-aware”, i.e., rely on much more 
detailed architecture models. More precisely, we want to show 
that: 

• it is possible to achieve large performance 
improvements, and sometimes get close to peak 
performance, provided program optimizations take 
into account the detailed workings of each processor 
component, as well as the interactions among 
components, 

• the architecture components which have the greatest 
impact on performance, and the program 
optimizations which bring the biggest performance 
improvements are not necessarily the ones on which 
most research works focus, 

• executing even a simple program on a modern 
processor results in complex behaviors, but that 
understanding these phenomena is both feasible and 
critical to design relevant and efficient compiler 
optimizations in the future. 

 
To illustrate these different points, we needed to select a 
program optimization domain (memory optimizations) and a 
target code (a simple and classic regular numerical kernel like 
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Matrix-Multiply) on which lots of research efforts have 
already been spent [2],[15],[25],... Since the purpose of this 
research work is not to design new program optimization 
techniques but to understand whether it is possible and what it 
takes to reach high sustained performance, we have collected 
the major and most relevant program optimization techniques 
in the literature, those performed in the Alpha production 
compiler, the associated KAP preprocessor [8], and those used 
in the Alpha EV6 libraries. Using a subset of these 
transformations: (1) we outline a sequence of transformations 
that achieves a 3.65-fold improvement over the kernel 
optimized with the Alpha compiler, a 3.52-fold improvement 
over traditional cache optimizations using tiling [10], and 95% 
of the Alpha peak performance; (2) we use this sequence of 
optimizations to precisely quantify and analyze the 
performance improvement brought by each architecture 
component/program optimization pair. 
 
We wish to point out that we are fully aware that Matrix-
Multiply is not representative of regular programs [9], but this 
is less a concern in the present study since we wish to focus on 
and highlight the interaction between program and 
architecture rather than design program transformation 
techniques that will apply to a large array of programs. While 
we cannot draw general conclusions from the analysis of a 
single kernel, this analysis certainly suggests that the research 
effort on program optimizations should be much more 
architecture-aware if the performance gap between peak and 
sustained performance is to be bridged. 
Our approach differs from classic compiler optimization 
research in that we are strongly tied to the architecture, all 
optimizations are driven by simulator-based dynamic analysis 
in opposition to compile-time static analysis, and the impact of 
each transformation on all architecture components is 
carefully evaluated. For this study, we had access to the full 
EV6 processor simulator from Compaq so that we could 
analyze in details the impact of transformations on all 
architecture components. Even though all experiments are 
conducted on the Alpha, the findings and conclusions of this 
study are very likely to be relevant to other high-performance 
processors. 
In Section II we briefly present the target processor 
architecture and the experimental framework; Section III is the 
core of the article where we present the detailed architecture-
oriented analysis and optimization of the Matrix-Multiply 
kernel and the impact of each architecture component on 
performance; finally, in Section IV we outline a first sketch of 
a practical approach to program optimization, intermediate 
between fully manual optimization and fully automatic 
optimization, which consists in formalizing our experience in 
program optimizations in such a way that it can be delivered 
and exploited by performance programmers. 

II. EXPERIMENTAL FRAMEWORK 
The target architecture is an Alpha 21264 processor (EV68) 
clocked at 1GHz. The architecture is described in Figure 1, 
where Ebox (integer) and Fbox (floating-point) respectively 
contain 4 and 2 functional units, and Ibox is the instruction 

fetch mechanism capable of fetching 4 instructions and issuing 
6 in the same cycle. The ICache and DCache are 64 KB 2-way 
set-associative caches with 64-byte blocks. The BCache is a 
8MB direct-mapped cache with 64-byte blocks. The Memory 
reference unit (Mbox) controls the DCache and ensures 
architecturally correct behavior for load and store instructions. 
The Mbox contains a Load Queue and a Store Queue of 32-
entry each, a Miss Address File (MAF) to coalesce pending 
misses on the same cache block, and the TLB which holds 128 
entries and is fully-associative; page size is 8 KB. The register 
bank contains 80 integer and 72 floating-point registers. 
 

 
Figure 1. EV6/Alpha 21264 processor architecture 

The experiments of this study were conducted for a large set 
of matrix dimensions. In Table 2, we report experimental 
values with dimension N≈1000 (exactly, execution times are 
average of the execution time of several matrix dimensions in 
an interval centered on N=1060); N≈1000 realizes a 
reasonable tradeoff between having large matrices and running 
processor simulations in a reasonable time. 

III. AN ARCHITECTURE-AWARE ANALYSIS AND 
OPTIMIZATION OF MATRIX-MULTIPLY 
 

do i=1, Ni 
do k=1, Nk      

R=b(k,i)       
do j=1, Nj   

c(j,i)=c(j,i)+R*a(j,k) 
enddo 

enddo 
enddo 

Figure 2. Original Matrix Multiply program C=A×B 

As mentioned in the introduction, we attempt to squeeze as 
much performance as possible out of the Matrix-Multiply 
kernel by carefully considering each component of the 
architecture, one after the other. For each architecture 
component, we used the dynamic analysis provided by 
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simulations to understand which phenomenon occurs on this 
component, and each time we tested a variety of 
transformations and picked the best performer. As a result, we 
have obtained a sequence of transformations that isolates and 
highlights the impact of each architecture component on 
overall performance, and the contribution of each program 
transformation. Finding the best sequence of transformations 
required a long trial and error process coupled with detailed 
dynamic analysis. The list of transformations is indicated in 
Table 1 along with the architecture components targeted. In 
Table 2, the performance of different program versions is 
indicated, along with the corresponding sequence of 
transformations used in each version. The base version, i.e., 
Step00, is compiled with -O2 –unroll 1 –
nopipeline1 so as to perform most classic compiler 
optimizations (common subexpression elimination, strength 
reduction, code scheduling, inlining,…), but not the more 
architecture-oriented optimizations found in –O4 and –O5, 
especially loop unrolling, software pipelining and prefetching. 
As can be seen in Table 2, the last version achieves a 13.56 
speedup over the base version and 95% of the peak 
performance, a 3.65 speedup over the -O5 version (best 
compiler optimization), and a 3.52 speedup over the –O5 
version augmented with the KAP preprocessor [8]. The 
overall speedup is similar to the speedup of the library 
[26][27] which is another example of manual best effort. For 
this study, we have analyzed in details the different 
optimizations proposed in the literature, performed in the 
compiler, the preprocessor KAP and the library, and using a 
processor simulator, we have identified how these 
optimizations operate on architecture components, and we 
have assembled a set of optimizations from these different 
sources. Through the analysis of each architecture component, 
we show how program optimizations should be defined and 
driven by the program behavior on the architecture, which 
architecture component has the greatest impact on 
performance and how different components can interact in 
complex ways,  
In the paragraphs below, we consider each architecture 
component in turn. At the beginning of each paragraph, we 
outline the speedup achieved with the corresponding program 
optimization, and the contribution to the final speedup. Note 
that we focus on the contribution to the speedup rather than 
the contribution to the execution time variation, because the 
order of the sequence of optimizations matters. 
 

 
1 « -unroll 1 » inhibits unrolling, while « -nopipeline » inhibits software 

pipelining. 

Step List of Transformations 
Step00 Original program 
Step01 Blocking 2D for DCache 
Step02 Blocking  3D for TLB 
Step03 Blocking 3D + Loop interchange for Store Queue 
Step04 Blocking 3D + Loop interchange + Unrolling for ILP 
Step05 Blocking 3D + Loop interchange + Unrolling + 

Blocking for Registers 
Step06 Blocking 2D for DCache + Copying for TLB + Loop 

interchange + Unrolling + Blocking for Registers 
Step07 Blocking 2D for DCache + Copying for TLB + Loop 

interchange + Unrolling + Blocking for Registers + 
Prefetch 

Step08 Blocking 2D for DCache + Copying for TLB + Loop 
interchange + Unrolling + Blocking for Registers + 
Prefetch + Blocking 3D for BCache 

Step09 Blocking 2D for DCache + Copying for TLB + Loop 
interchange + Unrolling + Blocking for Registers + 
Prefetch + Blocking 3D for BCache + Optimizations 
for architecture-specific features 

Table 1.  Program versions 

 
Step Speed-Up 
Step00 1.00 
Step01 2.48 
Step02 2.62 
Step03 3.11 
Step04 3.71 
Step05 9.90 
Step06 8.43 
Step07 12.25 
Step08 12.75 
Step09 13.56 
-O5 3.26 
-O5 with KAP 3.37 

Table 2. Speed-ups for N ≈ 1000 

 
L1 CACHE (Step01, speedup=2.48, contribution=12%). Most 
of the research works on regular numerical codes, and 
especially on Matrix-Multiply, focus on improving cache 
behavior because of the high miss ratio induced by intensive 
memory usage : 32% for the DCache, i.e., the EV6 L1 cache. 
 
Cache tiling  → do kk=1,Nk,T 
Cache tiling  → do jj=1,Nj,T 

 do i=1, Ni 
 do k=kk,MIN(kk+T-1,Nk)      
 R=b(k,i)       
 do j=jj,MIN(jj+T-1,Nj)   
 c(j,i)=c(j,i)+R*a(j,k) 

Figure 3. Step01:  2D tiling for caches 

 
The most popular optimization method for programs with 
significant and poorly exploited temporal locality like Matrix-
Multiply is tiling [18][2][10]. The block size of matrix A must 
be carefully picked to minimize conflict misses [2]; it is 
interesting to note that block size selection algorithms which 
solely rely on miss cost functions [10] perform significantly 
worse than algorithms which rely on global execution time 
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[19], and which implicitly consider all architecture 
components. In our case, we performed an exhaustive search 
to find the block size value that minimizes execution time and 
we found T=33. 
Even though the optimization results in dramatic miss ratio 
reduction on the DCache (95%), it only accounts for 12% of 
the final speedup.  
 

 
Figure 4. Before cache tiling  

 
Figure 5. After cache tiling 

 
L1 CACHE + TLB (Step02, speedup=2.62, contribution=1%). 
Only recently [5],[10], researchers have pointed out that cache 
tiling can have adverse effects on the TLB. Consider Figure 4 
and Figure 5, matrices B and C, and assume one matrix 
column is roughly the size of one page (8 kB in the Alpha 
EV6); in the non-tiled version, on each iteration of i, a column 
of B and C is accessed and the corresponding TLB entries are 
loaded. These TLB entries are respectively reused on all 
iterations of the k loop (for matrix B) and j loop (for matrix 
C), and the reuse distance is respectively one iteration of the k 
and j loops. Now, in the tiled version, only part of the column 
of each matrix is accessed in loops k and j; therefore the TLB 
entry of matrix B is further reused on all iterations of loop kk, 
and the TLB entry of matrix C on all iterations of loop jj. 
Consequently, the reuse distance varies: for the k and j loops it 
is still one iteration of the inner loop, but for the kk and jj loop 
it is one execution of the whole i loop nest. As a result, the 
reuse distance is very large and the probability the TLB entry 
is flushed before it can be reused is significantly increased, 
resulting in additional TLB misses in the tiled loop: the DTLB 
miss ratio is increased to 5.08e-4 versus 4.98e-4 in the original 
loop (TLB miss ratios are fairly low, but the cost of one TLB 
miss is significantly higher than the cost of a cache miss). 
    

TLB tiling  → do ii=1,Ni,T 
 do kk=1,Nk,T 
 do jj=1,Nj,T 
 do i=ii,MIN(ii+T-1,Ni) 
 do k=kk,MIN(kk+T-1,Nk)      
 R=b(k,i)       
 do j=jj,MIN(jj+T-1,Nj)   
 c(j,i)=c(j,i)+R*a(j,k) 

Figure 6. Step02: 3D Tiling for TLB 

We do not want to loose the benefit of cache tiling, but we 
want to minimize its impact on the TLB. For that purpose, we 
want to manage the reuse of TLB entries on the i loop much 
the same way we managed cache data reuse on the j and k 
loops: we can tile the i loop so that the number of TLB entries 
of matrices B and C in a tile is small enough to fit in the TLB, 

and can be reused on the kk and jj loops. The TLB miss ratio 
is reduced from 5.08e-4 to 2.08e-5. The number of cache 
misses is slightly increased but not enough to compensate for 
the benefit of the TLB miss reduction. The speedup increases 
to 2.62. 
 
L1 CACHE + TLB + STORE QUEUE (Step03, speedup=3.11, 
contribution=4%). Stores are usually not considered as prime 
candidates for optimizations because stores are typically not 
critical operations: data is sent back to memory and will not be 
used shortly. However, several architecture components can 
degrade overall processor performance when stores behave 
poorly, e.g., store queue, write buffer or victim address file. 
For instance, when the write buffer is full, any additional write 
will stall the cache and possibly the processor, degrading 
overall performance; it is not the case in our example. 
 

 
Figure 7. Store Queue and load speculation 

In superscalar processors, there are some cases where memory 
operations must be aborted; the instruction is then fetched 
again and executed; in the EV68 such cases are called replay 
traps.  In the EV68, two memory operations cannot be in 
progress at the same time, see Figure 7, if they map to the 
same cache set, due to architectural limitations. If that happens 
the newest instruction is aborted and a replay trap occurs. 
In version Step02, the number of replay traps is fairly high 
because the innermost loop nest contains one store and two 
loads which sometimes access the same cache set. One way to 
reduce the probability that conflicts, and thus replay traps, 
occur is to reduce the number of load or store operations. For 
that purpose, we interchange inner loops k and j, see Figure 8. 
Then, the write request c(j,i) can be moved out of the inner 
loop, dividing by T (=33) the number of store requests. As a 
result, the number of replay traps is divided by 24, and the 
speedup increases to 3.11. 
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 do ii=1,Ni,T 
 do kk=1,Nk,T 
 do jj=1,Nj,T 
 do i=ii,MIN(ii+T-1,Ni) 

Loop interchange  → do j=jj,MIN(jj+T-1,Nj)    
 R=c(j,i)  

Loop interchange → do k=kk,MIN(kk+T-1,Nk)  
 R=R+b(k,i)*a(j,k) 
 Enddo 
 c(j,i)=R 

Figure 8. Step03: Loop interchange for Store Queue 

 
L1 CACHE + TLB + STORE QUEUE + ILP (Step04, 
speedup=3.71, contribution=5%). Registers are a critical 
resource and large loop bodies usually result in spill code 
rather than unexploited registers. But in a small loop like 
Matrix-Multiply, there are multiple available registers. 
Compilers usually employ additional available registers to 
increase instruction-level parallelism using loop unrolling and 
software pipelining [1]. Similarly, we unroll the innermost 
loop 8 times (which we denote 118 unrolling: unroll 1 on i, 1 
on j and 8 on k), and the speedup is now 3.71.  
 
L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS  
(Step05, speedup=9.90, contribution=49%). At this point, 
even though we have significantly reduced the number and 
effect of cache and TLB misses, i.e., we have reduced the 
average memory latency, our program is still memory bound 
because the ratio of the number of computations over memory 
accesses (load/store) is low (≈1). However, registers, the 
uppest level in the memory hierarchy, can also be used to 
reduce the number of memory accesses. And after the ILP 
optimization of the previous paragraph, we found that several 
registers are still available. So, we can now use these 
additional available registers to reduce the number of 
load/stores by treating registers as just another memory 
hierarchy level. We tile for the register level simply by 
unrolling outside loops [23]. Consider the program of Figure 
8 and the same program below where the j loop has been 
unrolled twice. 
 

  
 
 
 

Loop unrolling → 
 
 
 
 
 
Register reuse → 

      do ii=1,Ni,Ti 
         do kk=1,Nk,Tk 
            do jj=1,Nj,Tj 
               do i=ii,MIN(ii+Ti-1,Ni) 
                  do j=jj,MIN(jj+Tj-1,Nj),2 
                     Rc0  = c(j,i) 
                     Rc1  = c(j+1,i) 
                     Rb0 = b(k,i) 
                     do k=kk,MIN(kk+Tk-1,Nk) 
                        Rc0 = Rc0 + Rb0 * a(j,k) 
                        Rc1 = Rc1 + Rb0 * a(j+1,k) 

                     

Figure 9. Step05: Register tiling 

The b(k,i) reference can be placed in a register, avoiding a 
memory access; similarly, if we unroll j U times we would 
avoid U-1 memory accesses. We can do the same with loop i 
and reference a(j,k). We experimentally found that optimal 
performance is achieved for several different combinations of 
unroll factors, and we select 348 for now (we will later change 

again the unroll factor). We observe that the number of loads 
decreases by 69%, the instruction-level parallelism is as high 
as for innermost loop unrolling (118, see previous paragraph), 
and the ratio of computations over memory operations is 
increased by 300%. Consequently, functional unit utilization is 
higher and overall performance is increased by 49%, with a 
speedup of 9.90. 
 
Therefore, by treating registers as an additional memory level, 
we can tremendously improve the program bandwidth; while it 
may be difficult to exploit physical registers in current 
superscalar architectures because they are hidden by dynamic 
renaming [12], new instruction set architectures like the 
Itanium EPIC [13] expose much more logical registers to the 
programmer and the compiler. 
 
EXAMPLE OF INTERACTION BETWEEN L1 CACHE, TLB, 
STORE QUEUE AND REGISTERS (Step06). The strong speedup 
brought by register tiling suggests we should probably 
privilege this optimization over other optimizations. 
Therefore, in this paragraph, we revisit several other 
optimizations in order to maximize register tiling, in order to 
illustrate how interactions among architecture components can 
influence individual optimizations and the sequence of 
optimizations. 
Note that in the above paragraph, we have improved the 
register utilization for reference a(j,k) and reference b(k,i), but 
we have not mentioned reference c(j,i). Loop unrolling does 
not improve register utilization for reference c(j,i), it is the 
size of loop k (Tk) that determines register utilization for this 
reference: the longer loop k, the fewer the number of 
load/stores. Since we use a relatively small block size 
(Tk=33), we could achieve significant performance 
improvements with a much larger Tk tile size. 
 

 
 
 
 
 
 
 
Register reused → 
Register reused → 

    do i=1,Ni,Ti 
         do kk=1,Nk,Tk 
            do j=1,Nj,2 
                     Rc0  = c(j,i) 
                     Rc1  = c(j+1,i) 
                     Rb0 = b(k,i) 
                     do k=kk,MIN(kk+Tk-1,Nk) 
                        Rc0 = Rc0 + Rb0 * a(j,k) 
                        Rc1 = Rc1 + Rb0 * a(j+1,k) 
                     

Figure 10.  Trading L1 reuse for register utilization 

If we increase Tk to improve register utilization, we will not be 
able to still exploit the L1 reuse of matrix A, because its TjxTk 
tile would not fit in cache anymore. We have made several 
tests which showed that, in the end, it is worth dropping the L1 
reuse of matrix A to favor the register utilization of matrix C 
and the subsequently enabled optimizations described in the 
next sections, like prefetching.  
However, while we loose the L1 reuse of matrix A we can 
have a large Tk value and still exploit the L1 reuse of matrix 
B, which partly compensates for the loss of matrix A L1 reuse. 
Indeed, we have seen that loop i is unrolled 3 times for 
register utilization purposes (unrolling factor is 348), so the B 
tile reused on each iteration of loop j is a 3xTk tile. Therefore, 
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we need to find the biggest possible value of Tk such that the 
3xTk tile fits in the L1 cache. Because the tile is very flat, we 
can fulfill our goal of having a large value of Tk; in fact, we 
find Tk=Nk satisfies this constraint. The corresponding code is 
shown in Figure 10. Note that loop j is not tiled anymore as we 
have given up on the L1 reuse of matrix A, and similarly, we 
have dropped the associated TLB tiling of loop i. 
 

      Copy → 
 
 
Copy → 

 

     do kk=1,Nk,Tk 
     do i=1,Ni, 3 
C       COPY of matrix B 
           … 
          do j=1, Nj, 4 
C           COPY of matrix A 
               … 
               Rc0  = c(j,i) 
               … 
               do k=kk,MIN(kk+Tk-1,Nk), 8 
C               Innermost loop 
               end do 
               c(j,i) = Rc0 
               … 
         end do 
     end do   
end do   

  

Figure 11.  Copying  to avoid TLB misses 

 

 
Figure 12. New tiling pattern 

Now, if we tile with these values, we achieve a slowdown of 
48% because the number of TLB misses has been multiplied 
by 780. The value of Tk is such that the TLB is trashed within 
the innermost loop k because of reference a(j,k), and to a 
much lesser extent, reference b(k,i). TLB tiling on loop i, as 
used in Step02, has the effect of reducing TLB misses across 
executions of loops j and k, but it has no effect on TLB misses 
within loop k. We can avoid trashing the TLB by copying the 
A tiles so they become contiguous memory addresses, see 
Figure 12 and the code in Figure 11; because the A tile is 
reused several times, the benefit of copying compensates for 
the copying overhead cost in terms of TLB misses. Moreover, 
copying has the additional benefit of reducing L1 cache 

conflict misses, see [14]. Using copying, the number of TLB 
misses is reduced by 98%.  
Finally, in a previous paragraph, we had unrolled the inner 
loop 8 times (118), and based on this constraint we had 
unrolled outer loops as much as register usage allowed. 
Implicitly, we had privileged instruction-level parallelism over 
register tiling. Now, we have observed that register tiling bring 
significant benefits, so we reverse this trend, and privilege 
register tiling over instruction-level parallelism and the best 
unrolling factor that satisfies this new constraint is 442. 
However, the overall speedup brought by this version is only 
8.43 (Step06) versus 9.90 (Step05) in the previous version, 
essentially because caches are still rather poorly exploited 
(especially matrices A and C) since we have focused on 
registers, and because of the overhead of copying. However, 
we will see in the next paragraph, that the current version is 
now better suited to the next optimizations, especially 
prefetching, and will achieve a higher overall performance 
improvement; a similar register-oriented approach is used in 
the Alpha library [27]. 
 
L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS + 
PREFETCH (Step07, speedup=12.25, contribution=19%). If 
we directly apply prefetching to the initial Matrix-Multiply 
version Step00 (for all matrices), we obtain a rather small 
performance improvement (speedup=1.33 over Step00) 
because poor cache and register utilization results in high 
memory traffic, and almost no memory bandwidth available 
for prefetching. If we apply prefetching to our most efficient 
version until now, i.e., Step05, we only achieve a speedup of 
1.05 over Step05 because of the small square tiles (T=33): 
there are 8 cache lines per tile (one cache line is 64 bytes), so 
that there is at most 4 prefetching opportunities within one tile, 
and in fact even less, since we need to use a large enough 
prefetch distance to compensate for the memory latency.  
Now, in the Matrix-Multiply version of the previous paragraph 
(Step06, a slowdown of 0.90 over Step05), we use much larger 
tiles (Tk=Nk) which are better suited to prefetching. Besides, 
register tiling and TLB miss reduction help keep memory 
traffic reasonably low. Finally, besides reducing the average 
memory latency, prefetching would bring the added benefit of 
hiding the overhead of copying in this Matrix-Multiply 
version. 
 

 do kk=1,Nk,Tk 
       do i=1,Ni,4 
 C       COPY of matrix B 
Prefetching  →               Prefetch( b(k+4,i) ) 
       … 

       do j=1,Nj,4 
 C           COPY of matrix A 

Prefetching  →               Prefetch( a(j,k+4) ) 
          … 
          Rc0=c(j,i) 

          … 
           do k=kk,MIN(kk+Tk-1,Nk),2 

Prefetching  →               Prefetch( a(j,k+4) ) 
                Rc0=Rc0+b(k,i)*a(j,k) 
                … 

Figure 13. Step07: Prefetching 
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In this version, we can apply prefetching in several places: 
when copying the tiles of matrices A and B to hide BCache to 
memory latency, and when fetching matrix A in the innermost 
loop k to hide DCache to BCache latency, since the DCache 
(L1) reuse of matrix A has been dropped, as mentioned in the 
previous paragraph. If it were possible to prefetch at the 
source-code level, the corresponding code would look like 
Figure 13;, however, in the Alpha EV6, prefetching support is 
only available at the assembly-code level, though normal loads 
to the null register $31, as follows 

 ldl   $31, 16*8($5);  prefetch a(j,k) 
The prefetch distance, i.e., the number of iterations between 
the array element being currently used and the array element 
being prefetched, is a delicate tradeoff: if it is too large, too 
many array elements will not benefit from prefetching, 
especially in a tiled loop, if it is too small compared to the 
memory or cache latency, the data does not arrive soon 
enough to avoid a stall [33]. There is no such issue for outer 
loop prefetching (prefetching applied to copying) because data 
is not used immediately after it is fetched, but the prefetch 
distance of the innermost loop (fetching matrix A in loop k) 
needs to be finely tuned; in that case, we found that a prefetch 
distance of 2 iterations realizes the best tradeoff. 
When prefetching is used the speedup over Step00 is now 
12.25, i.e., higher than if prefetching is applied to Step05 
(10.37). 
 
L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS + 
PREFETCH + L2 CACHE (Step08, speedup=12.75, 
contribution=4%). Tiling algorithms usually focus on L1 
caches. However, lower-level caches usually have a much 
larger latency: for our EV6 system, the miss latency of the 
DCache (L1) to the BCache (L2) is 12 cycles, while the miss 
latency of the BCache to memory is 140 cycles. Moreover, 
recent research works [28] have shown that a significant share 
of L1 miss latency is hidden by the dynamic reordering of 
instructions in out-of-order processors like the EV6, which 
means reducing the number of L1 misses may not always 
result in significant performance improvements. On the other 
hand, optimizing for a cache hierarchy instead of a single 
cache level forces to realize a difficult tradeoff between the 
different cache levels [15],[16]: tiling for one level can 
increase conflict misses in another level or can reduce the 
amount of achieved reuse. 
 In the current program version, we use 4xTk tiles of matrix B 
for the L1 cache (because the unrolling factor is 442), and 
these tiles are fetched following the k dimension first, and then 
following the i dimension, see Figure 12. Implicitly, it means 
the 4xTk tile of matrix B (see previous paragraph) is fully 
used, i.e., against all corresponding 4xTj tiles of matrix A 
(recall loop j is unrolled 4 times also), before it is discarded. 
On the other hand, each tile of matrix A is reused on each 
iteration of loop i. Consequently, the reuse distance, i.e., one 
execution of loop j, is fairly large so that even an L2 cache 
may not exploit this reuse. To reduce this reuse distance, we 
tile the i loop, and we then need to tile the j loop as well 
otherwise the reuse distance for matrix B would now become 
too large. The resulting code is much like the 2D and 3D tiling 

used in previous paragraphs for L1 cache and TLB, but this 
time, it targets the BCache (L2 cache) and has the effect of 
keeping tiles of matrices A and B in the L2 cache. The 
additional tile levels and the corresponding tile traversal order 
are shown in Figure 14 and Figure 15 below. 
 

L2 Tiling  → 
 
 
L2 Tiling  → 
 

     do ii=1,Ni,Ti 
        do kk=1,Nk,Tk 
Outer Copy    
            do jj=1,Nj,Tj 
Inner Copy 
               do i=ii,MIN(ii+Ti-1,Ni),4 
                  do j=jj,MIN(jj+Tj-1,Nj),4 
                     Rc0  = c(j,i) 
                     … 
                     do k=kk,MIN(kk+Tk-1,Nk), 2 
C                         Innermost loop 
                            … 
Figure 14. Step08: L2 tiling. 

 

 
Figure 15. Step08: New execution pattern. 

In our EV6 workstation, the BCache has a size of 8 Mbytes, so 
that for Ni=Nj=Nk=1060, the matrices do not fit in the 
BCache. The experiments show that the number of BCache 
misses is reduced by 11%, and the speedup increases to 12.75. 
Note that this additional tiling level disrupts DCache reuse as 
expected and DCache miss ratio increases from 9% to 10%. 
However, the much larger latency of BCache misses more than 
compensates for the increase in DCache misses. 
 
L1 CACHE + TLB + STORE QUEUE + L2 CACHE + 
PREFETCH + REGISTERS + ILP + ARCHITECTURE-SPECIFIC 
FEATURES (Step09, speedup=13.56, contribution=7%). Most 
of the abovementioned components, e.g., cache hierarchy, 
TLB, registers, are “classic” components in the sense that their 
presence in an architecture is well-known even though 
program optimizations do not always target them all, or at 
least not simultaneously. The store queue usually attracts less 
attention though it is now a component of most superscalar 
processors so we decided not to include it in the “architecture-
specific feature” category. However, besides these 
“mainstream” components, a processor architecture is full of 
specific features which reflect the tradeoffs made by computer 
architects. Sometimes, such features can have a significant 
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impact on performance and can play a role in bridging the gap 
between peak and sustained performance. As in all processors, 
there are many such features in our target architecture, and the 
purpose of this paragraph is to illustrate the impact of such 
features with one of the EV6 features. 
 

Figure 16 : Floating-point queue stall can stall 

 
In the Alpha EV6, there are two pipelines: an integer pipeline 
and a floating-point pipeline; both pipelines feed their 
respective functional units, and buffer instructions in queues: 
an integer queue and a floating-point queue, see Figure 16. 
When the integer and the floating-point queues contain many 
instructions, all physical registers can be in use, so that when a 
new instruction is fetched, it cannot be allocated a physical 
register in the Map pipeline stage (the role of the Map stage is 
to map and translate the logical registers of assembly 
instructions into physical registers). As a result, the Map stage 
will stall. However, in the Alpha EV6, when the Map stage 
stalls, it cannot start again immediately after physical registers 
were freed, restarting requires two additional stall cycles, so 
that stalling the Map stage specifically is fairly costly in this 
architecture. As mentioned above, this situation can occur 
when floating-point and integer queues tend to fill up because 
instructions are fetched at a higher rate than they can be 
processed; it happens most often with the floating-point queue 
which has long-latency instructions, and it is the case in our 
Matrix-Multiply program. Now, if we can slow down the flow 
of floating-point instructions, we would avoid filling up the 
floating-point queue and then stalling the Map stage, which 
would increase overall performance without degrading the 
processing rate of floating-point instructions. One solution is 
to introduce NOPs in the flow of instructions: a NOP goes in 
the integer queue which is barely used in Matrix-Multiply, 
slows down the fetch rate of floating-point instructions and 
avoids stalling part of the processor. 
These NOP instructions are inserted at the assembly level, like 
prefetch instructions, as shown below. 
 

 add $f18, $f12, $f18 
 nop 
 mul $f14, $f26, $f12 
 ld   $f8,   0*SIZE($3)  

add $f18, $f12, $f18  
 
mul $f14, $f26, $f12 
ld    $f8,   0*SIZE($3)  

 
 
 
 

mul   $f14, $f27, $f11  
 ld   $f19,  0*SIZE($5)  

 add $f17, $f11, $f17 
nop

Figure 17. Step09: Inserting NOPs. 

 
Using this NOP-augmented routine, we find that floating-point 
queue stalls decrease by 60%, and overall performance is 
increased by 7%, and the speedup is now 13.56 over Step00. 
 
SUMMARY In the end, the total speedup is equal to 13.56 with 
respect to the base version, and corresponds to 95% of the 
peak performance, where the peak performance is the 
maximum number of floating-point instructions per second, 
i.e., 2 GigaFlops.  

IV. TOWARD A PROGRAM OPTIMIZATION STRATEGY 
Examples like Matrix Multiply highlight the need for a much 
more architecture-oriented approach to program optimization. 
Though we hope that compilers will ultimately prove capable 
of harnessing processor architecture complexity, in the 
meantime, we need to find a practical approach for addressing 
the widening gap between available and achieved 
performance. The issue essentially rests with performance-
oriented end-users who wish to extract the best possible 
performance out of their workstations and servers, and with 
computer manufacturers and vendors who need to demonstrate 
the actual performance of their products to would-be 
customers; note also that with the increased popularity of 
metacomputing, an execution time reduction of R% on the 
single-processor performance of a given program, directly 
translates in R% less computers needed to perform the same 
task, so even a small performance reduction implies significant 
economical gains in that context. 
However, we cannot expect end-users and even most 
engineers at computer manufacturers to be proficient in 
processor architecture, especially considering the current 
processor architecture complexity. Conversely, we do not 
believe a fully-automatic, compiler-like, solution is a 
reasonable short-term expectation. 
Consequently, we are currently investigating a short-term 
practical approach which is intermediate between fully manual 
optimization and fully automatic optimization. This approach 
relies on dynamic analysis, which has the tremendous 
advantage, over the static analysis used in compilers, to unveil 
the precise program behavior on the architecture. The 
principle of our approach is to formalize our experience in 
program optimizations in such a way that it can be delivered 
and exploited by engineers who are reasonably aware of 
processor architectures but not experts on the matter. This 
“experience” consists in organizing program optimization in a 
sequence of guided steps, i.e., an optimization strategy. 
Surprisingly enough, there is a huge amount of research work 
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on program transformations for local program structures and 
specific architecture components, but almost no research work 
on how to organize the problem of optimizing a whole 
program on a whole architecture. 
We are currently working on delivering our experience on 
program optimization in the form of a decision tree, which 
consists in a set of analysis, decision, and optimization steps; 
Figure 18 illustrates this notion with a very simple example. 
At each step, the tree guides the end-user by suggesting an 
analysis or an optimization based on previous analysis results. 
The optimization strategy iterates over four steps: 
1. At each step, determine the current target architecture 

component; at this point the analysis is rather coarse, e.g., 
number of L1 cache misses. 

2. Then determine if the problem is local to several program 
structures, i.e., several loop nests which breed most 
misses, or distributed in the program, e.g., misses are 
inter-nest misses [9] because data are not reused from one 
loop nest to another. In the latter case, program 
transformations must be applied to make the problem 
more “local”, e.g., for instance we can merge loop nests 
(or, depending on the problem, inline procedures, modify 
data structures...). 

3. Once the problem has been decomposed into a set of 
“local” problems, or if we find it is already local in step 2, 
we can start the detailed architecture-oriented program 
analysis to identify the nature of the problem, much like 
we did for Matrix Multiply, and then suggest appropriate 
transformations. 

4. Once the behaviour of this architecture component has 
been improved we can iterate and go back to step 1. 

 

Figure 18. Notion of Decision Tree 

At the top of the decision tree, we find all possible 
performance anomalies of the architecture, i.e., all possible 
sources of performance degradations. For instance, some of 
the root anomalies are instruction dependencies, functional 
units not used, large average memory latency, sub-optimal 
instruction fetch, processor traps…    In subtrees, we find in-

depth analysis of each component. For instance, instruction 
dependencies are split into integer and floating-point 
dependencies, which are themselves split into low-latency 
fully-pipelined floating-point operations (additions) and high-
latency partially-pipelined floating-point operations 
(divisions), and so on… This level of detail enables precise 
user guidance during the optimization process. 

V. FUTURE  AND ON-GOING WORK 
 
This whole optimization strategy raises several practical 
issues: 

• How do we build such a decision tree ? 
• How do we perform dynamic analysis in practice, 

i.e., rapidly obtaining detailed information on the 
program behavior on the architecture ? 

• How do we apply program transformations in 
practice ? 

• When do we stop the iterative optimization process ? 
• What is the impact of the data set on the sequence of 

optimizations ?  
 
While a detailed explanation of the optimization strategy is out 
of the scope of this article and will be published in another 
article, we provide several hints at the answers to these main 
questions. 
 
Decision Tree. Decision trees are built empirically using 
manual optimizations of a set of programs. Currently, we are 
using the SpecFP2000 benchmarks to build a decision tree for 
this type of programs; ultimately, we may have one decision 
tree per program “corpus”, e.g., one for floating-point codes 
and one for integer codes, and possibly more refined 
distinctions, like finite-difference solvers, finite-element 
solvers, direct solvers, etc. 
In order to build a decision tree, we manually optimize each 
program, then we backtrack and consider the sequence of 
analysis/decision/optimization  steps used, and we insert the 
corresponding branches in the decision tree. As we consider 
more programs, we better understand in which order 
architecture components need to be considered and which 
optimizations need to be applied; for instance, in the Matrix 
Multiply kernel, it is useless to optimize for the TLB before 
the caches are considered, or to optimize for the L1 or L2 
cache before the registers are considered, etc. Besides, as we 
consider more programs, fewer branches are added and the 
tree becomes more stable. Once the tree is sufficiently stable, 
it can be used for optimizing other programs.  
 
Dynamic analysis. Using dynamic analysis means using a 
processor simulator. The main flaw of processor simulator is 
their excruciatingly low speed: a simulated program runs 
several thousand times slower than the original program on the 
same machine. In order to make dynamic analysis a practical 
tool, we use statistical simulation [29] and fast simulation 
techniques (not yet published), so that we can reduce the 
slowdown to an acceptable 50 to 100 compared with 3000 
with the public SimpleScalar [17] simulator for instance. 
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Applying program transformations. Some program 
transformations are difficult to apply for a non-expert user 
because they require legacy checking, e.g., dependence 
checking. Moreover, there is a large collection of such 
transformations. For that purpose, we will attempt to unify as 
much as possible the different transformations into a few 
compound transformations, delivered through a transformation 
tool such as SUIF [30], in order to simplify the task of 
applying transformations. Parameter tuning of program 
transformations, e.g., tile size, is the most a delicate task [2], 
but recently proposed techniques, e.g., based on genetic 
algorithms [19], show it is possible to automate this part of the 
optimization process. 
 
Stopping the iterative process. One of the critical issues is to 
decide when we can stop the iterative optimization process. 
Peak performance provides a first metric, but in many cases, it 
is far too raw: consider for instance the Matrix-Multiply kernel 
and assume we replace floating-point multiplications and 
additions by floating-point divisions. Then, we know the peak 
performance of this program is not 2 GigaFlops but 0.66 
GigaFlops, since the Alpha EV68 can issue at most 1 floating-
point division every 15 cycles. Therefore, we are also working 
on defining more precisely the notion of optimal performance 
for a given program. For instance, we have developed a 
practical approach to the problem of finding what would be 
the program execution time if all cache and TLB misses were 
removed [21], i.e., a performance upper-bound for memory 
latency issues. 
 
Sensitivity to data set. To build the data tree, we use a single 
data set per program. Different data sets can naturally induce 
different program behaviors; fortunately, the fact we use a set 
of programs instead of a single program partially compensates 
for this weakness. However, for other aspects of our 
methodology, like tuning program optimization parameters, 
we need to better understand the sensitivity of program 
behavior to data sets. Initial work on prefetch distance again 
shows this task is tractable [20] but needs to be further 
pursued, and recent results in iterative compilation [31],[11] 
will provide a useful feedback. 

CONCLUSIONS 
  In this article, we have shown that the behavior of even 
simple programs on architecture is very complex because 
multiple architecture components interact at the same time. 
However, we have also shown that it is possible to harness this 
complexity and deduce from detailed dynamic analysis how 
the program must be modified to improve its behavior on 
architecture. We have also shown that cache tiling, on which a 
large share of research works focus, only accounts for 12% of 
the total performance improvement, suggesting research works 
not always investigate the most critical architecture 
components or the most appropriate program optimizations.   
This simple example suggests that program optimizations need 
to be revisited to take into account rapidly evolving processor 
architectures, and until this progress can be reflected in 

compiler optimizations, there is a strong need for a practical 
solution to the problem of rapidly optimizing a program on a 
complex processor architecture. For that purpose, we outline 
our approach based on formalizing and systematizing the 
experience gained on program optimizations into a decision 
tree to drive end-user optimization tasks. 
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