
 1

Abstract

As the complexity of processor architectures increases, there
is a widening gap between peak processor performance and
sustained processor performance so that programs now tend
to exploit only a fraction of available performance. While
there is a tremendous amount of literature on program
optimizations, compiler optimizations lack efficiency because
they are plagued by three flaws: (1) they often implicitly use
simplified, if not simplistic, models of processor architecture,
(2) they usually focus on a single processor component (e.g.,
cache) and ignore the interactions among multiple
components, (3) the most heavily investigated components
(e.g., caches) sometimes have only a small impact on overall
performance. Through the in-depth analysis of a simple
program kernel, we want to show that understanding the
complex interactions between programs and the numerous
processor architecture components is both feasible and
critical to design efficient program optimizations.

I. INTRODUCTION
To accommodate a constantly increasing clock frequency,
computer architecture needs to be increasingly complex (long
pipelines, cache hierarchy, branch prediction, trace cache,
hardware prefetching,…) and it is increasingly difficult for
compilers to generate programs that take full advantage of
these architectures. As a result, the gap between peak
performance and sustained performance rapidly increases.
Bridging this gap is bound to become a critical technical and
economic issue, highlighting the need for more efficient
compiler program optimizations, or techniques and tools to
assist end-users in optimizing their programs.
There is already a tremendous amount of literature on program
optimizations and especially loop nest optimizations
[1],[2],[3],[4],[9],[10],[11],[15]. Though a large fraction of
this research work aims at improving program behavior on
processor architecture, most of this research work actually
target one specific architecture component like the cache
[2],[3],[10],[18], the registers [23] or less frequently the TLB
[24], but few attempt to consider several architecture
components together and their possible interactions. And
optimizations focused on one processor component that ignore

0-7695-1524-X/02 $17.00 © 2002 IEEE

most or all other processor components are likely to be much
less effective than expected, if not totally useless.
Besides, most research work on compiler optimizations for
processor architectures use simplified models (which are more
tractable) of the different architecture components, ignoring
many architecture phenomena and resulting in poor
performance improvements. For instance, studies on cache
conflicts started [2] way after caches were introduced [6], and
only recently, Malik et al. [7] proposed a reliable method for
taking into account the cache mapping function and addressing
cache conflicts at compile-time.

More perversely, certain research topics on program
optimizations for processor architecture are considered almost
closed, e.g., memory optimizations, simply because we have
been working on them for a long time. However, because of
the rapidly increasing processor complexity, program behavior
on processor architecture changes as well, and program
optimizations need to be revisited accordingly or the gap
between peak and sustained performance will keep increasing.
One of the goals of this article is to highlight this issue and to
show the task is tractable, provided program optimizations
become more “architecture-aware”, i.e., rely on much more
detailed architecture models. More precisely, we want to show
that:

• it is possible to achieve large performance
improvements, and sometimes get close to peak
performance, provided program optimizations take
into account the detailed workings of each processor
component, as well as the interactions among
components,

• the architecture components which have the greatest
impact on performance, and the program
optimizations which bring the biggest performance
improvements are not necessarily the ones on which
most research works focus,

• executing even a simple program on a modern
processor results in complex behaviors, but that
understanding these phenomena is both feasible and
critical to design relevant and efficient compiler
optimizations in the future.

To illustrate these different points, we needed to select a
program optimization domain (memory optimizations) and a
target code (a simple and classic regular numerical kernel like

On Increasing Architecture Awareness in Program Optimizations
to Bridge the Gap between Peak and Sustained Processor

Performance – Matrix-Multiply Revisited

David Parello Olivier Temam Jean-Marie Verdun
HP, France LRI, Paris South University, France HP, France

& LRI, Paris South University, France

 2

Matrix-Multiply) on which lots of research efforts have
already been spent [2],[15],[25],... Since the purpose of this
research work is not to design new program optimization
techniques but to understand whether it is possible and what it
takes to reach high sustained performance, we have collected
the major and most relevant program optimization techniques
in the literature, those performed in the Alpha production
compiler, the associated KAP preprocessor [8], and those used
in the Alpha EV6 libraries. Using a subset of these
transformations: (1) we outline a sequence of transformations
that achieves a 3.65-fold improvement over the kernel
optimized with the Alpha compiler, a 3.52-fold improvement
over traditional cache optimizations using tiling [10], and 95%
of the Alpha peak performance; (2) we use this sequence of
optimizations to precisely quantify and analyze the
performance improvement brought by each architecture
component/program optimization pair.

We wish to point out that we are fully aware that Matrix-
Multiply is not representative of regular programs [9], but this
is less a concern in the present study since we wish to focus on
and highlight the interaction between program and
architecture rather than design program transformation
techniques that will apply to a large array of programs. While
we cannot draw general conclusions from the analysis of a
single kernel, this analysis certainly suggests that the research
effort on program optimizations should be much more
architecture-aware if the performance gap between peak and
sustained performance is to be bridged.
Our approach differs from classic compiler optimization
research in that we are strongly tied to the architecture, all
optimizations are driven by simulator-based dynamic analysis
in opposition to compile-time static analysis, and the impact of
each transformation on all architecture components is
carefully evaluated. For this study, we had access to the full
EV6 processor simulator from Compaq so that we could
analyze in details the impact of transformations on all
architecture components. Even though all experiments are
conducted on the Alpha, the findings and conclusions of this
study are very likely to be relevant to other high-performance
processors.
In Section II we briefly present the target processor
architecture and the experimental framework; Section III is the
core of the article where we present the detailed architecture-
oriented analysis and optimization of the Matrix-Multiply
kernel and the impact of each architecture component on
performance; finally, in Section IV we outline a first sketch of
a practical approach to program optimization, intermediate
between fully manual optimization and fully automatic
optimization, which consists in formalizing our experience in
program optimizations in such a way that it can be delivered
and exploited by performance programmers.

II. EXPERIMENTAL FRAMEWORK
The target architecture is an Alpha 21264 processor (EV68)
clocked at 1GHz. The architecture is described in Figure 1,
where Ebox (integer) and Fbox (floating-point) respectively
contain 4 and 2 functional units, and Ibox is the instruction

fetch mechanism capable of fetching 4 instructions and issuing
6 in the same cycle. The ICache and DCache are 64 KB 2-way
set-associative caches with 64-byte blocks. The BCache is a
8MB direct-mapped cache with 64-byte blocks. The Memory
reference unit (Mbox) controls the DCache and ensures
architecturally correct behavior for load and store instructions.
The Mbox contains a Load Queue and a Store Queue of 32-
entry each, a Miss Address File (MAF) to coalesce pending
misses on the same cache block, and the TLB which holds 128
entries and is fully-associative; page size is 8 KB. The register
bank contains 80 integer and 72 floating-point registers.

Figure 1. EV6/Alpha 21264 processor architecture

The experiments of this study were conducted for a large set
of matrix dimensions. In Table 2, we report experimental
values with dimension N≈1000 (exactly, execution times are
average of the execution time of several matrix dimensions in
an interval centered on N=1060); N≈1000 realizes a
reasonable tradeoff between having large matrices and running
processor simulations in a reasonable time.

III. AN ARCHITECTURE-AWARE ANALYSIS AND
OPTIMIZATION OF MATRIX-MULTIPLY

do i=1, Ni
do k=1, Nk

R=b(k,i)
do j=1, Nj

c(j,i)=c(j,i)+R*a(j,k)
enddo

enddo
enddo

Figure 2. Original Matrix Multiply program C=A×B

As mentioned in the introduction, we attempt to squeeze as
much performance as possible out of the Matrix-Multiply
kernel by carefully considering each component of the
architecture, one after the other. For each architecture
component, we used the dynamic analysis provided by

 3

simulations to understand which phenomenon occurs on this
component, and each time we tested a variety of
transformations and picked the best performer. As a result, we
have obtained a sequence of transformations that isolates and
highlights the impact of each architecture component on
overall performance, and the contribution of each program
transformation. Finding the best sequence of transformations
required a long trial and error process coupled with detailed
dynamic analysis. The list of transformations is indicated in
Table 1 along with the architecture components targeted. In
Table 2, the performance of different program versions is
indicated, along with the corresponding sequence of
transformations used in each version. The base version, i.e.,
Step00, is compiled with -O2 –unroll 1 –
nopipeline1 so as to perform most classic compiler
optimizations (common subexpression elimination, strength
reduction, code scheduling, inlining,…), but not the more
architecture-oriented optimizations found in –O4 and –O5,
especially loop unrolling, software pipelining and prefetching.
As can be seen in Table 2, the last version achieves a 13.56
speedup over the base version and 95% of the peak
performance, a 3.65 speedup over the -O5 version (best
compiler optimization), and a 3.52 speedup over the –O5
version augmented with the KAP preprocessor [8]. The
overall speedup is similar to the speedup of the library
[26][27] which is another example of manual best effort. For
this study, we have analyzed in details the different
optimizations proposed in the literature, performed in the
compiler, the preprocessor KAP and the library, and using a
processor simulator, we have identified how these
optimizations operate on architecture components, and we
have assembled a set of optimizations from these different
sources. Through the analysis of each architecture component,
we show how program optimizations should be defined and
driven by the program behavior on the architecture, which
architecture component has the greatest impact on
performance and how different components can interact in
complex ways,
In the paragraphs below, we consider each architecture
component in turn. At the beginning of each paragraph, we
outline the speedup achieved with the corresponding program
optimization, and the contribution to the final speedup. Note
that we focus on the contribution to the speedup rather than
the contribution to the execution time variation, because the
order of the sequence of optimizations matters.

1 « -unroll 1 » inhibits unrolling, while « -nopipeline » inhibits software

pipelining.

Step List of Transformations
Step00 Original program
Step01 Blocking 2D for DCache
Step02 Blocking 3D for TLB
Step03 Blocking 3D + Loop interchange for Store Queue
Step04 Blocking 3D + Loop interchange + Unrolling for ILP
Step05 Blocking 3D + Loop interchange + Unrolling +

Blocking for Registers
Step06 Blocking 2D for DCache + Copying for TLB + Loop

interchange + Unrolling + Blocking for Registers
Step07 Blocking 2D for DCache + Copying for TLB + Loop

interchange + Unrolling + Blocking for Registers +
Prefetch

Step08 Blocking 2D for DCache + Copying for TLB + Loop
interchange + Unrolling + Blocking for Registers +
Prefetch + Blocking 3D for BCache

Step09 Blocking 2D for DCache + Copying for TLB + Loop
interchange + Unrolling + Blocking for Registers +
Prefetch + Blocking 3D for BCache + Optimizations
for architecture-specific features

Table 1. Program versions

Step Speed-Up
Step00 1.00
Step01 2.48
Step02 2.62
Step03 3.11
Step04 3.71
Step05 9.90
Step06 8.43
Step07 12.25
Step08 12.75
Step09 13.56
-O5 3.26
-O5 with KAP 3.37

Table 2. Speed-ups for N ≈ 1000

L1 CACHE (Step01, speedup=2.48, contribution=12%). Most
of the research works on regular numerical codes, and
especially on Matrix-Multiply, focus on improving cache
behavior because of the high miss ratio induced by intensive
memory usage : 32% for the DCache, i.e., the EV6 L1 cache.

Cache tiling → do kk=1,Nk,T
Cache tiling → do jj=1,Nj,T

 do i=1, Ni
 do k=kk,MIN(kk+T-1,Nk)
 R=b(k,i)
 do j=jj,MIN(jj+T-1,Nj)
 c(j,i)=c(j,i)+R*a(j,k)

Figure 3. Step01: 2D tiling for caches

The most popular optimization method for programs with
significant and poorly exploited temporal locality like Matrix-
Multiply is tiling [18][2][10]. The block size of matrix A must
be carefully picked to minimize conflict misses [2]; it is
interesting to note that block size selection algorithms which
solely rely on miss cost functions [10] perform significantly
worse than algorithms which rely on global execution time

 4

[19], and which implicitly consider all architecture
components. In our case, we performed an exhaustive search
to find the block size value that minimizes execution time and
we found T=33.
Even though the optimization results in dramatic miss ratio
reduction on the DCache (95%), it only accounts for 12% of
the final speedup.

Figure 4. Before cache tiling

Figure 5. After cache tiling

L1 CACHE + TLB (Step02, speedup=2.62, contribution=1%).
Only recently [5],[10], researchers have pointed out that cache
tiling can have adverse effects on the TLB. Consider Figure 4
and Figure 5, matrices B and C, and assume one matrix
column is roughly the size of one page (8 kB in the Alpha
EV6); in the non-tiled version, on each iteration of i, a column
of B and C is accessed and the corresponding TLB entries are
loaded. These TLB entries are respectively reused on all
iterations of the k loop (for matrix B) and j loop (for matrix
C), and the reuse distance is respectively one iteration of the k
and j loops. Now, in the tiled version, only part of the column
of each matrix is accessed in loops k and j; therefore the TLB
entry of matrix B is further reused on all iterations of loop kk,
and the TLB entry of matrix C on all iterations of loop jj.
Consequently, the reuse distance varies: for the k and j loops it
is still one iteration of the inner loop, but for the kk and jj loop
it is one execution of the whole i loop nest. As a result, the
reuse distance is very large and the probability the TLB entry
is flushed before it can be reused is significantly increased,
resulting in additional TLB misses in the tiled loop: the DTLB
miss ratio is increased to 5.08e-4 versus 4.98e-4 in the original
loop (TLB miss ratios are fairly low, but the cost of one TLB
miss is significantly higher than the cost of a cache miss).

TLB tiling → do ii=1,Ni,T
 do kk=1,Nk,T
 do jj=1,Nj,T
 do i=ii,MIN(ii+T-1,Ni)
 do k=kk,MIN(kk+T-1,Nk)
 R=b(k,i)
 do j=jj,MIN(jj+T-1,Nj)
 c(j,i)=c(j,i)+R*a(j,k)

Figure 6. Step02: 3D Tiling for TLB

We do not want to loose the benefit of cache tiling, but we
want to minimize its impact on the TLB. For that purpose, we
want to manage the reuse of TLB entries on the i loop much
the same way we managed cache data reuse on the j and k
loops: we can tile the i loop so that the number of TLB entries
of matrices B and C in a tile is small enough to fit in the TLB,

and can be reused on the kk and jj loops. The TLB miss ratio
is reduced from 5.08e-4 to 2.08e-5. The number of cache
misses is slightly increased but not enough to compensate for
the benefit of the TLB miss reduction. The speedup increases
to 2.62.

L1 CACHE + TLB + STORE QUEUE (Step03, speedup=3.11,
contribution=4%). Stores are usually not considered as prime
candidates for optimizations because stores are typically not
critical operations: data is sent back to memory and will not be
used shortly. However, several architecture components can
degrade overall processor performance when stores behave
poorly, e.g., store queue, write buffer or victim address file.
For instance, when the write buffer is full, any additional write
will stall the cache and possibly the processor, degrading
overall performance; it is not the case in our example.

Figure 7. Store Queue and load speculation

In superscalar processors, there are some cases where memory
operations must be aborted; the instruction is then fetched
again and executed; in the EV68 such cases are called replay
traps. In the EV68, two memory operations cannot be in
progress at the same time, see Figure 7, if they map to the
same cache set, due to architectural limitations. If that happens
the newest instruction is aborted and a replay trap occurs.
In version Step02, the number of replay traps is fairly high
because the innermost loop nest contains one store and two
loads which sometimes access the same cache set. One way to
reduce the probability that conflicts, and thus replay traps,
occur is to reduce the number of load or store operations. For
that purpose, we interchange inner loops k and j, see Figure 8.
Then, the write request c(j,i) can be moved out of the inner
loop, dividing by T (=33) the number of store requests. As a
result, the number of replay traps is divided by 24, and the
speedup increases to 3.11.

 5

 do ii=1,Ni,T
 do kk=1,Nk,T
 do jj=1,Nj,T
 do i=ii,MIN(ii+T-1,Ni)

Loop interchange → do j=jj,MIN(jj+T-1,Nj)
 R=c(j,i)

Loop interchange → do k=kk,MIN(kk+T-1,Nk)
 R=R+b(k,i)*a(j,k)
 Enddo
 c(j,i)=R

Figure 8. Step03: Loop interchange for Store Queue

L1 CACHE + TLB + STORE QUEUE + ILP (Step04,
speedup=3.71, contribution=5%). Registers are a critical
resource and large loop bodies usually result in spill code
rather than unexploited registers. But in a small loop like
Matrix-Multiply, there are multiple available registers.
Compilers usually employ additional available registers to
increase instruction-level parallelism using loop unrolling and
software pipelining [1]. Similarly, we unroll the innermost
loop 8 times (which we denote 118 unrolling: unroll 1 on i, 1
on j and 8 on k), and the speedup is now 3.71.

L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS
(Step05, speedup=9.90, contribution=49%). At this point,
even though we have significantly reduced the number and
effect of cache and TLB misses, i.e., we have reduced the
average memory latency, our program is still memory bound
because the ratio of the number of computations over memory
accesses (load/store) is low (≈1). However, registers, the
uppest level in the memory hierarchy, can also be used to
reduce the number of memory accesses. And after the ILP
optimization of the previous paragraph, we found that several
registers are still available. So, we can now use these
additional available registers to reduce the number of
load/stores by treating registers as just another memory
hierarchy level. We tile for the register level simply by
unrolling outside loops [23]. Consider the program of Figure
8 and the same program below where the j loop has been
unrolled twice.

Loop unrolling →

Register reuse →

 do ii=1,Ni,Ti
 do kk=1,Nk,Tk
 do jj=1,Nj,Tj
 do i=ii,MIN(ii+Ti-1,Ni)
 do j=jj,MIN(jj+Tj-1,Nj),2
 Rc0 = c(j,i)
 Rc1 = c(j+1,i)
 Rb0 = b(k,i)
 do k=kk,MIN(kk+Tk-1,Nk)
 Rc0 = Rc0 + Rb0 * a(j,k)
 Rc1 = Rc1 + Rb0 * a(j+1,k)

Figure 9. Step05: Register tiling

The b(k,i) reference can be placed in a register, avoiding a
memory access; similarly, if we unroll j U times we would
avoid U-1 memory accesses. We can do the same with loop i
and reference a(j,k). We experimentally found that optimal
performance is achieved for several different combinations of
unroll factors, and we select 348 for now (we will later change

again the unroll factor). We observe that the number of loads
decreases by 69%, the instruction-level parallelism is as high
as for innermost loop unrolling (118, see previous paragraph),
and the ratio of computations over memory operations is
increased by 300%. Consequently, functional unit utilization is
higher and overall performance is increased by 49%, with a
speedup of 9.90.

Therefore, by treating registers as an additional memory level,
we can tremendously improve the program bandwidth; while it
may be difficult to exploit physical registers in current
superscalar architectures because they are hidden by dynamic
renaming [12], new instruction set architectures like the
Itanium EPIC [13] expose much more logical registers to the
programmer and the compiler.

EXAMPLE OF INTERACTION BETWEEN L1 CACHE, TLB,
STORE QUEUE AND REGISTERS (Step06). The strong speedup
brought by register tiling suggests we should probably
privilege this optimization over other optimizations.
Therefore, in this paragraph, we revisit several other
optimizations in order to maximize register tiling, in order to
illustrate how interactions among architecture components can
influence individual optimizations and the sequence of
optimizations.
Note that in the above paragraph, we have improved the
register utilization for reference a(j,k) and reference b(k,i), but
we have not mentioned reference c(j,i). Loop unrolling does
not improve register utilization for reference c(j,i), it is the
size of loop k (Tk) that determines register utilization for this
reference: the longer loop k, the fewer the number of
load/stores. Since we use a relatively small block size
(Tk=33), we could achieve significant performance
improvements with a much larger Tk tile size.

Register reused →
Register reused →

 do i=1,Ni,Ti
 do kk=1,Nk,Tk
 do j=1,Nj,2
 Rc0 = c(j,i)
 Rc1 = c(j+1,i)
 Rb0 = b(k,i)
 do k=kk,MIN(kk+Tk-1,Nk)
 Rc0 = Rc0 + Rb0 * a(j,k)
 Rc1 = Rc1 + Rb0 * a(j+1,k)

Figure 10. Trading L1 reuse for register utilization

If we increase Tk to improve register utilization, we will not be
able to still exploit the L1 reuse of matrix A, because its TjxTk
tile would not fit in cache anymore. We have made several
tests which showed that, in the end, it is worth dropping the L1
reuse of matrix A to favor the register utilization of matrix C
and the subsequently enabled optimizations described in the
next sections, like prefetching.
However, while we loose the L1 reuse of matrix A we can
have a large Tk value and still exploit the L1 reuse of matrix
B, which partly compensates for the loss of matrix A L1 reuse.
Indeed, we have seen that loop i is unrolled 3 times for
register utilization purposes (unrolling factor is 348), so the B
tile reused on each iteration of loop j is a 3xTk tile. Therefore,

 6

we need to find the biggest possible value of Tk such that the
3xTk tile fits in the L1 cache. Because the tile is very flat, we
can fulfill our goal of having a large value of Tk; in fact, we
find Tk=Nk satisfies this constraint. The corresponding code is
shown in Figure 10. Note that loop j is not tiled anymore as we
have given up on the L1 reuse of matrix A, and similarly, we
have dropped the associated TLB tiling of loop i.

 Copy →

Copy →

 do kk=1,Nk,Tk
 do i=1,Ni, 3
C COPY of matrix B
 …
 do j=1, Nj, 4
C COPY of matrix A
 …
 Rc0 = c(j,i)
 …
 do k=kk,MIN(kk+Tk-1,Nk), 8
C Innermost loop
 end do
 c(j,i) = Rc0
 …
 end do
 end do
end do

Figure 11. Copying to avoid TLB misses

Figure 12. New tiling pattern

Now, if we tile with these values, we achieve a slowdown of
48% because the number of TLB misses has been multiplied
by 780. The value of Tk is such that the TLB is trashed within
the innermost loop k because of reference a(j,k), and to a
much lesser extent, reference b(k,i). TLB tiling on loop i, as
used in Step02, has the effect of reducing TLB misses across
executions of loops j and k, but it has no effect on TLB misses
within loop k. We can avoid trashing the TLB by copying the
A tiles so they become contiguous memory addresses, see
Figure 12 and the code in Figure 11; because the A tile is
reused several times, the benefit of copying compensates for
the copying overhead cost in terms of TLB misses. Moreover,
copying has the additional benefit of reducing L1 cache

conflict misses, see [14]. Using copying, the number of TLB
misses is reduced by 98%.
Finally, in a previous paragraph, we had unrolled the inner
loop 8 times (118), and based on this constraint we had
unrolled outer loops as much as register usage allowed.
Implicitly, we had privileged instruction-level parallelism over
register tiling. Now, we have observed that register tiling bring
significant benefits, so we reverse this trend, and privilege
register tiling over instruction-level parallelism and the best
unrolling factor that satisfies this new constraint is 442.
However, the overall speedup brought by this version is only
8.43 (Step06) versus 9.90 (Step05) in the previous version,
essentially because caches are still rather poorly exploited
(especially matrices A and C) since we have focused on
registers, and because of the overhead of copying. However,
we will see in the next paragraph, that the current version is
now better suited to the next optimizations, especially
prefetching, and will achieve a higher overall performance
improvement; a similar register-oriented approach is used in
the Alpha library [27].

L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS +
PREFETCH (Step07, speedup=12.25, contribution=19%). If
we directly apply prefetching to the initial Matrix-Multiply
version Step00 (for all matrices), we obtain a rather small
performance improvement (speedup=1.33 over Step00)
because poor cache and register utilization results in high
memory traffic, and almost no memory bandwidth available
for prefetching. If we apply prefetching to our most efficient
version until now, i.e., Step05, we only achieve a speedup of
1.05 over Step05 because of the small square tiles (T=33):
there are 8 cache lines per tile (one cache line is 64 bytes), so
that there is at most 4 prefetching opportunities within one tile,
and in fact even less, since we need to use a large enough
prefetch distance to compensate for the memory latency.
Now, in the Matrix-Multiply version of the previous paragraph
(Step06, a slowdown of 0.90 over Step05), we use much larger
tiles (Tk=Nk) which are better suited to prefetching. Besides,
register tiling and TLB miss reduction help keep memory
traffic reasonably low. Finally, besides reducing the average
memory latency, prefetching would bring the added benefit of
hiding the overhead of copying in this Matrix-Multiply
version.

 do kk=1,Nk,Tk
 do i=1,Ni,4
 C COPY of matrix B
Prefetching → Prefetch(b(k+4,i))
 …

 do j=1,Nj,4
 C COPY of matrix A

Prefetching → Prefetch(a(j,k+4))
 …
 Rc0=c(j,i)

 …
 do k=kk,MIN(kk+Tk-1,Nk),2

Prefetching → Prefetch(a(j,k+4))
 Rc0=Rc0+b(k,i)*a(j,k)
 …

Figure 13. Step07: Prefetching

 7

In this version, we can apply prefetching in several places:
when copying the tiles of matrices A and B to hide BCache to
memory latency, and when fetching matrix A in the innermost
loop k to hide DCache to BCache latency, since the DCache
(L1) reuse of matrix A has been dropped, as mentioned in the
previous paragraph. If it were possible to prefetch at the
source-code level, the corresponding code would look like
Figure 13;, however, in the Alpha EV6, prefetching support is
only available at the assembly-code level, though normal loads
to the null register $31, as follows

 ldl $31, 16*8($5); prefetch a(j,k)
The prefetch distance, i.e., the number of iterations between
the array element being currently used and the array element
being prefetched, is a delicate tradeoff: if it is too large, too
many array elements will not benefit from prefetching,
especially in a tiled loop, if it is too small compared to the
memory or cache latency, the data does not arrive soon
enough to avoid a stall [33]. There is no such issue for outer
loop prefetching (prefetching applied to copying) because data
is not used immediately after it is fetched, but the prefetch
distance of the innermost loop (fetching matrix A in loop k)
needs to be finely tuned; in that case, we found that a prefetch
distance of 2 iterations realizes the best tradeoff.
When prefetching is used the speedup over Step00 is now
12.25, i.e., higher than if prefetching is applied to Step05
(10.37).

L1 CACHE + TLB + STORE QUEUE + ILP + REGISTERS +
PREFETCH + L2 CACHE (Step08, speedup=12.75,
contribution=4%). Tiling algorithms usually focus on L1
caches. However, lower-level caches usually have a much
larger latency: for our EV6 system, the miss latency of the
DCache (L1) to the BCache (L2) is 12 cycles, while the miss
latency of the BCache to memory is 140 cycles. Moreover,
recent research works [28] have shown that a significant share
of L1 miss latency is hidden by the dynamic reordering of
instructions in out-of-order processors like the EV6, which
means reducing the number of L1 misses may not always
result in significant performance improvements. On the other
hand, optimizing for a cache hierarchy instead of a single
cache level forces to realize a difficult tradeoff between the
different cache levels [15],[16]: tiling for one level can
increase conflict misses in another level or can reduce the
amount of achieved reuse.
 In the current program version, we use 4xTk tiles of matrix B
for the L1 cache (because the unrolling factor is 442), and
these tiles are fetched following the k dimension first, and then
following the i dimension, see Figure 12. Implicitly, it means
the 4xTk tile of matrix B (see previous paragraph) is fully
used, i.e., against all corresponding 4xTj tiles of matrix A
(recall loop j is unrolled 4 times also), before it is discarded.
On the other hand, each tile of matrix A is reused on each
iteration of loop i. Consequently, the reuse distance, i.e., one
execution of loop j, is fairly large so that even an L2 cache
may not exploit this reuse. To reduce this reuse distance, we
tile the i loop, and we then need to tile the j loop as well
otherwise the reuse distance for matrix B would now become
too large. The resulting code is much like the 2D and 3D tiling

used in previous paragraphs for L1 cache and TLB, but this
time, it targets the BCache (L2 cache) and has the effect of
keeping tiles of matrices A and B in the L2 cache. The
additional tile levels and the corresponding tile traversal order
are shown in Figure 14 and Figure 15 below.

L2 Tiling →

L2 Tiling →

 do ii=1,Ni,Ti
 do kk=1,Nk,Tk
Outer Copy
 do jj=1,Nj,Tj
Inner Copy
 do i=ii,MIN(ii+Ti-1,Ni),4
 do j=jj,MIN(jj+Tj-1,Nj),4
 Rc0 = c(j,i)
 …
 do k=kk,MIN(kk+Tk-1,Nk), 2
C Innermost loop
 …
Figure 14. Step08: L2 tiling.

Figure 15. Step08: New execution pattern.

In our EV6 workstation, the BCache has a size of 8 Mbytes, so
that for Ni=Nj=Nk=1060, the matrices do not fit in the
BCache. The experiments show that the number of BCache
misses is reduced by 11%, and the speedup increases to 12.75.
Note that this additional tiling level disrupts DCache reuse as
expected and DCache miss ratio increases from 9% to 10%.
However, the much larger latency of BCache misses more than
compensates for the increase in DCache misses.

L1 CACHE + TLB + STORE QUEUE + L2 CACHE +
PREFETCH + REGISTERS + ILP + ARCHITECTURE-SPECIFIC
FEATURES (Step09, speedup=13.56, contribution=7%). Most
of the abovementioned components, e.g., cache hierarchy,
TLB, registers, are “classic” components in the sense that their
presence in an architecture is well-known even though
program optimizations do not always target them all, or at
least not simultaneously. The store queue usually attracts less
attention though it is now a component of most superscalar
processors so we decided not to include it in the “architecture-
specific feature” category. However, besides these
“mainstream” components, a processor architecture is full of
specific features which reflect the tradeoffs made by computer
architects. Sometimes, such features can have a significant

 8

impact on performance and can play a role in bridging the gap
between peak and sustained performance. As in all processors,
there are many such features in our target architecture, and the
purpose of this paragraph is to illustrate the impact of such
features with one of the EV6 features.

Figure 16 : Floating-point queue stall can stall

In the Alpha EV6, there are two pipelines: an integer pipeline
and a floating-point pipeline; both pipelines feed their
respective functional units, and buffer instructions in queues:
an integer queue and a floating-point queue, see Figure 16.
When the integer and the floating-point queues contain many
instructions, all physical registers can be in use, so that when a
new instruction is fetched, it cannot be allocated a physical
register in the Map pipeline stage (the role of the Map stage is
to map and translate the logical registers of assembly
instructions into physical registers). As a result, the Map stage
will stall. However, in the Alpha EV6, when the Map stage
stalls, it cannot start again immediately after physical registers
were freed, restarting requires two additional stall cycles, so
that stalling the Map stage specifically is fairly costly in this
architecture. As mentioned above, this situation can occur
when floating-point and integer queues tend to fill up because
instructions are fetched at a higher rate than they can be
processed; it happens most often with the floating-point queue
which has long-latency instructions, and it is the case in our
Matrix-Multiply program. Now, if we can slow down the flow
of floating-point instructions, we would avoid filling up the
floating-point queue and then stalling the Map stage, which
would increase overall performance without degrading the
processing rate of floating-point instructions. One solution is
to introduce NOPs in the flow of instructions: a NOP goes in
the integer queue which is barely used in Matrix-Multiply,
slows down the fetch rate of floating-point instructions and
avoids stalling part of the processor.
These NOP instructions are inserted at the assembly level, like
prefetch instructions, as shown below.

 add $f18, $f12, $f18
 nop
 mul $f14, $f26, $f12
 ld $f8, 0*SIZE($3)

add $f18, $f12, $f18

mul $f14, $f26, $f12
ld $f8, 0*SIZE($3)

mul $f14, $f27, $f11
 ld $f19, 0*SIZE($5)

 add $f17, $f11, $f17
nop

Figure 17. Step09: Inserting NOPs.

Using this NOP-augmented routine, we find that floating-point
queue stalls decrease by 60%, and overall performance is
increased by 7%, and the speedup is now 13.56 over Step00.

SUMMARY In the end, the total speedup is equal to 13.56 with
respect to the base version, and corresponds to 95% of the
peak performance, where the peak performance is the
maximum number of floating-point instructions per second,
i.e., 2 GigaFlops.

IV. TOWARD A PROGRAM OPTIMIZATION STRATEGY
Examples like Matrix Multiply highlight the need for a much
more architecture-oriented approach to program optimization.
Though we hope that compilers will ultimately prove capable
of harnessing processor architecture complexity, in the
meantime, we need to find a practical approach for addressing
the widening gap between available and achieved
performance. The issue essentially rests with performance-
oriented end-users who wish to extract the best possible
performance out of their workstations and servers, and with
computer manufacturers and vendors who need to demonstrate
the actual performance of their products to would-be
customers; note also that with the increased popularity of
metacomputing, an execution time reduction of R% on the
single-processor performance of a given program, directly
translates in R% less computers needed to perform the same
task, so even a small performance reduction implies significant
economical gains in that context.
However, we cannot expect end-users and even most
engineers at computer manufacturers to be proficient in
processor architecture, especially considering the current
processor architecture complexity. Conversely, we do not
believe a fully-automatic, compiler-like, solution is a
reasonable short-term expectation.
Consequently, we are currently investigating a short-term
practical approach which is intermediate between fully manual
optimization and fully automatic optimization. This approach
relies on dynamic analysis, which has the tremendous
advantage, over the static analysis used in compilers, to unveil
the precise program behavior on the architecture. The
principle of our approach is to formalize our experience in
program optimizations in such a way that it can be delivered
and exploited by engineers who are reasonably aware of
processor architectures but not experts on the matter. This
“experience” consists in organizing program optimization in a
sequence of guided steps, i.e., an optimization strategy.
Surprisingly enough, there is a huge amount of research work

 9

on program transformations for local program structures and
specific architecture components, but almost no research work
on how to organize the problem of optimizing a whole
program on a whole architecture.
We are currently working on delivering our experience on
program optimization in the form of a decision tree, which
consists in a set of analysis, decision, and optimization steps;
Figure 18 illustrates this notion with a very simple example.
At each step, the tree guides the end-user by suggesting an
analysis or an optimization based on previous analysis results.
The optimization strategy iterates over four steps:
1. At each step, determine the current target architecture

component; at this point the analysis is rather coarse, e.g.,
number of L1 cache misses.

2. Then determine if the problem is local to several program
structures, i.e., several loop nests which breed most
misses, or distributed in the program, e.g., misses are
inter-nest misses [9] because data are not reused from one
loop nest to another. In the latter case, program
transformations must be applied to make the problem
more “local”, e.g., for instance we can merge loop nests
(or, depending on the problem, inline procedures, modify
data structures...).

3. Once the problem has been decomposed into a set of
“local” problems, or if we find it is already local in step 2,
we can start the detailed architecture-oriented program
analysis to identify the nature of the problem, much like
we did for Matrix Multiply, and then suggest appropriate
transformations.

4. Once the behaviour of this architecture component has
been improved we can iterate and go back to step 1.

Figure 18. Notion of Decision Tree

At the top of the decision tree, we find all possible
performance anomalies of the architecture, i.e., all possible
sources of performance degradations. For instance, some of
the root anomalies are instruction dependencies, functional
units not used, large average memory latency, sub-optimal
instruction fetch, processor traps… In subtrees, we find in-

depth analysis of each component. For instance, instruction
dependencies are split into integer and floating-point
dependencies, which are themselves split into low-latency
fully-pipelined floating-point operations (additions) and high-
latency partially-pipelined floating-point operations
(divisions), and so on… This level of detail enables precise
user guidance during the optimization process.

V. FUTURE AND ON-GOING WORK

This whole optimization strategy raises several practical
issues:

• How do we build such a decision tree ?
• How do we perform dynamic analysis in practice,

i.e., rapidly obtaining detailed information on the
program behavior on the architecture ?

• How do we apply program transformations in
practice ?

• When do we stop the iterative optimization process ?
• What is the impact of the data set on the sequence of

optimizations ?

While a detailed explanation of the optimization strategy is out
of the scope of this article and will be published in another
article, we provide several hints at the answers to these main
questions.

Decision Tree. Decision trees are built empirically using
manual optimizations of a set of programs. Currently, we are
using the SpecFP2000 benchmarks to build a decision tree for
this type of programs; ultimately, we may have one decision
tree per program “corpus”, e.g., one for floating-point codes
and one for integer codes, and possibly more refined
distinctions, like finite-difference solvers, finite-element
solvers, direct solvers, etc.
In order to build a decision tree, we manually optimize each
program, then we backtrack and consider the sequence of
analysis/decision/optimization steps used, and we insert the
corresponding branches in the decision tree. As we consider
more programs, we better understand in which order
architecture components need to be considered and which
optimizations need to be applied; for instance, in the Matrix
Multiply kernel, it is useless to optimize for the TLB before
the caches are considered, or to optimize for the L1 or L2
cache before the registers are considered, etc. Besides, as we
consider more programs, fewer branches are added and the
tree becomes more stable. Once the tree is sufficiently stable,
it can be used for optimizing other programs.

Dynamic analysis. Using dynamic analysis means using a
processor simulator. The main flaw of processor simulator is
their excruciatingly low speed: a simulated program runs
several thousand times slower than the original program on the
same machine. In order to make dynamic analysis a practical
tool, we use statistical simulation [29] and fast simulation
techniques (not yet published), so that we can reduce the
slowdown to an acceptable 50 to 100 compared with 3000
with the public SimpleScalar [17] simulator for instance.

 10

Applying program transformations. Some program
transformations are difficult to apply for a non-expert user
because they require legacy checking, e.g., dependence
checking. Moreover, there is a large collection of such
transformations. For that purpose, we will attempt to unify as
much as possible the different transformations into a few
compound transformations, delivered through a transformation
tool such as SUIF [30], in order to simplify the task of
applying transformations. Parameter tuning of program
transformations, e.g., tile size, is the most a delicate task [2],
but recently proposed techniques, e.g., based on genetic
algorithms [19], show it is possible to automate this part of the
optimization process.

Stopping the iterative process. One of the critical issues is to
decide when we can stop the iterative optimization process.
Peak performance provides a first metric, but in many cases, it
is far too raw: consider for instance the Matrix-Multiply kernel
and assume we replace floating-point multiplications and
additions by floating-point divisions. Then, we know the peak
performance of this program is not 2 GigaFlops but 0.66
GigaFlops, since the Alpha EV68 can issue at most 1 floating-
point division every 15 cycles. Therefore, we are also working
on defining more precisely the notion of optimal performance
for a given program. For instance, we have developed a
practical approach to the problem of finding what would be
the program execution time if all cache and TLB misses were
removed [21], i.e., a performance upper-bound for memory
latency issues.

Sensitivity to data set. To build the data tree, we use a single
data set per program. Different data sets can naturally induce
different program behaviors; fortunately, the fact we use a set
of programs instead of a single program partially compensates
for this weakness. However, for other aspects of our
methodology, like tuning program optimization parameters,
we need to better understand the sensitivity of program
behavior to data sets. Initial work on prefetch distance again
shows this task is tractable [20] but needs to be further
pursued, and recent results in iterative compilation [31],[11]
will provide a useful feedback.

CONCLUSIONS
 In this article, we have shown that the behavior of even
simple programs on architecture is very complex because
multiple architecture components interact at the same time.
However, we have also shown that it is possible to harness this
complexity and deduce from detailed dynamic analysis how
the program must be modified to improve its behavior on
architecture. We have also shown that cache tiling, on which a
large share of research works focus, only accounts for 12% of
the total performance improvement, suggesting research works
not always investigate the most critical architecture
components or the most appropriate program optimizations.
This simple example suggests that program optimizations need
to be revisited to take into account rapidly evolving processor
architectures, and until this progress can be reflected in

compiler optimizations, there is a strong need for a practical
solution to the problem of rapidly optimizing a program on a
complex processor architecture. For that purpose, we outline
our approach based on formalizing and systematizing the
experience gained on program optimizations into a decision
tree to drive end-user optimization tasks.

REFERENCES
[1] Susan L. Graham, David F. Bacon, and Oliver J. Sharp.

Compiler transformations for high-performance
computing. ACM Computing Survey, 1994.

[2] Edward E. Rothberg, Monica S. Lam, and Michael E.
Wolf. The cache performance and optimizations of
blocked algorithms. ASPLOS-IV, Santa Clara, Califorina,
1991

[3] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon ,
Alvin R. Lebeck. Exact analysis of the cache behavior of
nested loops. PLDI, Snowbird, UTHA, 2001.

[4] Steve M. Carr. Combining optimization for cache and
instruction-level parallelism. PACT, Boston, USA, 1996.

[5] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, Karin
Hogstedt. Quantifying the multi-level nature of tiling
interactions. 10th Workshop on Languages Compilers for
Parallel Computing, Minnesota, 1997.

[6] A.J. Smith. Cache memories. ACM Computer Survey,
1982

[7] Sharad Malik, Somnath Ghosh, Margaret Martonosi.

Precise miss analysis for program transformations with
caches of arbitrary associativity. ASPLOS-VIII, San Jose
California, 1998.

[8] Robert H. Kuhn Bruce Leasure and Sanjiv M. Shah. The
KAP Parallelizer for DEC Fortran and DEC C
Programs. Digital Technical Journal vol.6 N°3, Summer
1994.

[9] Kathryn S. McKinley and Olivier Temam. A quantitative
analysis of loop nest locality. ASPLOS-VII, Cambridge,
Massachusetts, 1996

[10] Kathryn S. McKinley and Stephanie Coleman. Tile size
selection using cache organization and data layout.
PLDI, La Jolla, California, 1995.

[11] T. Kisuki, P.M.W. Knijnenburg, M.F.O. O'Boyle, H.A.G
Wijshoff. Iterative compilation in program optimization.
CPC, Aussois, France, 2000.

[12] James E. Smith and Gurindar S. Sohi. The
microarchitecture of superscalar processors. Proceedings
of IEEE, 1995

[13] Harsh Sharangpani. Itanium MicroArchitecture Design.
Microprocessor Forum 1999.

[14] O. Temam, E. Granston and W. Jalby. To copy or not
copy: a compile-time technique for assessing when data
copying should be used to eliminate cache conflicts.
Supercomputing, Portland, USA, 1993.

[15] Juan J. Navarro, Toni Juan, and Tomás Lang. MOB
forms: A class of block algorithms for dense linear
algebra operations. Supercomputing, Washington, USA,
1994

 11

[16] Larry Carter, Jeanne Ferrante, Susan Flynn
Hummel, Bowen Alpern. Hierarchical Tiling for
improved superscalar performance. 9th International
Parallel Processing Symposium, Santa Barbara,
California, 1995. (See also : Hierarchical tiling : A
methodology for high performance. Technical report
UCSD, 1996).

[17] T. Austin, D. Ernst, E. Larson, C. Weaver. Simple Scalar
Tutorial. MICRO-30, North Carolina, USA 1997.

[18] M.E. Wolf, M.S. Lam. A data locality optimizating
algotrithm , PLDI, Toronto, Ontario, Canada, 1991.

[19] T. Kisuki, P.M.W. Knijnenburg, M.F.O. O'Boyle.
Combined selection of tile sizes and unroll factors using
iterative compilation. PACT, Philadelphia, Pensylvania,
2000.

[20] G. Lindenmaier, K. S. McKinley, and O. Temam. Load
Scheduling using hardware counters, Euro-Par, Munich,
Gremany, 2000

[21] G. Fursin, M. O’Boyle, O. Temam, Gregory Watts. Fast
and Accurate Evaluation of Memory Performance
Upper-Bound. Proceedings of CPC, Edinburgh, Scotland,
UK, 2001.

[22] C.W. Tseng, G. Rivera. A comparison of compiler tiling
algorithms. CC, Amsterdam, Netherlands, 1999.

[23] S. Carr, Y. Guan. Unroll-and-Jam using uniformly
generated sets. MICRO-30, North Carolina, USA, 1997.

[24] K.S. Gathin, L. Carter. Memory Hierarchy
Considerations for Fast Transpose and Bit-Reversals.
HPCA, Orlando, FL, USA, 1999.

[25] J. Bilmes, K Asanovic, C-W Chin, Jim Demmel.
Optimizing Matrix Multiply using PHiPAC : a Portable
High-Performance, ANSI C Coding Methodology.
Supercomputing, San Jose, California, 1997.

[26] Kazushige Goto. Optimized Libraries for ALPHA.
http://members.jcom.home.ne.jp/kgoto/

[27] Compaq extended Math Library Reference Guide.
[28] Srikanth T. Srinivasan and Alvin R. Lebeck, Load

Latency Tolerance In Dynamically Scheduled Processors,
ACM/IEEE International Symposium on
Microarchitecture (MICRO), November 1998, Dallas,
Texas.

[29] A.-T. Nguyen and al. Accuracy and Speed-Up of Parallel
Trace-Driven Architectural Simulation 11th Int’l Parallel
Processing Symposium, Geneva, Switzerland, 1997.

[30] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R.
Murphy, S.-W. Liao, E. Bugnion, and M.S. Lam.
Maximizing Multiprocessor Performance with the SUIF
Compiler. IEEE Computer 1996.

[31] T. Kisuki P.M.W. Knijnenburg M.F.O. O'Boyle. The
Effect of Cache Models on Iterative compilation for
Combined Tiling and Unrolling. 3th Workshop on
Feedback-Directed and Dynamic Optimization, Monterey,
California, 2000

[32] T. Mowry and A. Gupta, "Tolerating latency through
software-controlled prefetching in shared-memory
multiprocessors", Journal of Parallel and Distributed
Computing, June 1991.

[33] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.
Design and Evaluation of a Compiler Algorithm for
Prefetching, Proceedings of the Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1992,
Boston, Massachusetts.

