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Abstract. This paper presents uniprocessor performance optimizations,
automatic tuning techniques, and an experimental analysis of the sparse
matrix operation, y = ATAx, where A is a sparse matrix and x, y are
dense vectors. We describe an implementation of this computational ker-
nel which brings A through the memory hierarchy only once, and which
can be combined naturally with the register blocking optimization previ-
ously proposed in the Sparsity tuning system for sparse matrix-vector
multiply. We evaluate these optimizations on a benchmark set of 44 ma-
trices and 4 platforms, showing speedups of up to 4.2×. We also develop
platform-specific upper-bounds on the performance of these implemen-
tations. We analyze how closely we can approach these bounds, and
show when low-level tuning techniques (e.g., better instruction schedul-
ing) are likely to yield a significant pay-off. Finally, we propose a hybrid
off-line/run-time heuristic which in practice automatically selects near-
optimal values of the key tuning parameters, the register block sizes.

1 Introduction

This paper considers automatic performance tuning of the sparse matrix oper-
ation, y ← y + ATAx, where A is a sparse matrix and x, y are dense vectors.
This computational kernel—SpATA hereafter—is the inner-loop of interior point
methods for mathematical programming [17], algorithms for computing the sin-
gular value decomposition [5], and Kleinberg’s HITS algorithm for finding hubs
and authorities in graphs [10], among others. The challenge in tuning sparse ker-
nels is choosing a data structure and algorithm that best exploits the non-zero
structure of the matrix for a given memory hierarchy and microarchitecture:
this task can be daunting and time-consuming because the best implementation
will vary across machines, compilers, and matrices. Purely static solutions are
limited since the matrix may not be known until run-time.

Our approach to automatic tuning of SpATA builds on experience with dense
linear algebra [2, 18], sparse matrix-vector multiply (SpM×V) [9, 14], and sparse
triangular solve (SpTS) [16]. Specifically, we apply the tuning methodology first
proposed in the Sparsity system for SpM×V [9]. We show how SpATA can be
algorithmically cache-blocked to reuse A in a way that also allows register-level
blocking to exploit dense subblocks (Section 2). The set of these implementa-
tions, parameterized by block size, defines an implementation space. We search



Sun Intel IBM Intel
Property Ultra 2i Pentium III Power3 Itanium

Clock rate (MHz) 333 500 375 800

Peak Main Memory Bandwidth (MB/s) 500 680 1600 2100

Peak Flop Rate (Mflop/s) 667 500 1500 3200

DGEMM, n = 1000 (Mflop/s) 425 331 1300 2200

DGEMV, n = 2000 (Mflop/s) 58 96 260 315

STREAM Triad Bandwidth (MB/s) 250 350 715 1100

No. of FP regs (double) 16 8 32 128

L1 size (KB), line size (B), latency (cy) 16,16,1 16,32,1 64,128,.5 16,32,1 (int)

L2 size (KB), line size (B), latency (cy) 2048,64,7 512,32,18 8192,128,9 96,64,6-9

L3 size (KB), line size (B), latency (cy) n/a n/a n/a 2048,64,21-24

Memory latency (cycles, ≈) 36-66 cy 26–60 35-139 cy 36-85 cy

Vendor C compiler version v6.1 v6.0 v5.0 v6.0

Table 1. Evaluation platforms. Dense BLAS data reported using ATLAS 3.4.1 [18]
on the Ultra 2i and Pentium III, ESSL v3.1 on the Power3, and MKL v5.2 on Itanium.

this space by (1) benchmarking the routines on a synethetic matrix off-line (i.e.,
once per platform), and (2) predicting the best block size using estimated proper-
ties of the matrix non-zero structure and the benchmark data. Our experiments
on four hardware platforms (Table 1) and 44 matrices show that we can obtain
speedups between 1.5×–4.2× over a reference implementation which computes
t = Ax and y = AT t as separate steps.

We evaluate our SpATA performance relative to upper bounds on perfor-
mance (Section 3). We used similar bounds for SpM×V to show that the perfor-
mance (Mflop/s) of Sparsity-generated code is often within 20% of the upper
bound, implying that more low-level tuning (e.g., better instruction scheduling)
will be limited [14]. Here, we derive upper bounds for our SpATA implementa-
tions, and show that we typically achieve between 20%–40% of this bound. Since
we rely on the compiler to schedule our fully unrolled code, this finding suggests
that future work can fruitfully apply automatic low-level tuning methods, in the
spirit of ATLAS/PHiPAC, to improve further the SpATA performance.

This paper summarizes the key findings of a recent technical report [15]. We
refer the reader there for details omitted due to space constraints.

2 Memory Hierarchy Optimizations for Sparse ATAx

We assume a baseline implementation of y = ATAx that first computes t = Ax
followed by y = AT t. For large matrices A, this implementation brings A through
the memory hierarchy twice. However, we can compute ATAx by reading A from
main memory only once. Denote the rows of A by aT1 , a

T
2 , . . . , a

T
m. Then,

y = ATAx = (a1 . . . am)

 aT1
. . .
aTm

x =
m∑
i=1

ai(aTi x). (1)



A =


a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35


b row ptr =

(
0 2 4

)
, b col idx =

(
0 4 2 4

)
b value =

(
a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35

)
Fig. 1. 2×2 BCSR storage. Elements are stored in the b value array. The column
index of the (0,0) entry of each block is stored in b col idx. The b row ptr array points
to block row starting positions in the b col idx array. (Figure taken from Im [9].)

Assuming sufficient cache capacity, each row aTi is read from memory into cache
to compute the dot product ti = aTi x, and reused for the vector scaling tiai.
We can also take each aTi to be a block of rows instead of just a single row,
allowing us to combine the cache optimization of Equation (1) with a previously
proposed register blocking optimization [9]. Below, we review register blocking,
and describe our heuristic to choose the key tuning parameter, the block size.

Register blocking improves register reuse by reorganizing the matrix data
structure into a sequence of “small” dense blocks, keeping small blocks of x and
y in registers. An m×n sparse matrix in r×c register blocked format is divided
logically into m

r ×
n
c submatrices, each of size r×c. Only blocks containing at

least one non-zero are stored. Multiplying by A proceeds block-by-block: for
each block, we reuse the corresponding r elements of y and c elements of x.
For simplicity, assume that r divides m and c divides n. We use the blocked
compressed sparse row (BCSR) storage format [11], a 2×2 example of which is
shown in Figure 1. When r = c = 1, BCSR reduces to compressed sparse row
(CSR) storage. BCSR can store fewer column indices than CSR (one per block
instead of one per non-zero). We fully unroll the r×c submatrix computation to
reduce loop overhead and expose scheduling opportunities to the compiler.

Figure 1 also shows that creating blocks may require filling in explicit zeros.
We define the fill ratio to be the number of stored values (i.e., including zeros)
divided by the number of true non-zeros. We may trade-off extra computation
(i.e., fill ratio > 1) for improved efficiency from uniform code and memory access.

To select r and c, we adapt the Sparsity v2.0 heuristic for SpM×V [14]
to SpATA. First, we measure the speed (Mflop/s) of the blocked SpATA code
for all r×c up to 8×8 for a dense matrix stored in sparse BCSR format. These
measurements are made only once per architecture. Second, when the matrix is
known at run-time, we estimate the fill ratio for all block sizes using a recently
described sampling scheme [14]. Third, we choose the r and c that maximize

Estimated Mflop/s =
Mflop/s on dense matrix in r×c BCSR

Estimated fill ratio for r×c blocking
. (2)

The run-time overhead of picking a register block size and converting into our
data structure is typically between 5–20 executions of näıve SpATA [14]. Thus,



the optimizations we propose are most suitable when SpATA must be performed
many times (e.g., in sparse iterative methods).

3 Upper Bounds on Performance

We use performance upper bounds to estimate the best possible performance
given a matrix and data structure but independent of any particular instruction
mix or ordering. In our work on sparse kernels, we have thus far focused on data
structure transformations, relying on the compiler to produce good schedules.
An upper bound allows us to estimate the likely pay-off from low-level tuning.

Our bounds for the SpATA implementations described in Section 2 are based
on bounds we developed for SpM×V [14]. Our key assumptions are as follows:

1. We bound time from below by considering only the cost of memory opera-
tions. We also assume write-back caches (true of the evaluation platforms)
and sufficient store buffer capacity so that we can consider only loads and
ignore the cost of stores.

2. Our model of execution time charges for cache and memory latency, as op-
posed to assuming that data can be retrieved from memory at the manufac-
turer’s reported peak main memory bandwidth. We also assume accesses to
the L1 cache commit at the maximum load/store commit rate.

3. As shown below, we can get a lower bound on memory costs by computing
a lower bound on cache misses. Therefore, we consider only compulsory and
capacity misses, i.e., we ignore conflict misses. Also, we account for cache
capacity and cache line size, but assume full associativity.

We refer the reader to our prior paper [14] and our full SpATA technical report
[15] for a more careful justification of these assumptions.

Let T be total time of SpATA in seconds, and P the performance in Mflop/s:

P =
4k
T
× 10−6 (3)

where k is the number of non-zeros in the m×n sparse matrix A, excluding any
fill. To get an upper bound on performance, we need a lower bound on T . We
present our lower bound on T , based on Assumptions 1 and 2, in Section 3.1.
Our lower bounds on cache misses (Assumption 3) are described in Section 3.2.

3.1 A latency-based execution time model

Consider a machine with κ cache levels, where the access latency at cache level i
is αi seconds, and the memory access latency is αmem. Suppose SpATA executes
Hi cache accesses (or cache hits) and Mi cache misses at each level i, and that
the total number of loads is L. We take the execution time T to be

T =
κ∑
i=1

αiHi + αmemMκ = α1L+
κ−1∑
i=1

(αi+1 − αi)Mi + αmemMκ (4)

where we use H1 = L −M1 and Hi = Mi−1 −Mi for 2 ≤ i ≤ κ. According to
Equation (4), we can minimize T by minimizing Mi, assuming αi+1 ≥ αi.



3.2 A lower bound on cache misses

Following Equation (4), we obtain a lower bound on Mi for SpATA by counting
compulsory and capacity misses but ignoring conflict misses. The bound is a
function of the cache configuration and matrix data structure.

Let Ci be the size of each cache i in double-precision words, and let li be the
line size, in doubles, with C1 ≤ . . . ≤ Cκ, and l1 ≤ . . . ≤ lκ. Suppose γ integer
indices use the same storage as 1 double. (We used 32-bit integers; thus, γ = 2.)
Assume full associativity and complete user-control over cache data placement.

We describe the BCSR data structure as follows. Let k̂ = k̂(r, c) be the
number of stored values, so the fill ratio is k̂/k, and the number of stored blocks
is k̂

rc . Then, the total number of loads L is L = LA + Lx + Ly, where

LA = 2

(
k̂ +

k̂

rc

)
+
m

r
Lx =

k̂

r
Ly =

k̂

r
. (5)

LA contains terms for the values, block column indices, and row pointers; the
factor of 2 accounts for reading A twice (once to compute Ax, and once for AT

times the result). Lx and Ly are the total number of loads required to read x

and y, where we load c elements of each vector for each of the k̂
rc blocks.

To correctly model capacity misses, we compute the amount of data, or work-
ing set, required to multiply by a block row and its transpose. For the moment,
assume that all block rows have the same number of r×c blocks; then, each block
row has k̂

rc ×
r
m = k̂

cm blocks, or k̂
m non-zeros per row. Define the matrix working

set, Ŵ , to be the size of matrix data for a block row, and the vector working set,
V̂ , to be the size of the corresponding vector elements for x and y:

Ŵ =
k̂

m
r +

1
γ

k̂

cm
+

1
γ

, V̂ = 2k̂/m (6)

For each cache i, we compute a lower bound on the misses Mi according to
one of the following 2 cases, depending on the relative values of Ci, Ŵ , and V̂ .

1. Ŵ + V̂ ≤ Ci: Entire working set fits in cache. Since there is sufficient cache
capacity, we incur only compulsory misses on the matrix and vector elements:

Mi ≥
1
li

(m
r
Ŵ + 2n

)
. (7)

2. Ŵ + V̂ > Ci: The working set exceeds the maximum cache capacity. In
addition to the compulsory misses shown in Equation (7), we incur capacity
misses for each element of the total working set that exceeds the capacity:

Mi ≥
1
li

[m
r
Ŵ + 2n+

m

r
(Ŵ + V̂ − Ci)

]
. (8)

The factor of 1
li

optimistically counts only 1 miss per cache line. We refer the
reader to our full report for detailed derivations of Equations (7)–(8) [15].



4 Experimental Results and Analysis

We measured the performance of various SpATA implementations on 4 platforms
(Table 1) and the 44 matrices of the original Sparsity benchmark suite. Matrix
1 is a dense matrix in sparse format. Matrices 2–17 come from finite element
method (FEM) applications: 2–9 have a structure dominated by a single block
size aligned uniformly, while 10–17 have irregular block structure. Matrices 18–
39 come from non-FEM applications, including chemical process simulation and
financial modeling, among others. Matrices 40–44 arise in linear programming.

We use the PAPI hardware counter library (v2.1) to measure cycles and cache
misses [4]. Figures 2–5 summarize the results, comparing performance (Mflop/s;
y-axis) of the following 7 bounds and implementations for each matrix (x-axis):

– Upper bound (shown as a solid line): The fastest (highest value) of our
performance upper bound, Equation (3), over all r×c block sizes up to 8×8.

– PAPI upper bound (shown by triangles): An upper bound in which we
set L and Mi to the true load and miss counts measured by PAPI. The gap
between the two bounds indicates how well Equations (5)–(8) reflect reality.

– Best cache optimized, register blocked implementation (squares): Per-
formance of the best code over all r×c, based on an exhaustive search.

– Heuristically predicted implementation (solid circles): Performance of
the implementation predicted by our heuristic.

– Register blocking only (diamonds): Performance without algorithmic cache
blocking, where the block size is chosen by exhaustive search.

– Cache optimization only (shown by asterisks): Performance of the code
with only the algorithmic cache optimization, (i.e., with r = c = 1).

– Reference (×’s): No cache or register-level optimizations have been applied.

Matrices which are small relative to the cache size have been omitted.
We draw the following 5 high-level conclusions based on Figures 2–5. More

complete and detailed analyses appear in the full report [15].
1. The cache optimization leads to uniformly good performance improvements.

On all platforms, applying the cache optimization, even without register block-
ing, leads to speedups ranging from up to 1.2× on the Itanium and Power3
platforms, to just over 1.6× on the Ultra 2i and Pentium III platforms.

2. Register blocking and the cache optimization can be combined to good effect.
When combined, we observe speedups from 1.2× up to 4.2×. Moreover, the
speedup relative to the register blocking only code is still up to 1.8×.

3. Our heuristic always chooses a near-optimal block size. Indeed, the per-
formance of heuristic’s block size is within 10% of the exhaustive best in all but
four instances—Matrices 17, 21, and 27 on the Ultra 2i, and Matrix 2 on the
Pentium III. There, the heuristic performance is within 15% of the best.

4. Our implementations are within 20–30% of the PAPI upper bound for
FEM matrices, but within only about 40–50% on other matrices. The gap be-
tween actual performance and the upper bound is larger than what we observed
previously for SpM×V and SpTS [14, 16]. This result suggests that a larger pay-
off is expected from low-level tuning by using ATLAS/PHiPAC techniques.
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Fig. 2. SpATA performance on the Sun Ultra 2i platform.
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Fig. 3. SpATA performance on the Intel Pentium III platform.
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Fig. 4. SpATA performance on the IBM Power3 platform.
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5. Our analytic model of misses is accurate for FEM matrices, but less ac-
curate for the others. For the FEM matrices 1–17, the PAPI upper bound is
typically within 10–15% of the analytic upper bound, indicating that our ana-
lytic model of misses is accurate in these cases. Matrices 18–44 have more random
non-zero structure, so the gap between the analytic and PAPI upper bounds is
larger due to our assumption of only 1 miss per cache line.

5 Related work

There have been a number of sophisticated models proposed for analyzing mem-
ory behavior of SpM×V. Temam and Jalby [13], and Fraguela, et al. [6] have
developed sophisticated probabilistic cache miss models for SpM×V, but assume
uniform distribution of non-zero entries. To obtain lower bounds, we account only
for conflict and capacity misses. Gropp, et al., use bounds like the ones we de-
velop to analyze and tune a computational fluid dynamics code [7]; Heber, et al.,
analyze a sparse fracture mechanics code [8] on Itanium. We address matrices
from a variety of applications, and furthermore, have proposed an explicit model
execution time for sparse, streaming applications.

Work in sparse compilers, e.g., Bik et al. [1] and the Bernoulli compiler [12],
complements our own work. These projects address the expression of sparse
kernels and data structures for code generation. One distinction of our work is
our use of a hybrid off-line, on-line model for selecting transformations.

6 Conclusions and Future Directions

The speedups of up to 4.2× that we have observed indicate that there is tremen-
dous potential to boost performance in applications dominated by SpATA. We
are incorporating this kernel and these optimizations in an automatically tuned
sparse library based on the Sparse BLAS standard [3].

Our upper bounds indicate that there is more room for improvement using
low-level tuning techniques than with prior work on SpM×V and SpTS. Applying
automated search-scheduling techniques developed in ATLAS and PHiPAC is
therefore a natural extension. In addition, refined versions of our bounds could
be used to study how performance varies with architectural parameters, in the
spirit of SpM×V modeling work by Temam and Jalby [13].

Additional reuse is possible when multiplying by multiple vectors. Prelim-
inary results on Itanium for sparse matrix-multiple-vector mltiplication show
speedups of 6.5 to 9 [14]. This is a natural opportunity for future work with
SpATA as well. We are exploring this optimization and other higher-level ker-
nels with matrix reuse (e.g., Akx, matrix triple products).
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