ALBEpack can easily be used to solve the quadratic eigenproblem. The problem has the following form
( lambda^2 M + lambda C + K ) x = 0
where M, C, and K are matrices, lambda is an eigenvalue, and x a corresponding
right eigenvector.
A z = lambda B z
Vector z is a right eigenvector.
The matrices A and B are constructed in the following manner.
-- -- -- --
| 0 I | | I 0 |
A = | | B = | |
|-K -C | | 0 M |
-- -- -- --
This linearization is detailed in Templates for the Solution of
Algebraic Eigenvalue Problems, section 9.2.2.
MAKE LINK
Once the problem is stated in this form, it can be given to ABLEpack's
ppp function, with the problem parameter set to 2.
-- -- -- --
| x | | ( lambda M + C )' y |
z = | | w = | |
| lambda x | | y |
-- -- -- --
The example script quad_eig.m
demonstrates this use of ABLEpack.
| problem | Modal analysis of a mass / damper / spring system. |
| matrix size | 100 x 100 |
| shift value | -1.0 |
| eigenvalues desired | 4 |
| eigenvalues found | 5 |
| Lanczos steps | 22 |
|
* shift value alpha + approximate eigenvalue, Ritz value o exact eigenvalue x right residual norm x left residual norm |
approximate left residual right residual
eigenvalues norms norms
-0.95 0.00 0.00
-0.91 -0.0042i 0.0004 e-8 0.00
-0.91 +0.0042i 0.0004 e-8 0.00
-1.15 -0.0419i 0.3358 e-8 0.1112 e-6
-1.15 +0.0419i 0.3358 e-8 0.1112 e-6
| problem | modal analysis of a vibrating mass electrical gap closing device |
| matrix size | 30 x 30 |
| shift value | -1000.0 + 190000i |
| eigenvalues desired | 4 |
| eigenvalues found | 11 |
| Lanczos steps | 12 |
|
* shift value alpha + approximate eigenvalue, Ritz value o exact eigenvalue x right residual norm x left residual norm |
approximate left residual right residual
eigenvalues norms norms
-0.01 +1.89i e5 0.0084 e-12 0.0041
-0.01 +1.91i e5 0.0075 e-12 0.0038
-0.05 +2.02i e5 0.1127 e-12 0.0001 the "good" eigenvalue
0.23 +1.91i e5 0.1799 e-12 0.0014
| problem | model of a bearing support shaft |
| matrix size | 80 x 80 |
| shift value | -0.2 + 2500i |
| eigenvalues desired | 4 |
| eigenvalues found | 4 |
| Lanczos steps | 15 |
|
* shift value alpha + approximate eigenvalue, Ritz value o exact eigenvalue x right residual norm x left residual norm |
approximate left residual right residual
eigenvalues norms norms
-0.0000 +2.37i e3 0.1528 e-3 0.00
-0.0001 +3.14i e3 0.1757 e-3 0.00
-0.0006 +4.68i e3 0.3133 e-3 0.3362 e-5
-0.0001 +1.07i e3 0.1602 e-3 0.0081 e-5