
QUEST User’s Manual

April, 2012

Contents

1 Introduction 2

2 Building QUEST 2

2.1 Basic install . 2
2.2 Multicore processor and GPU support . 4
2.3 Verify installation . 4

3 Example: 2D Hubbard model on a square lattice 4

3.1 Input file . 5
3.2 Outputs . 6

4 Lattice geometry 9

4.1 Define Struct using free form import . 11
4.2 Define Struct using general geometry . 12

5 Adding new measurements 14

5.1 Measuring . 14
5.2 Binning . 15
5.3 Statistics . 15
5.4 Fourier transformation . 15
5.5 Printing . 16

6 Statistics 16

6.1 Basics . 16
6.2 Jackknife . 17
6.3 Bootstrap . 18

A Free form geometry definition of a 4× 4 square lattice 19

B General geometry definition of a 4× 4 square lattice 30

1 Introduction

QUantum Electron Simulation Toolbox (QUEST) is a FORTRAN 90/95 package for per-
forming determinant quantum Monte Carlo (DQMC) simulations for strongly correlated elec-
tron systems. Its development was motivated by a FORTRAN 77 DQMC code1 written and
maintained by Richard Scalettar at the University of California, Davis (UCD). Currently the
development of QUEST is led by Zhaojun Bai and Richard Scalettar at UCD. Several research
groups have also participated the effort: Mark Jarell (Louisiana State University), Eduardo
D’Azevedo and Thomas Maier (ORNL), Sergey Savrasov (UCD), and Karen Tomko (Ohio
Supercomputer Center).

In QUEST 1.0, structure of the legacy code has been modernized. In particular, BLAS
and LAPACK numerical linear algebra libraries and new techniques such as delayed-updating
are integrated into QUEST’s computational kernel. These developments have improved the
efficiency of DQMC simulation and generated fruitful research applications. Recognizing the
increasing appeal of using hybrid multicore processors and graphics processing unit (GPU)
systems, QUEST 2.0 is released with a new optimized computational kernel designed for such
heterogeneous multicore CPU + GPU architecture.

2 Building QUEST

2.1 Basic install

QUEST is a collection of FORTRAN libraries that performs auxiliary-field type quantum
Monte Carlo simulations. In order to build QUEST, you will need a FORTRAN 90/95 compiler
and BLAS/LAPACK libraries.

• We recommend the latest FORTRAN compiler for better compatibility. QUEST has
been tested with GNU’s gfortran, however, Intel’s ifort or Portland Group’s pgf90
should be able to compile QUEST too.

• Because QUEST relies heavily on BLAS and LAPACK to perform numerical linear
algebra operations, an open source BLAS/LAPACK package has been included in the
package. QUEST is also compatible with commercial BLAS/LAPACK libraries such as
Intel’s Math Kernel Library (MKL) or AMD’s AMD Core Math Library (ACML).

• GPU support is through CUDA/CUBLAS parallel programming environment. Informa-
tion on building CUDA/CUBLAS development tools can be found from CUDA’s website
http://developer.nvidia.com/cuda-downloads.

• QUEST also requires make to build its libraries and applications. Most LINUX machine
should have GNU make. In case you don’t, GNU make can be obtained from the GNU
website http://www.gnu.org/s/make/.

The latest stable snapshot of QUEST can be downloaded from:

http://quest.ucdavis.edu/download.html

1Known as the legacy code.

2

http://developer.nvidia.com/cuda-downloads
http://www.gnu.org/s/make/
http://quest.ucdavis.edu/download.html

After the tarball file is unzipped, a directory /QUEST is created which contains the following
files and subfolders:

• make.inc: System configuration parameters.

• Makefile: GNU make instructions. Do not modify this file unless you know what you
are doing.

• /SRC: QUEST source codes.

• /EXAMPLE: Applications and driver routines.

• /BLAS: BLAS library.

• /LAPACK: LAPACK library.

QUEST needs to gather system environment information for GNU make. This is done
through the configuration file make.inc. In particular, you need to specify the following
variables:

• DQMCLIB: Path where the compiled QUEST library libdqmc.a will reside. Default is
$(HOME)/libdqmc.a.

• FC: Name of the FORTRAN 90/95 compiler. Default is gfortran.

• FC FLAG: Compiler flags. For example: optimization level, debugging flag, . . . etc.

• CXX: C++ compiler. Default is gcc.

• CXX FLAG: Optional C++ compiler flags.

• LAPACKLIB: Linking interface for BLAS and LAPACK respectively.

• CXXLIB: C++ library linking interface.

• CUDAPATH: Path to the CUDA/CUBLAS library.

• LIB: Top level library linking interface. Default is $(LAPACKLIB) $(CXXLIB) $(CUDALIB).
One can include other external libraries here if necessary.

Modify make.inc to suit your computing environment. Once you have set up make.inc,
QUEST can be compiled by launching the following shell commands:

$> make

If everything goes well, the compilation will generate libdqmc.a in the QUEST package home
directory. The library libdqmc.a contains all necessary components for DQMC simulations.

3

2.2 Multicore processor and GPU support

The installation procedure described in the previous section enables QUEST to run on a
single processor. Support to multicore processors and GPU is included in the latest version of
QUEST. They can be enabled through compiler flags which we briefly describes here.

• Multicore processors

The major portion of CPU time in a DQMC simulation is used in computing the Green’s
function G. The evaluation of G involves matrix multiplication and inversion. These
operations are done by calling numerical linear algebra libraries BLAS/LAPACK. The
BLAS/LAPACK library included in the QUEST package is not optimized and can only
run on a single processor. QUEST can take advantage of multicore processors and
improve its performance by linking multithreaded BLAS/LAPACK such as Intel’s Math
Kernel Library (MKL) or AMD’s AMD Core Math Library (ACML). Please consult the
documentation of MKL or ACML for details of setting up multithreaded environment
if any of these libraries is available in the user’s system. In addition, the BLASLAPACK

variable in the make.inc needs to be edited accordingly.

• GPU support

To further boost performance, QUEST now contains experimental support for GPU
accelerators using the Nvidia CUDA development tools. By default, the GPU support
is not actived. To enable the GPU support, please uncomment all the CUDA related
variables in make.inc and activate the flag DQMC CUDA in PRG FLAGS.

2.3 Verify installation

To verify the installation, go to the directory ./EXAMPLES/verify and launch the following
commands

$> cd ./EXAMPLES/verify

$> make

$> ./verify

This will compile and run the code verify. This little program computes observables for the
non-interacting and single-site Hubbard model, and compares the results with exact solutions.
If the numerical and exact results are in agreement, then the installation is complete and
QUEST is now ready to be used. The subfolder /EXAMPLES has several examples and driver
routines that demonstrate how libdqmc.a is implemented in real applications. We will give a
simple example in the next section.

3 Example: 2D Hubbard model on a square lattice

This section presents a basic implementation of QUEST and describes a minimum num-
ber of input parameters required for configuring a DQMC simulation. The example is the
2D one-band Hubbard model on a square lattice. The simulation code can be found under
./EXAMPLES/test. Enter the directory and execute the shell command

4

$> cd ./EXAMPLES/test

$> make

will generate an executable test. A sample input file sample.in for a 4 × 4 square lattice
with U = 4t at half-filling 〈n〉 = 1 and temperature β = 8t is provided. To run the simulation,
simply execute the command:

$> ./test < sample.in > sample.out

This will launch the simulation and redirect all standard outputs to the file sample.out, and
that’s it! Now let’s take a closer look at the input file.

3.1 Input file

A QUEST input file is a text file containing a collection of keywords and their values. Broadly
speaking, QUEST keywords fall into two categories: keywords that set up the Hubbard Hamil-
tonian, and those control the dynamics of Monte Carlo simulation. Keyword value is specified
by a single line statement:

keyword = value

QUEST will bypass any line that begins with the pound sign #. In the present example, the
sample input file has the following keywords

• nx (integer): linear dimension of the lattice in the x-direction.

• ny (integer): linear dimension of the lattice in the y-direction.

• U (real): strength of the onsite interaction U .

• t up (real): hopping integral for spin-↑ electrons.

• t dn (real): hopping integral for spin-↓ electrons.

• mu up (real): chemical potential µ↑ for spin-↑ electrons.

• mu dn (real): chemical potential µ↑ for spin-↓ electrons.

• L (integer): number of imaginary time slices L. In the DQMC simulation, the inverse
temperature β is discretized into L “imaginary time” intervals β = L∆τ .

• dtau (real): size of the imaginary time (Trotter) step ∆τ .

• nwarm (integer): number of sweeps in the warmup (thermalization) phase.

• npass (integer): number of sweeps in the measurement phase.

• nbin (integer): determines the number of bins for measurement data. In the current
example, physical observables are measured at each Monte Carlo sweep during the mea-
surement phase. In order to reduce autocorrelation, QUEST groups measurement data
into several bins before analyzing statistics.

• seed (integer): random number seed. If seed is set to zero, QUEST will generate a seed
automatically.

The above keywords constitute a minimal set of parameters to perform DQMC simulation of
the 2D Hubbard model.

5

3.2 Outputs

QUEST is built to perform three types of measurement for the Hubbard model

• Energy : total energy, kinetic and potential energy, specific heat, . . . etc.

• Equal-time measurement : one-particle Green’s function, correlation functions, static
structure factors, local one-body quantities such as density, . . . etc.

• Imaginary-time dependent measurement : dynamic structure factor, susceptibility, spec-
tral function, . . . etc. Some of these measurements require numerical analytic continua-
tion routines such as MaxEnt.

Depending on the problem, one can incorporate one or several of these measurements into the
program by calling appropriate subroutines. Here we briefly describe the top-level QUEST
simulation report. Some features of the report are shared with other measurement results.

(0, 0) (1, 0) (2, 0)

(1, 1) (2, 1)

(2, 2)

Simulation results for the 2D Hubbard model on a 4 × 4 lat-
tice are quoted below. The first section of the report lists input
parameters and information showing the behavior of the Monte
Carlo run. The second section contains the total average sign of
fermion determinant as well as its spin-↑ and spin-↓ components.
In this and the following parts, measurement data is reported as
the combination

average ± error

where the first number is the average value and the second number
is the corresponding statistical error. The next section summarizes some of the equal-time
observables such as average density, energy, double occupation, and specific heat, . . . etc. The
remaining part of the report contains several correlation function results. In these printouts,
the first two columns represent the x and y components of the relative distance vector r for
the correlation function C(r). Because of the symmetry of the 2D square lattice, there is only
6 inequivalent distance vectors on a 4× 4 lattice, as indicated by the figure on the left.

4× 4 Hubbard model simulation report:

2D Periodic Rectangular Lattice (Nx= 4, Ny= 4) total sites= 16

U : 4.000000

t_up : 1.000000

t_dn : 1.000000

mu_up : 0.000000

mu_dn : 0.000000

Time slice (L) : 80

Number of sites : 16

dtau : 0.100000

beta (dtau*L) : 8.000000

Number of warmup sweep : 100

Number of measurement sweep : 500

Frequency of measurement : 2

Random seed : 32198

Frequency of recomputing G : 17

Global move number of sites : 0

Accept count : 364727

6

Reject count : 340652

Approximate accept rate : 0.517065

gamma : 0.400003

Type of matrix B : Dense MatB

Type of matrix HSF : 0/1

==

Sign of equal time measurements:

Avg sign : 0.10000000E+01 +- 0.00000000E+00

Avg up sign : 0.57415074E+00 +- 0.12719889E+00

Avg dn sign : 0.57415074E+00 +- 0.12719889E+00

==

Equal time measurements:

Up spin occupancy : 0.49523679E+00 +- 0.79708933E-02

Down spin occupancy : 0.50476321E+00 +- 0.79708933E-02

<U*N_up*N_dn> : 0.47648778E+00 +- 0.32664099E-02

Kinetic energy : -0.13169170E+01 +- 0.49848571E-02

Total Energy : -0.84042918E+00 +- 0.39851362E-02

Density : 0.10000000E+01 +- 0.00000000E+00

Chi_thermal : -0.20480000E+04 +- 0.20463631E-11

Specific heat : 0.75402294E+04 +- 0.50296593E+02

XX Ferro structure factor : 0.34122407E-01 +- 0.95925025E-01

ZZ Ferro structure factor : 0.79273784E-01 +- 0.21988555E-01

XX AF structure factor : 0.31267580E+01 +- 0.35735166E+00

Root Mean Square of XX AF : 0.69721543E+01 +- 0.19900130E+01

ZZ AF structure factor : 0.39603736E+01 +- 0.47743189E+00

Root Mean Square of ZZ AF : 0.47317626E+01 +- 0.47853923E+00

==

Mean Equal time Green’s function:

0 0 0.50000000E+00 +- 0.00000000E+00

1 0 -0.16461462E+00 +- 0.62310714E-03

2 0 0.21962868E-16 +- 0.19949555E-17

1 1 -0.15155052E-15 +- 0.11403475E-17

2 1 0.47507936E-01 +- 0.37867763E-03

2 2 -0.61854286E-18 +- 0.26400170E-17

==

Up Equal time Green’s function:

0 0 0.50476321E+00 +- 0.79708933E-02

1 0 -0.16461462E+00 +- 0.62310714E-03

2 0 -0.23313943E-02 +- 0.26568535E-02

1 1 -0.60700479E-03 +- 0.22182014E-02

2 1 0.47507936E-01 +- 0.37867763E-03

2 2 0.39101815E-02 +- 0.59211124E-02

==

Down Equal time Green’s function:

0 0 0.49523679E+00 +- 0.79708933E-02

1 0 -0.16461462E+00 +- 0.62310714E-03

2 0 0.23313943E-02 +- 0.26568535E-02

1 1 0.60700479E-03 +- 0.22182014E-02

2 1 0.47507936E-01 +- 0.37867763E-03

2 2 -0.39101815E-02 +- 0.59211124E-02

==

Density-density correlation fn: (up-up)

0 0 0.50000000E+00 +- 0.00000000E+00

1 0 0.16687791E+00 +- 0.74883696E-02

2 0 0.29504064E+00 +- 0.84888569E-02

1 1 0.29327023E+00 +- 0.85469246E-02

2 1 0.19944863E+00 +- 0.79376430E-02

2 2 0.29155366E+00 +- 0.68663828E-02

==

Density-density correlation fn: (up-dn)

0 0 0.11912194E+00 +- 0.81660248E-03

1 0 0.31057397E+00 +- 0.74355737E-02

2 0 0.20225761E+00 +- 0.85132114E-02

1 1 0.20425278E+00 +- 0.85687879E-02

2 1 0.29832131E+00 +- 0.79459790E-02

7

2 2 0.20415573E+00 +- 0.68584300E-02

==

XX Spin correlation function:

0 0 0.76175611E+00 +- 0.16332050E-02

1 0 -0.26332216E+00 +- 0.37806808E-01

2 0 0.14099770E+00 +- 0.29854957E-01

1 1 0.10558928E+00 +- 0.18005604E-01

2 1 -0.12325729E+00 +- 0.17868179E-01

2 2 0.11433156E+00 +- 0.17090944E-01

==

ZZ Spin correlation function:

0 0 0.76175611E+00 +- 0.16332050E-02

1 0 -0.28739212E+00 +- 0.29847062E-01

2 0 0.18556607E+00 +- 0.34003672E-01

1 1 0.17803490E+00 +- 0.34230725E-01

2 1 -0.19774536E+00 +- 0.31767055E-01

2 2 0.17479586E+00 +- 0.27448367E-01

==

Average Spin correlation function:

0 0 0.76175611E+00 +- 0.16332050E-02

1 0 -0.27134548E+00 +- 0.21647718E-01

2 0 0.15585382E+00 +- 0.15909091E-01

1 1 0.12973782E+00 +- 0.57140133E-02

2 1 -0.14808665E+00 +- 0.89007566E-02

2 2 0.13448633E+00 +- 0.88719643E-02

==

Pairing correlation function:

0 0 0.59560972E-01 +- 0.40830124E-03

1 0 0.11274059E-01 +- 0.61437258E-04

2 0 -0.13508751E-02 +- 0.46068373E-04

1 1 -0.12384929E-02 +- 0.55802886E-04

2 1 0.11150343E-02 +- 0.27683035E-04

2 2 -0.21453031E-02 +- 0.65845693E-04

==

Pair measurement:

S-Wave : 0.19863264E+00 +- 0.11543101E-02

SX-Wave : 0.58009382E+00 +- 0.24526044E-02

D-Wave : 0.54811387E+00 +- 0.27145479E-01

SXX-Wave : 0.22679804E+00 +- 0.76105828E-02

DXX-Wave : 0.54727617E-01 +- 0.15390399E-01

PX-Wave : 0.15175323E+00 +- 0.12115481E-01

PY-Wave : 0.14888977E+00 +- 0.12146828E-01

PXY-Wave : 0.21852935E+00 +- 0.44857653E-02

PYX-Wave : 0.22042521E+00 +- 0.45145632E-02

==

In addition to these variables, advanced parameters are also available for a more in-depth
control of the Monte Carlo simulation. For example:

• Frequency of recomputing the equal-time Green’s function from scratch.

• Frequency of matrix reorthogonalization.

• Methods of stabilizing matrix products.

• Global moves.

• Methods of initializing the Hubbard-Stratonovich fields.

These advanced control variables will be initialized automatically if they are not given in the
input file. The values are safe to use for typical simulations with U and β less than the
bandwidth.

8

4 Lattice geometry

Variables describing lattice properties are grouped together in a derived data type Struct.
It contains a collection of data fields responsible for building a lattice. These include lattice
dimension, geometry, hoppings, inequivalent distance class, pair-field operator form factors,
. . . etc. To create a new type of lattice, it is necessary to construct the corresponding Struct.
The present version of QUEST has three ways of building a lattice:

• Define Struct directly in a driver routine.

• Import from an external file containing explicit geometry information (free form import).

• Build the lattice using primitive cell and super lattice (general geometry).

We will discuss the last two methods later in this section. Before that, let us walk though the
definition of the data type Struct.

type Struct

integer :: nSite ! number of sites

character(gname_len):: name ! name of the structure

integer, pointer :: dim(:) ! dim of the geometry

integer :: n_t ! number of hopping types

type(CCS):: T ! hopping matrix

integer :: n_b ! number of neighbors types

type(CCS):: B ! neighborhood matrix

integer :: nClass ! number of distance classes.

integer, pointer :: D(:,:) ! distance classes

integer, pointer :: F(:) ! counts for each dist class.

character(label_len), pointer :: label(:) ! label for distant class.

integer :: nGroup ! number of diff singletons.

integer, pointer :: map(:) ! site classification

real(wp), pointer :: W(:,:) ! wave functions

integer :: nWave

character(label_len), pointer :: wlabel(:) ! label for wave functions.

real(wp), pointer :: P(:) ! phase assignment

real(wp), pointer :: FT(:,:) ! Fourier Transform matrix

logical::checklist(N_CHECKLIST) ! flags

end type Struct

There are total 19 data fields whose meanings are described as follows.

1. name: A string that stores the name of the geometry structure. Maximum length is 80
characters.

2. dim: An integer vector containing dimension information of the lattice. For example, a
two dimensional square lattice has dim(2)=(nx,ny), where nx and ny are the number
of sites in x- and y-direction respectively. This field can be of arbitrary length. QUEST
does not use this field directly.

3. n t: Denotes the number of different hoppings on the lattice.

9

4. T: Stores the indices of hopping parameter t for adjacent sites.2 It is normally a sparse
matrix; and therefore is represented in the Compressed Column Storage (CCS) format.3

5. n b: Specifies the number of form factor terms in pair-field operators. See the definition
of W below for more details.

6. B: Stores the indices of pairing links. The link indices should be consistent with the form
factor array W. Similar to T, and the array B is also stored in the CCS format.

7. Because of symmetry, lattice sites can be grouped together by point group operations.
As a result, relative distance between any pair of sites falls into several inequivalent
distance classes. The number of such classes is denoted by nClass.

Within each distance class, there are many pairs of sites that have the same relative
distance. This number is stored in the array F. The string array label stores the label
for each class, and will be used in QUEST simulation outputs.

Array D Records the classification for each pair of sites. D(i,j) denotes the class index
for site i and j.

8. map: A vector that classifies sites. Site i and site j are in the same class if they have the
same physical parameters, like U and µ.

9. nGroup: Denotes the number of site classes.

10. W: An array that contains the form factors of pair-field operators. The number of desired
pairing measurements is specified by nWave. Each pair-field operator has n b elements,
and is stored in a column of the array W.

11. The phase assignment vector P gives each site {+1,−1} so that adjacent sites have
opposite phases. This is used in spin correlation measurements, and in Green’s function
calculation at half-filling µ = 0.

12. FT: An array of Fourier transformation matrix for distance classes. FT is required in
time-dependent measurements.

13. checklist: A vector that has a set of flags indicating which data fields are assigned.
The flags include

STRUCT_INIT = 1

STRUCT_DIM = 2

STRUCT_ADJ = 3

STRUCT_CLASS = 4

STRUCT_WAVE = 5

STRUCT_NEIG = 6

STRUCT_PHASE = 7

STRUCT_FT = 8

2Two sites i, j are called adjacent if electrons can hop from site i to site j.
3The detail of CCS format can be found in http://www.netlib.org.

10

4.1 Define Struct using free form import

The geometry definition can be imported through the flag gfile of the input file. For example,
the statement

gfile = square.def

asks QUEST to read in the file square.def for lattice definition. The geometry definition uses
free form input and is essentially identical in format to the input file described in Sec. 3.1.
Any line begins with a pound sign # is treated as a comment. In a .def file, each data field
is set by the statement

data_field_name = data_field_value

There are few aspects of .def file that we like to address.

1. Allocatable arrays T, B, D, FT and W requires dimensional information:

T → nSite

B → nSite

D → nSite

FT → nClass

W → n_b and nWave

Therefore nSite, nClass, n b, nWave should be declared before array assignment.

2. Vector F and map will be derived from array D when they are not given in the .def file.

3. Array assignment (matrix or vector) should always begin with specifying the number of
elements. For example,

D = 64

means that there are 64 elements in array D. This will trigger QUEST to read in 64
consecutive lines immediately. These lines are called content lines. NO empty lines are
allowed between content lines.

• Matrix content line format:

i j value

where i is the row index, j is the column index, and value is the (i, j) element of
the matrix.

• Vector content line format:

value

Those values should be ordered sequentially, since indices are assumed to be im-
plicitly embedded.

An example of free form geometry definition for a 4× 4 square lattice is provided in Appendix
A.

11

4.2 Define Struct using general geometry

This section focuses on generating a lattice using primitive cell vectors, also known as general
geometry. The general geometry input file has the extension .geom. Like free form import
discussed in the last section, .geom file is imported via the top-level input flag gfile. For
instance, the statement

guile = square.geom

will read in primitive cell information from the file square.geom.
There are 11 flags that may be specified in a .geom file. Not all of these flags are required,

but when they are given they must be specified exactly as shown below.

1. #NDIM: An integer. The number of dimensions in your system (1, 2, or 3 only). The
value of this quantity will change the dimension of the input for #SUPER, #K-POINT, and
#PHASE.

2. #PRIM: A 3 × 3 real array. The primitive vectors that define the basis for the lattice in
cartesian coordinates. The format is

a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

For a two dimensional square lattice, the primitive vectors would be

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

3. #SUPER: An NDIM×NDIM integer array. Defines the supercell of your lattice. The co-
effiecients are integers that weight against the primitive vectors. For a NDIM = 2 system,
we have

S1x S1y

S2x S2y

4. #K-POINT: An NDIM real vector. Defines the original k-point. At the moment, the only
supported value for the k-point is the vector (0, 0, 0). Eventually, this will be modified
to allow for choosing amongst all k-points.

5. #ORB: A listing of the atomic sites in the primitive cell. The format for a site is

label x y z #N

where label is a string, N is the number of the site (beginning with 0), and x, y, and z

specify the location of the atom in the primitive cell in cartesian coordinates.

6. #HAMILT: This table defintes the Hamltonian for your system. You must provide all of
the relevant information for every site defined in #ORB. The format is as follows

label1 label2 x y z t/mu U

label1 and label2 are integers that indicate the type of atom (if all atoms are the same,
then use 0 for both). x, y, and z are components of the vector r for the interaction and
are real numbers. t/mu and U are integers that indicate how many types of each quantity
there are. For example, the entries that define the hopping term for the t-t′ Hubbard
model will look like this:

12

0 0 1.00 0.00 0.00 1 0

0 0 -1.00 0.00 0.00 1 0

0 0 0.00 1.00 0.00 1 0

0 0 0.00 -1.00 0.00 1 0

0 0 1.00 1.00 0.00 2 0

0 0 -1.00 1.00 0.00 2 0

0 0 1.00 -1.00 0.00 2 0

0 0 -1.00 -1.00 0.00 2 0

To specify the chemical poential mu and the interaction U at, for example, site r = 0, one
writes

0 0 0.00 0.00 0.00 1 1

Nearest-neighbor coulomb interaction can be specified for r 6= 0. If there are multiple
atom types, then one can specify additional chemical potentials or interactions.

7. #SYMM: There are 3 types of symmetry operations that can be specified: rotation about
an axis, mirror plane, or inversion. For rotation about an axis, the convention is

CN x y z x1 y1 z1

where 2π/N is the rotation angle, x, y, and z specify a point belonging to the axis in
cartesian coordinates, and x1, y1, and z1 specify the axis diretion in cartesian coordi-
nates.

For a mirror plane operation, the format is

D x y z x1 y1 z1

where x, y, and z specify a point belonging to the plane in cartesian coordinates and x1,
y1, and z1 specify the direction normal to the plane in cartesian coordinates.

For inversion r → −r, the format is

I x y z

where x, y, and z specify the position of the inversion point in cartesian coordinates.

8. #PHASE: An NDIM×NDIM integer array. Defines the primitive cell needed to describe the
phase. From NDIM = 1, array will always be 1.

Next, the atomic positions and their phases need to be specified. The format is

label x y z phase

where label should be consistent with the ones uses when specifying #ORB. For a bipartite
system, phase= ±1.

9. #BONDS: In this table, the types of bonding between particles are specified. The format
is

label1 label2 x y z # bond_labels

where label1 and label2 indicate the atom types and x, y, and z specify the real space
vector separating the two particles in the bond. bond_labels

13

10. #PAIR: This table specifies the different types of pairing to be measured. It uses linear
combinations of the #BOND table in its definitions of the pairings. If this table is not
included, QUEST will attempt to determine pairing on its own. The first line is a list of
the different types of bonds (nbond) by their labels.

The remaining lines specify the types of pairing. There will be nbond+1 entries per line.
The first entry will be the label for the pairing, and the remaining entries will be real
coefficients for each bond. Here we show an example the entire table with d-wave pairing
(taken from square.geom).

#PAIR

1 2 -2 3 -3 4 -4 5 -5

D-Wave: 0.0 1.0 1.0 0.0 0.0 -1.0 -1.0 0.0 0.0

11. #END: Specifies the end of the .geom file.

Appendix B has an example of general geometry definition for a 4× 4 square lattice.

5 Adding new measurements

New measurements need be made through programming in QUEST. Several subroutines can
be used to create new measurements. The standard procedure to add a new measurement
includes three steps.

1. Measuring.

2. Binning.

3. Postprocessing. (Statistics, Fourier transformation, output.)

5.1 Measuring

Several components may be needed to create a new measurements.

1. Equal time Green’s function: Equal time Green’s function is defined in the module
dqmc_gfun, which will be initialized automatically when the subroutine DQMC_Hub_Init
is called. Suppose Hub is typed Hubbard, the major data type of entire simulation. The
Green’s function matrices, spin-up and spin-down, can be obtained from

Hub%G_up%G

Hub%G_dn%G

And the signs of their determinants are recorded in

Hub%G_up%sgn

Hub%G_dn%sgn

14

2. Unequal time Green’s function: Unequal time Green’s function, denoted Gτ
ρ, ρ ∈

{↑, ↓}, is defined in the module dqmc_gtau. Unlike equal time Green’s functions, Gτ

are not essential in the simulation. Therefore, user needs to initialize it by calling
DQMC_Gtau_Init explicitly. The construction of Gτ can be made in two ways. The
first way is to call DQMC_Gtau_Big, which returns entire Gτ

ρ. The second method is to
invoke DQMC_MakeGtau, which returns block submatrices of Gτ . Since the signs of un-
equal time Green’s functions are the same as the equal times, one can obtain the signs
from Hub%G_up%sgn, Hub%G_dn%sgn.

3. Parameters of Hamiltonian: Parameters, such as t, µ and U , are stored in the data
type Hubbard. The access is straightforward.

4. Geometry related information: Geometry information, such as hopping matrix, can
be obtained from the data type struct, which is introduced in section 4.

5.2 Binning

In order to reduce correlation and bias, measurements in QUEST need be grouped into bins.
Currently, equal divided binning strategy is used, which means the measurements are evenly
divided by the total number of bins. Measurements in the same bin are averaged. The total
number of bins are stored in the variable nbin.

5.3 Statistics

There are two special properties for the physical measurements produced by DQMC method.

1. The distribution is not normal.

2. Measurements are weighted with signs of the determinants of Green’s functions, for which
the average needs be normalized by the average of signs.

QUEST uses jackknife resampling technique in error estimation. Two subroutines are
provided to perform the statistics: DQMC_JackKnife and DQMC_SignJackKnife. The former
is for error estimation of signs; the latter is used for other measurements. Those subroutines
are defined in module dqmc_util.

5.4 Fourier transformation

For unequal time measurements, there are two possible Fourier transformations to be applied:
transformation on the real space and transformation on the time domain. For the transfor-
mation on real space, since it is geometry dependent, a transformation matrix FT, defined in
Struct, is required.4 Once the matrix is available, the transformation is just a matrix-matrix
multiplication. In the module dqmc_tdm, QUEST provides a subroutine DQMC_DCT_Space for
the space transformation.

The Fourier transformation on the time domain is an integration. The numerical procedure
is

1. Refine the time grid.

4see section 3.2 for more details.

15

2. Interpolate the refined data points.

3. Integrate on the interpolated data with Fourier coefficients.

In step 1, QUEST evenly subdivides the time domain by the given parameter nitvl. In
step 2, QUEST uses spline interpolation, which is supported by the subroutine DQMC_Spline.
Step 3 requires an additional Fourier matrix, which can be generated from the subroutine
DQMC_Make_FTM. The entire procedure is coded in the subroutine DQMC_FT_Time.

5.5 Printing

QUEST has two subroutines that prints out arrays of numbers. Subroutine DQMC_Print_RealArry
prints out an array of real numbers; DQMC_Print_ComplexArray prints out an array of complex
numbers. The title of the measurements and the labels of each array items are required for
those two functions.

6 Statistics

6.1 Basics

In a Monte Carlo simulation, we often like to compute expectation value of an observable O
with respect to a distribution P (x)

〈O〉 =
∫

dxP (x)O(x), (1)

where P (x) ≥ 0 and satisfies
∫

dxP (x) = 1. (2)

If instead we only have an unnormalized distribution p(x), one replace p(x) with

P (x) =
p(x)

Z
, where Z =

∫

dx p(x). (3)

To compute 〈O〉 by Monte Carlo, we draw N samples xi, i = 1, 2, . . . , N from P (x). Assuming
xi’s are independent, then the integral Eq. (1) is approximated by

〈O〉 ∼ ON =
1

N

N
∑

i=1

O(xi). (4)

In the limit of large N , the central limit theorem tells us that the probability P(ON) of
obtaining a given value ON is a Gaussian distribution with variance

σ2 =
1

N

(

〈O2〉 − 〈O〉2
)

. (5)

In practice we usually do not know P (x). The variance σ is then estimated by

σ2

N =
1

N

(

1

N

N
∑

i=1

O(xi)
2 −O2

N

)

. (6)

16

While Eq. (6) provides a practical way of estimating statistical error, it is not particularly
useful when one would like to estimate the variance of some function f(〈O〉) of 〈O〉. We could
not simply define fi = f(O(xi)) and use them as measurements of f . For example let xi be
a random number drawn uniformly from the interval [0, 1] and f(x) = 1/x. Therefore we
have f(〈x〉) = 0.5, but 〈f(x)〉 = ∞. The situation becomes cumbersome when f depends on
more than one observables f(O1, O2, . . .). In these cases, one could use jackknife or bootstrap
resampling methods to systematically estimate the variance of f .

6.2 Jackknife

We first consider f as a function of a single observable ON . For a given independent sample
O(xi), i = 1, 2, . . . , N , we define N jackknife averages as

OJ
i =

1

N − 1

N
∑

j=1

j 6=i

O(xj). (7)

In other words, OJ
i is the average of all measurements except O(xi). Similarly, we define N

jackknife samples of f
fJ
i = f(OJ

i). (8)

Then the jackknife estimate of f(ON) is

f(ON) ∼ fJ =
1

N

N
∑

i=1

fJ
i . (9)

The uncertainty of this estimation is given by

σf =
√
N σfJ , where σ2

fJ =
1

N

N
∑

i=1

(

fJ
i

)2

−
(

fJ
)2

. (10)

It is straightforward to show that if f(O(xi)) = O(xi), the jackknife estimation returns to
Eq. (4) and (6) in the limit of large N

fJ = ON , (11)

σ2

f =
N

N − 1
σ2

N . (12)

If f depends on several observables f(ON,1, ON,2, . . .), its jackknife estimate can still be calcu-
lated using Eq. (9). But now we have

fJ
i = f(OJ

i,1, O
J
i,2, . . .), (13)

where

OJ
i,k =

1

N − 1

N
∑

j=1

j 6=i

Ok(xj). (14)

17

6.3 Bootstrap

An alternative method for determining variance of f is the bootstrap resampling method.
QUEST does not implement bootstrap to do statistics. We mention the method here only for
completeness. The bootstrap method is quite similar to jackknife. The difference lies in the
algorithm of resampling the data. Again, consider an independent set of measurements sample
O(xi), i = 1, 2, . . . , N . We generate NB sets of bootstrap “measurements” by sampling the
original O(xi)’s with replacement. In other words, we do not avoid double or multiple sampling
in this process. Each bootstrap sample contains exactly N data points, and its average is
estimated by

OB
i =

1

N

N
∑

k=1

O(xik). (15)

Then the bootstrap estimate of f and its variance are given by

fB =
1

NB

NB
∑

i=1

fB
i , where fB

i = f(OB
i), (16)

σ2

B =
1

NB

NB
∑

i=1

(

fB
i

)2

−
(

fB
)2

(17)

Typically NB ∼ O(102) or O(103) is often used.

18

A Free form geometry definition of a 4× 4 square lattice

name = 2D Square Lattice (Nx= 4, Ny= 4) total sites= 16

nSite = 16

nWave = 9

dim = 2

4

4

n_t = 1

T = 64

2 1 1

4 1 1

5 1 1

13 1 1

1 2 1

3 2 1

6 2 1

14 2 1

2 3 1

4 3 1

7 3 1

15 3 1

1 4 1

3 4 1

8 4 1

16 4 1

1 5 1

6 5 1

8 5 1

9 5 1

2 6 1

5 6 1

7 6 1

10 6 1

3 7 1

6 7 1

8 7 1

11 7 1

4 8 1

5 8 1

7 8 1

12 8 1

5 9 1

10 9 1

12 9 1

13 9 1

6 10 1

9 10 1

11 10 1

14 10 1

7 11 1

10 11 1

12 11 1

15 11 1

8 12 1

9 12 1

11 12 1

16 12 1

1 13 1

9 13 1

14 13 1

16 13 1

2 14 1

10 14 1

19

13 14 1

15 14 1

3 15 1

11 15 1

14 15 1

16 15 1

4 16 1

12 16 1

13 16 1

15 16 1

n_b = 9

B = 144

1 1 5

2 1 8

4 1 2

5 1 6

6 1 9

8 1 3

13 1 4

14 1 7

16 1 1

1 2 2

2 2 5

3 2 8

5 2 3

6 2 6

7 2 9

13 2 1

14 2 4

15 2 7

2 3 2

3 3 5

4 3 8

6 3 3

7 3 6

8 3 9

14 3 1

15 3 4

16 3 7

1 4 8

3 4 2

4 4 5

5 4 9

7 4 3

8 4 6

13 4 7

15 4 1

16 4 4

1 5 4

2 5 7

4 5 1

5 5 5

6 5 8

8 5 2

9 5 6

10 5 9

12 5 3

1 6 1

2 6 4

3 6 7

5 6 2

6 6 5

7 6 8

9 6 3

20

10 6 6

11 6 9

2 7 1

3 7 4

4 7 7

6 7 2

7 7 5

8 7 8

10 7 3

11 7 6

12 7 9

1 8 7

3 8 1

4 8 4

5 8 8

7 8 2

8 8 5

9 8 9

11 8 3

12 8 6

5 9 4

6 9 7

8 9 1

9 9 5

10 9 8

12 9 2

13 9 6

14 9 9

16 9 3

5 10 1

6 10 4

7 10 7

9 10 2

10 10 5

11 10 8

13 10 3

14 10 6

15 10 9

6 11 1

7 11 4

8 11 7

10 11 2

11 11 5

12 11 8

14 11 3

15 11 6

16 11 9

5 12 7

7 12 1

8 12 4

9 12 8

11 12 2

12 12 5

13 12 9

15 12 3

16 12 6

1 13 6

2 13 9

4 13 3

9 13 4

10 13 7

12 13 1

13 13 5

14 13 8

16 13 2

21

1 14 3

2 14 6

3 14 9

9 14 1

10 14 4

11 14 7

13 14 2

14 14 5

15 14 8

2 15 3

3 15 6

4 15 9

10 15 1

11 15 4

12 15 7

14 15 2

15 15 5

16 15 8

1 16 9

3 16 3

4 16 6

9 16 7

11 16 1

12 16 4

13 16 8

15 16 2

16 16 5

nClass= 9

D = 256

1 1 1

1 2 2

1 3 3

1 4 2

1 5 4

1 6 5

1 7 6

1 8 5

1 9 7

1 10 8

1 11 9

1 12 8

1 13 4

1 14 5

1 15 6

1 16 5

2 1 2

2 2 1

2 3 2

2 4 3

2 5 5

2 6 4

2 7 5

2 8 6

2 9 8

2 10 7

2 11 8

2 12 9

2 13 5

2 14 4

2 15 5

2 16 6

3 1 3

3 2 2

3 3 1

22

3 4 2

3 5 6

3 6 5

3 7 4

3 8 5

3 9 9

3 10 8

3 11 7

3 12 8

3 13 6

3 14 5

3 15 4

3 16 5

4 1 2

4 2 3

4 3 2

4 4 1

4 5 5

4 6 6

4 7 5

4 8 4

4 9 8

4 10 9

4 11 8

4 12 7

4 13 5

4 14 6

4 15 5

4 16 4

5 1 4

5 2 5

5 3 6

5 4 5

5 5 1

5 6 2

5 7 3

5 8 2

5 9 4

5 10 5

5 11 6

5 12 5

5 13 7

5 14 8

5 15 9

5 16 8

6 1 5

6 2 4

6 3 5

6 4 6

6 5 2

6 6 1

6 7 2

6 8 3

6 9 5

6 10 4

6 11 5

6 12 6

6 13 8

6 14 7

6 15 8

6 16 9

7 1 6

7 2 5

7 3 4

7 4 5

23

7 5 3

7 6 2

7 7 1

7 8 2

7 9 6

7 10 5

7 11 4

7 12 5

7 13 9

7 14 8

7 15 7

7 16 8

8 1 5

8 2 6

8 3 5

8 4 4

8 5 2

8 6 3

8 7 2

8 8 1

8 9 5

8 10 6

8 11 5

8 12 4

8 13 8

8 14 9

8 15 8

8 16 7

9 1 7

9 2 8

9 3 9

9 4 8

9 5 4

9 6 5

9 7 6

9 8 5

9 9 1

9 10 2

9 11 3

9 12 2

9 13 4

9 14 5

9 15 6

9 16 5

10 1 8

10 2 7

10 3 8

10 4 9

10 5 5

10 6 4

10 7 5

10 8 6

10 9 2

10 10 1

10 11 2

10 12 3

10 13 5

10 14 4

10 15 5

10 16 6

11 1 9

11 2 8

11 3 7

11 4 8

11 5 6

24

11 6 5

11 7 4

11 8 5

11 9 3

11 10 2

11 11 1

11 12 2

11 13 6

11 14 5

11 15 4

11 16 5

12 1 8

12 2 9

12 3 8

12 4 7

12 5 5

12 6 6

12 7 5

12 8 4

12 9 2

12 10 3

12 11 2

12 12 1

12 13 5

12 14 6

12 15 5

12 16 4

13 1 4

13 2 5

13 3 6

13 4 5

13 5 7

13 6 8

13 7 9

13 8 8

13 9 4

13 10 5

13 11 6

13 12 5

13 13 1

13 14 2

13 15 3

13 16 2

14 1 5

14 2 4

14 3 5

14 4 6

14 5 8

14 6 7

14 7 8

14 8 9

14 9 5

14 10 4

14 11 5

14 12 6

14 13 2

14 14 1

14 15 2

14 16 3

15 1 6

15 2 5

15 3 4

15 4 5

15 5 9

15 6 8

25

15 7 7

15 8 8

15 9 6

15 10 5

15 11 4

15 12 5

15 13 3

15 14 2

15 15 1

15 16 2

16 1 5

16 2 6

16 3 5

16 4 4

16 5 8

16 6 9

16 7 8

16 8 7

16 9 5

16 10 6

16 11 5

16 12 4

16 13 2

16 14 3

16 15 2

16 16 1

cLabel = 9

0 0

1 0

2 0

0 1

1 1

2 1

0 2

1 2

2 2

P = 16

-1.00000000000000

1.00000000000000

-1.00000000000000

1.00000000000000

1.00000000000000

-1.00000000000000

1.00000000000000

-1.00000000000000

-1.00000000000000

1.00000000000000

-1.00000000000000

1.00000000000000

1.00000000000000

-1.00000000000000

1.00000000000000

-1.00000000000000

nWave = 9

W = 81

1 1 0.00000000

1 2 0.00000000

1 3 0.00000000

1 4 0.50000000

1 5 -0.50000000

1 6 0.00000000

1 7 0.00000000

26

1 8 -0.50000000

1 9 0.00000000

2 1 0.00000000

2 2 0.50000000

2 3 -0.50000000

2 4 0.00000000

2 5 0.00000000

2 6 0.00000000

2 7 -0.50000000

2 8 0.00000000

2 9 0.00000000

3 1 0.00000000

3 2 0.00000000

3 3 0.00000000

3 4 0.50000000

3 5 0.50000000

3 6 0.00000000

3 7 0.00000000

3 8 0.00000000

3 9 -0.50000000

4 1 0.00000000

4 2 0.50000000

4 3 0.50000000

4 4 0.00000000

4 5 0.00000000

4 6 -0.50000000

4 7 0.00000000

4 8 0.00000000

4 9 0.00000000

5 1 1.00000000

5 2 0.00000000

5 3 0.00000000

5 4 0.00000000

5 5 0.00000000

5 6 0.00000000

5 7 0.00000000

5 8 0.00000000

5 9 0.00000000

6 1 0.00000000

6 2 0.50000000

6 3 0.50000000

6 4 0.00000000

6 5 0.00000000

6 6 0.50000000

6 7 0.00000000

6 8 0.00000000

6 9 0.00000000

7 1 0.00000000

7 2 0.00000000

7 3 0.00000000

7 4 0.50000000

7 5 0.50000000

7 6 0.00000000

7 7 0.00000000

7 8 0.00000000

7 9 0.50000000

8 1 0.00000000

8 2 0.50000000

8 3 -0.50000000

8 4 0.00000000

8 5 0.00000000

8 6 0.00000000

8 7 0.50000000

8 8 0.00000000

8 9 0.00000000

27

9 1 0.00000000

9 2 0.00000000

9 3 0.00000000

9 4 0.50000000

9 5 -0.50000000

9 6 0.00000000

9 7 0.00000000

9 8 0.50000000

9 9 0.00000000

wLabel = 9

S-Wave :

SX-Wave :

D-Wave :

SXX-Wave :

DXX-Wave :

PX-Wave :

PY-Wave :

PXY-Wave :

PYX-Wave :

FT = 81

1 1 1.00000000000000

1 2 2.00000000000000

1 3 1.00000000000000

1 4 2.00000000000000

1 5 4.00000000000000

1 6 2.00000000000000

1 7 1.00000000000000

1 8 2.00000000000000

1 9 1.00000000000000

2 1 1.00000000000000

2 2 8.742278000372451E-008

2 3 -0.999999999999996

2 4 2.00000000000000

2 5 1.748455600074490E-007

2 6 -1.99999999999999

2 7 1.00000000000000

2 8 8.742278000372451E-008

2 9 -0.999999999999996

3 1 1.00000000000000

3 2 -1.99999999999996

3 3 0.999999999999985

3 4 2.00000000000000

3 5 -3.99999999999992

3 6 1.99999999999997

3 7 1.00000000000000

3 8 -1.99999999999996

3 9 0.999999999999985

4 1 1.00000000000000

4 2 2.00000000000000

4 3 1.00000000000000

4 4 8.742278000372451E-008

4 5 1.748455600074490E-007

4 6 8.742278000372451E-008

4 7 -0.999999999999996

4 8 -1.99999999999999

4 9 -0.999999999999996

5 1 1.00000000000000

5 2 8.742278000372451E-008

5 3 -0.999999999999996

5 4 8.742278000372451E-008

5 5 7.549516567451064E-015

5 6 -8.742278000372347E-008

5 7 -0.999999999999996

28

5 8 -8.742278000372347E-008

5 9 0.999999999999985

6 1 1.00000000000000

6 2 -1.99999999999996

6 3 0.999999999999985

6 4 8.742278000372451E-008

6 5 -1.748455600074430E-007

6 6 8.742278000372181E-008

6 7 -0.999999999999996

6 8 1.99999999999992

6 9 -0.999999999999966

7 1 1.00000000000000

7 2 2.00000000000000

7 3 1.00000000000000

7 4 -1.99999999999996

7 5 -3.99999999999992

7 6 -1.99999999999996

7 7 0.999999999999985

7 8 1.99999999999997

7 9 0.999999999999985

8 1 1.00000000000000

8 2 8.742278000372451E-008

8 3 -0.999999999999996

8 4 -1.99999999999996

8 5 -1.748455600074430E-007

8 6 1.99999999999992

8 7 0.999999999999985

8 8 8.742278000372181E-008

8 9 -0.999999999999966

9 1 1.00000000000000

9 2 -1.99999999999996

9 3 0.999999999999985

9 4 -1.99999999999996

9 5 3.99999999999972

9 6 -1.99999999999987

9 7 0.999999999999985

9 8 -1.99999999999987

9 9 0.999999999999939

29

B General geometry definition of a 4× 4 square lattice

#NDIM

2

#PRIM

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

#SUPER

4 0

0 4

#K-POINT

0.0 0.0

#ORB

s0 0.0d0 0.0d0 0.0d0 #0

#HAMILT

0 0 1.0 0.0 0.0 1.0 0.0 0.0 # hopping in x direction

0 0 0.0 1.0 0.0 1.0 0.0 0.0 # hopping in y direction

0 0 0.0 0.0 0.0 0.0 0.0 4.0 # onsite U=4 and mu=0

#SYMM

C4 0.0d0 0.0d0 0.0d0 0.0d0 0.0d0 1.d0

D 0.0d0 0.0d0 0.0d0 1.0d0 0.0d0 0.d0

D 0.0d0 0.0d0 0.0d0 0.0d0 1.0d0 0.d0

#PHASE

1 1

-1 1

s0 0.0 0.0 0.0 1.0

s0 0.0 1.0 0.0 -1.0

#XBONDS

0 0 0.0 0.0 0.0 # 1

0 0 1.0 0.0 0.0

0 0 2.0 0.0 0.0

0 0 1.0 1.0 0.0

0 0 2.0 1.0 0.0

#XBONDS

0 0 1.0 0.0 0.0 # 1 -1

0 0 2.0 0.0 0.0 # 2 -2

0 0 2.0 1.0 0.0 # 3 -3

#XBONDS

0 0 0.0 0.0 0.0 # 1

0 0 1.0 0.0 0.0 # 2 -2

0 0 1.0 1.0 0.0 # 3 -3

#XBONDS

0 0 0.0 0.0 0.0 # 1

0 0 1.0 0.0 0.0 # 2 -2

0 0 1.0 1.0 0.0 # 3 -3

0 0 0.0 1.0 0.0 # 4 -4

0 0 -1.0 1.0 0.0 # 5 -5

#XPAIR

1 2 -2 3 -3 4 -4 5 -5

D-Wave: 0.0 1.0 1.0 0.0 0.0 -1.0 -1.0 0.0 0.0

#END

30

	Introduction
	Building QUEST
	Basic install
	Multicore processor and GPU support
	Verify installation

	Example: 2D Hubbard model on a square lattice
	Input file
	Outputs

	Lattice geometry
	Define Struct using free form import
	Define Struct using general geometry

	Adding new measurements
	Measuring
	Binning
	Statistics
	Fourier transformation
	Printing

	Statistics
	Basics
	Jackknife
	Bootstrap

	Free form geometry definition of a 44 square lattice
	General geometry definition of a 44 square lattice

