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Response to dynamical modulation of the optical lattice for fermions in the Hubbard model
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Fermionic atoms in a periodic optical lattice provide a realization of the single-band Hubbard model. Using
quantum Monte Carlo simulations along with the maximum-entropy method, we evaluate the effect of a time-
dependent perturbative modulation of the optical lattice amplitude on atomic correlations, revealed in the fraction
of doubly occupied sites. We find that the effect of modulation depends strongly on the filling—the response
of the double occupation is significantly different in the half-filled Mott insulator from that in the doped Fermi
liquid region.
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A number of key properties of strongly correlated electron
systems appear to be well described by simplified tight-binding
Hamiltonians. For example, the square-lattice Hubbard model,
with one particle per site, is known to possess the long-range
antiferromagnetic order manifest in the parent compounds of
high-temperature superconductors, whose CuO2 sheets have
square arrays of copper atoms with one hole per 3d shell.
There are many analytic and numerical clues that suggest
the doped Hubbard model might also possess the d-wave
superconducting phase exhibited by the cuprates, as well as
other nontrivial properties including stripes and pseudogap
physics [1]. If this could be demonstrated rigorously, it
would provide important insight into the mechanism of
superconductivity in these materials.

Ultracold atomic systems offer an opportunity for closer
connection between experiments and calculations for such
model Hamiltonians. At present, experiments on fermionic
atoms are exploring temperatures T which are of the order of
the hopping integral J0, probing correlations such as double
occupancy D, and short-range spin order that develops at that
temperature scale. In particular, the evolution of D with the
ratio of interaction strength U to hopping J0 has been shown to
indicate the presence of a Mott metal-insulator transition [2,3].
The presence of a Mott gap in the excitation spectrum has
also been inferred through peaks in D which arise through a
dynamic modulation of the optical lattice depthsxs V [2].

The possibility that such a modulation might provide a
useful probe was first suggested by Kollath et al. [4], based on
earlier work with bosonic systems [5]. Using a time-dependent
density-matrix renormalization-group method, it was shown
that a peak existed in the induced double occupation at a
frequency ω which matched the interaction strength U . The
authors emphasized that the measurement was sensitive to
near-neighbor spin correlations and the exchange gap, as well
as the charge gap.

This “modulation spectroscopy” has been further explored
theoretically by Huber and Rüegg [6] and Sensarma et al. [7].
In the former work, the frequency dependence of the shift in
D was studied in the atomic and two-particle limits and within
a slave boson mean-field theory. The latter work focused on
observing local antiferromagnetic order at the superexchange

scale. In both of these papers, the modulation was assumed to
couple only to the kinetic energy.

In this paper, we extend previous work by studying the
effect of the modulation of both the tunneling strength δJ

and the on-site interaction strength δU due to variation of
the optical lattice depth V , for the two-dimensional repulsive
fermionic Hubbard Hamiltonian. The modulation by δU is
shown to be quite significant in the parameter range of interest
to current experiments. We find that the filling of the system
plays a very important role in the response. Crucially, through
the use of determinant quantum Monte Carlo simulations [8]
and the maximum-entropy method [9,10], we provide results
which treat the electron-electron correlations exactly.

In the low-energy limit, two species of repulsively inter-
acting fermions confined to a periodic optical potential with
wavelength λ and amplitude V (t) can be described by the
one-band Hubbard model [11],

Ĥ = −J K̂ + UD̂ − μN̂, (1)

where the hopping or kinetic-energy operator is K̂ =∑
〈ij〉,σ [ĉ†iσ ĉjσ + H.c.], D̂ = ∑

i n̂i↑n̂i↓ is the double occu-

pancy, and N̂ = ∑
i n̂i↑ + n̂i↓ is the total number of particles,

with ĉ
†
iσ (ĉiσ ) the fermion creation (annihilation) operator,

σ =↑,↓ the spin index, n̂iσ = ĉ
†
iσ ĉjσ , and μ the chemical

potential. The hopping (J ) and interaction (U ) can be
expressed as [11] J ≈ (4 /

√
π ) ER v3/4 exp(−2

√
v) and U ≈

4
√

2π (as/λ) ER v3/4, where v = V/ER is the ratio of lattice
depth to recoil energy, and as is the short-ranged s-wave
scattering length.

It is clear from these expressions that a small time-
dependent modulation of V changes both J and U . Writing
V (t) = V0 + δV sin(ωt) and expanding J and U in the limit
δV � V0 yields Ĥ = Ĥ0 + δĤ sin(ωt) with Ĥ0 given by
Eq. (1) with J replaced by J0 and U by U0, and δĤ =
−δJ K̂ + δUD̂ with the time-dependent perturbations

δJ = J0

(
3

4
−

√
V0

ER

)
δV

V0
,

δU = 3

4
U0

δV

V0
. (2)

021607-11050-2947/2011/84(2)/021607(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.021607


RAPID COMMUNICATIONS

ZHAOXIN XU et al. PHYSICAL REVIEW A 84, 021607(R) (2011)

For δV > 0, we have δJ < 0 and δU > 0 so that an increase in
the optical lattice amplitude suppresses hopping and increases
the Hubbard repulsion. We emphasize that one cannot a priori
neglect δJ or δU as they can be of the same order of magnitude
if the experimental parameters of Ref. [2] are used.

Our aim is to understand how such a simultaneous modula-
tion of the hopping and interaction parameters, as provided by
fermions in a time-dependent optical lattice, probes fermion
correlations in the Hubbard model. To this end, we study the
time dependence of the average double occupancy D(t) =
〈D̂〉. Within standard time-dependent perturbation theory, D(t)
satisfies, to linear order,

D(t) = D(t0) − i

∫ t

t0

dt ′ 〈[D̂(t),δĤ (t ′)]〉0 sin ωt ′, (3)

where 〈Ô〉0 = Z−1
0 Tre−βĤ0Ô and Ô(t) = eiĤ0tÔe−iĤ0t . Equa-

tion (3) can be simplified by rewriting δĤ in terms of
Ĥ0 as δĤ = (δJ/J0) (Ĥ0 + U0[α − 1]D̂), with α = (1 −
4
3

√
V0
ER

)−1. When inserted into Eq. (3), the first term will give

a vanishing contribution, leading to

D(t) = D(t0) + U0

J0
(α − 1)

∫ ∞

t0

dt ′ δJχDD(t − t ′) sin ωt ′,

(4)

where χOO(t − t ′) = −i〈[Ô(t),Ô(t ′)]〉0 θ (t − t ′). Formally
setting α = 0 amounts to neglecting the modulation of the
interaction term. In contrast, experimentally, α typically varies
within the range −0.41 < α < −0.28. The simplification
leading to Eq. (4) can be generalized to show that χDD(t) =
(J0/U0)2χKK(t), a fact that we shall use below in our analysis.

Numerically, we calculate the imaginary-time quantity
χDD(τ ) from determinant quantum Monte Carlo simulations
[8] and analytically extrapolate to the corresponding imaginary
part of the real-frequency quantity χ ′′

DD(ω) by inverting

χDD(iνn) = − 1

π

∫ ∞

−∞
dω

χ ′′
DD(ω)

iνn − ω
(5)

via the maximum-entropy method [9,10]. In Eq. (5) iνn =
2nπT is the bosonic Matsubara frequency, T is the tempera-
ture, and ω is the real frequency.

To illustrate the importance of incorporating the modulation
of the interaction parameter U , in Fig. 1 we show the depen-
dence with U0/J0 of the double-occupancy response function
χDD(iνn = 0) (black curves, circles), for n = 〈ni↑ + ni↓〉 =
1.0 and n = 1.4, along with this quantity multiplied by (1 − α)
(red curves, squares). Therefore, the black curves are the result
from modulating δJ only, while the red curves also include
the effect of modulating δU . The difference between the
curves illustrates that δU should not be neglected. We observe
from Fig. 1 that at half filling (n = 1), the double-occupancy
response is largest in the intermediate interaction region and
decreases with increasing U0/J0. This is in striking contrast
to the behavior at n = 1.4, in which the double-occupancy
response is small at weak coupling and saturates at large U0/J0.
To confirm our numerical calculation, we analytically solved
the case of a two-site Hubbard model and found qualitatively
similar behavior. (See green curves in the insets of Fig. 1.)
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FIG. 1. (Color online) Data for (a) half filling, and (b) a filling
of n = 1.4, for a two-dimensional 4 × 4 Hubbard lattice. Red curves
(squares) show the quantity (1 − α)χDD that appears in the linear
response of the double occupancy, evaluated at zero Matsubara
frequency as a function of U0/J0. Neglecting the modulation of the
Hubbard interaction amounts to setting α = 0, yielding a smaller
result (black curves, circles). For comparison, the green diamonds
in the insets in both (a) and (b) are exact results for (1 − α)χDD

for a two-site Hubbard model. α is determined by assuming as/λ =
0.0119, where as = 240a0 (a0 is the Bohr radius) and λ = 1064 nm
(following Ref. [2]); thus α can be found as a single-valued function
of U0/J0.

We now turn to the full frequency-dependent dynamical
susceptibility, which determines the response to the dynamical
modulation, showing its evolution as a function of temperature
(expressed in terms of βJ0 = J0/kBT ) in Fig. 2. Figure 2(a)
displays results at half filling, where Mott-insulating physics
dominates. At this filling the low-frequency response is
strongly suppressed for temperatures approaching zero (so that
this quasipeak represents thermally excited states, not coherent
excitations), with the predominant response occurring at
frequencies close to U0. This energy scale, corresponding to
the Mott gap, is consistent with recent experimental results
[2] which find a strong response in the double occupancy
when ω ∼ U0. The presence of the Mott gap also accounts
for the much smaller values of χ ′′ in the top panels of
Figs. 1 and 2. Figure 2(b) shows a filling n = 1.4, where
an ω = 0 peak remains robust for T → 0. We attribute
this peak to the presence of gapless excitations reflecting
Fermi liquid behavior in this region. The peak at high ω

represents coherent excitations at the band-gap scale which
should be the distance between the lower and upper Hubbard
bands.

In Fig. 3, we show the interaction dependence of χ ′′
DD(ω).

Figure 3(a) displays the half-filled case where the peaks are
centered at U0. In Fig. 3(b), filling n = 1.4, we include the case
of a larger lattice size (6 × 6) to show that finite-size effects are
small. These results further verify the important role of filling
in the response to dynamical modulation. Our findings can be
qualitatively reproduced by neglecting vertex corrections in
χKK and expressing the single-particle Green’s function in the

021607-2



RAPID COMMUNICATIONS

RESPONSE TO DYNAMICAL MODULATION OF THE . . . PHYSICAL REVIEW A 84, 021607(R) (2011)

0

0.02

0.04

0.06

χ"
D

D
(ω

)/N

βJ
0
=3.0

βJ
0
=4.0

βJ
0
=5.0

βJ
0
=6.0

βJ
0
=8.0

0 5 10 15 20
ω/J

0

0

0.1

0.2

0.3

0.4

0.5

χ"
D

D
(ω

)/N

βJ
0
=3.0

βJ
0
=4.0

βJ
0
=5.0

βJ
0
=6.0

βJ
0
=8.0

(a) n=1.0

(b) n=1.4

FIG. 2. (Color online) The imaginary component of the double-
occupancy susceptibility χ ′′

DD(ω)/N for U0/J0 = 10.0, a 4 × 4 square
lattice, and various values of inverse temperature (β = 1/T ). Results
for (a) half filling, n = 1.0, and (b) a filling of n = 1.4, for βJ0 = 3.0
(dashed), 4.0 (dot-dashed), 5.0 (dotted), 6.0 (dot-dot-dashed), and 8.0
(solid). N = 16 is the system size.

Hubbard-I approximation. The latter corresponds to using an
approximate self-energy of the form


σ (ω) ∼ U 2
0 nσ̄ (1 − nσ̄ )

ω + iδ
. (6)

We find that χ ′′
KK(ω) [and hence χ ′′

DD(ω)] possesses poles at
ω ∼ 0, ± [

√
(εk)2 + 4U 2

0 nσ (1 − nσ ), where εk is the energy of
a noninteracting quasiparticle with momentum k. In the low-
energy region, there are quasielastic peaks at approximately
ω ∼ 0. Note that the peak vanishes at ω = 0 because the
imaginary part of the real-frequency susceptibility is an odd
function χ ′′

KK(−ω) = −χ ′′
KK(ω). In the high-energy region, the

peaks are located at roughly ω ∼ U0 + ε2
k/2U0. Therefore,

at half filling, the peaks are at ω = U0 but they sit at higher
frequencies away from half filling.

We now turn to the question of how the features in χDD(ω)
would be reflected in an experimental measurement of the
double occupancy, by inserting our results for χDD(t) into
Eq. (4). For this task, we need to obtain the real part of χDD(ω)
via the Kramers-Kronig relation; upon Fourier transforming
we find the real-time dynamical response functions for the
double occupancy to be strikingly different at half filling and
away from half filling, as seen in Figs. 3(a) and 3(b). We see
that filling n = 1 shows a response function that is tightly
peaked at t → 0, characterized by a single frequency scale
ω ∼ U0, while at n = 1.4 we see a broad behavior dominated
by the two distinct frequencies associated with ω ∼ 0 and
ω ∼ U0 + ε2

k/2U0.
As in standard linear response theory, the real and imaginary

parts of χDD(ω) correspond to the in-phase and out-of-phase
parts of the response, respectively. Thus, to linear order, an
oscillatory driving of the optical lattice potential yields an
oscillatory response at the same frequency, but with a phase
lag characterized by the ratio of tan φ(ω) = χ ′′

DD(ω)/χ ′
DD(ω).
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FIG. 3. (Color online) Left column: The imaginary part of the
double-occupancy susceptibility χ ′′

DD(ω)/N for U0/J0 = 10 and 16.
(a) shows half-filling n = 1.0 results for a 4 × 4 lattice, U0/J0 = 10.0
(dashed black curve) and (solid red curve). (b) shows results for a
filling n = 1.4 and for U0/J0 = 10.0, 6 × 6 square lattice (dotted
orange curve), U0/J0 = 10.0, 4 × 4 lattice (solid green curve), and
U0/J0 = 16.0, 4 × 4 lattice (dashed blue curve). Right column: The
real-time double-occupancy response function χDD(t) for a 4 × 4
square lattice at half filling (c) for U0/J0 = 10.0 (dashed black curve)
and 16.0 (solid red curve); and for n = 1.4 (d) with U0/J0 = 10.0
(solid green curve) and 16.0 (blue dashed curve). All results are at a
temperature T/J0 = 2/3.

This response has recently been observed directly [12]. We
can then write the time-dependent double occupancy as

D(t) = D(0) + D(ω) sin[ωt − φ(ω)], (7)

where D(ω) = U0/J0(α − 1)δJ |χDD(ω)|. We plot D(ω) and
φ(ω) in Fig. 4 for the case of U0/J0 = 10. We first note that,
at low frequency ω → 0, Eq. (7) implies the time dependence
of D(t) to be precisely π out of phase with δV (t). Therefore,
an adiabatic increase of the optical lattice amplitude leads to a
corresponding suppression of the double occupancy. At higher
ω these plots show how the time-dependent linear response
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FIG. 4. (Color online) The frequency dependence of the double-
occupancy linear response for a 4 × 4 lattice, interaction strength
U0/J0 = 10.0, and temperature T/J0 = 2/3. (a) shows half-filling
results; (b) results for n = 1.4. Solid (black) curves shows the
amplitude D(ω) while the dashed (red) curves display the phase shift
φ(ω) induced by the dynamical modulation.
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of the double occupancy probes the underlying fermion
correlations. As we expected, the half-filled case shows the
strongest response when the driving frequency ω ∼ U , and
with a phase that is shifted, by φ ≈ π/2, relative to the imposed
modulation. At 〈n〉 = 1.4, however, the predominant response
is for ω = 0, with phase shift φ ≈ 0.

In conclusion, we have investigated the dynamical proper-
ties of fermions in an optical lattice, realized by the Hubbard
model subject to a periodic optical lattice modulation. We show
that, even at the level of linear response, the dynamical double
occupancy provides a sensitive probe of fermion correlations.
Recent cold-atom experiments [12] studying the dynamical
modulation of the optical lattice find a linear-in-time contri-
bution to the double occupancy. Previous theoretical work has
found such a contribution at quadratic order in the modulation
parameter δV , with a coefficient proportional to the Fourier
transform of the kinetic-energy correlation function [4]. Thus,
we expect that our linear-response results apply at smaller
δV/V0, or after subtracting off this t-linear contribution to

focus on the oscillatory component. Future extensions of our
work will analyze the linear and quadratic-order contributions,
as well as the effects of inhomogeneity due to a trapping
potential.
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