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Spin and charge susceptibilities and the 4fn, 4fn−1, and 4fn+1 configuration weights are calculated for
compressed Ce �n=1�, Pr �n=2�, and Nd �n=3� metals at 632 K using dynamical mean-field theory combined
with the local-density approximation. At ambient and larger volumes these trivalent rare earths are pinned at
sharp 4fn configurations, their 4f moments assume atomic-limiting values, are unscreened, and the 4f charge
fluctuations are small indicating little f state density near the Fermi level. Under compression there is dramatic
screening of the moments and an associated increase in both the 4f charge fluctuations and static charge
susceptibility. These changes coincide with growing weights of the 4fn−1 configurations, which it is argued are
better measures of delocalization than the 4fn+1 weights which are compromised by an increase in the number
of 4f electrons caused by rising 6s and 6p bands. This process is continuous and prolonged as a function of
volume, with striking similarity among the three rare earths, aside from the effects moderating and shifting to
smaller volumes for the heavier members. While the present calculations have been carried out at 632 K for
reasons of computational expense, tests of the temperature sensitivities are used to indicate the kind of modest
changes expected at room temperature
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I. INTRODUCTION

The trivalent rare-earth series is an important but not well
understood test ground for the study of strong electron cor-
relation and the manner in which its effects diminish as the
4f electrons delocalize under pressure. These metals appear
initially to remain localized as they pass through a sequence
of high-symmetry close-packed phases keyed to 3d-band
occupancy1 and then on further compression, eventually
reach low-symmetry early actinidelike structures suggestive
of f-electron bonding.2–4 Transitions in the region between
these two limits may exhibit unusually large-volume
changes. While not the case for Nd,5,6 the �-� “volume col-
lapse” of 15% in Ce is well known7–10 and similar collapses
occur in Pr �9%�,11–15 Gd �5%�,16 and Dy �6%�.17 Magnetic
properties at atmospheric pressure are generally consistent
with atomic 4f Hund’s rules moments4,18 while the suscepti-
bility for the collapsed �-Ce phase7 and for early actinide
analogs19 is temperature-independent, enhanced Pauli para-
magnetic, indicating absent or screened moments. On the
other hand, high-energy neutron-scattering measurements for
Ce �Ref. 20� and x-ray emission spectroscopy for Gd �Ref.
21� continue to detect 4f moments in the collapsed phases,
possibly sensing underlying “bare” moments in spite of
screening effects. The 4f electron delocalization itself may
be examined using resonant inelastic x-ray scattering deter-
mination of the probabilities of finding fn�1 configurations in
a compressed rare earth of nominal fn character.21,22

There are at present two viable explanations for the Ce
collapse, with possible implications for the other trivalent
rare earths. One is that it is driven by a Mott transition �MT�
in the 4f electrons23,24 while the other Kondo volume col-
lapse �KVC� model points to rapid volume-dependent
changes in screening of the 4f moments by the valence
electrons.25–28 The conflict between these scenarios is exag-

gerated by the use of incompatible approximations. Polarized
local-density approximation �LDA�, LDA+U, and self-
interaction corrected LDA calculations have been used to
support the MT picture.29–35 While valuable, these are still
static mean-field treatments which yield either completely
itinerant �no 4f Hubbard structure� or completely localized
�Hubbard splitting but no Fermi-level 4f structure� solutions,
thus indicating a too abrupt picture of the collapse transi-
tions. On the other hand, the Anderson impurity model
treatments25–28 used to elucidate the KVC scenario can be
faulted for omitting direct f-f hybridization and Kondo lat-
tice effects, and one may worry whether O�1 /N� solutions36

might favor the localized limit.
The combination �LDA+DMFT� �Refs. 37 and 38� of

LDA input with truly correlated dynamical mean-field theory
�DMFT� �Refs. 39 and 40� solutions has offered a new per-
spective which has generally been supportive of the KVC
scenario for Ce.41–46 Such calculations for Ce also point to
ongoing 4f delocalization in the relevant volume range, a
critical driver of Mott transitions.42,43 To further clarify the
behavior of the compressed trivalent rare earths, the present
paper reports LDA+DMFT calculations of the 4f spin and
charge susceptibilities and the 4fn, 4fn�1 configuration
weights at 632 K for the first three members, Ce �n=1�, Pr
�n=2�, and Nd �n=3�. This work follows an earlier effort
which examined the equation of state and spectra for the
same materials.44 Here we confirm that Ce, Pr, and Nd re-
main localized at pressures up through the face-centered-
cubic �fcc, � for Ce� phases as indicated by sharp 4fn popu-
lations, unscreened moments with atomic-limiting values,
and small charge fluctuations indicating little 4f state density
overlapping the Fermi level. On subsequent compression
there is rapid and dramatic screening of the moments and
concurrent increase in charge fluctuations and the static
charge susceptibility. These changes also coincide with rapid
growth in the 4fn−1 configuration weights, which we argue
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offer a truer measure of delocalization than do the 4fn+1

weights which are complicated by the overall increase in the
number of 4f electrons due to rising 6s and 6p bands. These
trends are continuous and prolonged as a function of com-
pression and strikingly similar among the three rare earths,
suggesting a robust underlying progression which must first
be acknowledged before tackling in general the location or
absence of volume collapse transitions at various stages
along the course of this evolution.

Two caveats should be made about the present work. First
it is motivated by and intended to address volume-dependent
changes encountered in isothermal diamond-anvil cell ex-
periments which are primarily carried out at room tempera-
ture, although occasionally above. Thus, for example, differ-
ences between Hubbard and periodic Anderson models
which may be exposed at very low temperatures are beyond
the scope of the present work.47–49 Secondly, due to a �1 /T3

computational cost, we have been practically limited to a
lowest temperature of 632 K �4 mRy�. Nonetheless, tests of
the temperature sensitivities suggest that the primary change
on reducing the temperature to 300 K is to shift to somewhat
larger volumes the onset with compression of the dramatic
screening and delocalization effects documented here at 632
K.

In the remainder of this paper, the susceptibility and con-
figuration weight formalisms are first reviewed in Secs. II
and III, respectively. Computational details are given in Sec.
IV, results in Sec. V, and a summary in Sec. VI. The Appen-
dix discusses the optimal disposition of diagonal, one-body
f-f terms used here in the quantum Monte Carlo �QMC�
solution of auxiliary impurity problem.

II. SUSCEPTIBILITY

The important local 4f susceptibilities for real, multiband
systems would appear to be associated with the total spin S,
orbital angular momentum L, total angular momentum J
=L+S, and charge

�S��� = �T�Ŝ��� · Ŝ�0�� , �1�

�L��� = �T�L̂��� · L̂�0�� , �2�

�J��� = �T�Ĵ��� · Ĵ�0�� , �3�

�c��� = �T��n̂f��� − nf��n̂f�0� − nf�� �4�

for electrons in the 4f shell on a particular site and with T�

the imaginary time � ordering operator. In the last, n̂f is the
total number operator �m,�n̂m� with m=−3,−2, . . . ,3 and nf
is its generally nonintegral expectation. For cubic symmetry,

�S��� = 3�T�Ŝz���Ŝz�0�� =
3

4 �
m,�,m�,��

����T�n̂m����n̂m����0��

=
3

4
�T��n̂↑��� − n̂↓�����n̂↑�0� − n̂↓�0��� , �5�

where n̂�	�mn̂m� is the total number operator for a given

spin �	2ms= �1 summed over orbitals m	mf. Aside from
the factor of 3/4 this is the spin susceptibility of the two-band
model of Koga et al.50 or for �=0, the same factor times the
bare local moment mz

2 of one-band Hubbard and Anderson

models. Similarly �L���=3�T�L̂z���L̂z�0�� for cubic symmetry
and thus

�L��� = 3 �
m,�,m�,��

mm��T�n̂m����n̂m����0�� , �6�

which is 3/4 times the orbital susceptibility of the two-band
model of Koga et al.,50 taking the orbital angular momentum
l=1 /2 �m=−1 /2,1 /2� instead of the present l=3.

A. Spin susceptibility �J(�)

In the presence of the spin-orbit interaction, it may be
more useful to work in a relativistic basis j= l�1 /2
=5 /2,7 /2 with magnetic quantum numbers �=−j ,−j
+1, . . . , j. Again for cubic symmetry,

�J��� = 3 �
j,�,j�,��

����T�n̂j����n̂j����0�� . �7�

For DMFT calculations which include spin orbit and the
Hubbard repulsion U but omit the Hund’s rule intraatomic
exchange terms, a reasonable approximation to the self-
energy is 	 j,�,j�,���i
��� j,j���,��	 j�i
�, which approximates
the cubic environment of the auxiliary impurity problem by a
spherical one. A consistent approximation to
�T�n̂j����n̂j����0�� is

�T�n̂j����n̂j����0��

� 
Nj���/�2j + 1� if j = j�, � = ��

Djj���/�j�2j + 1�� if j = j�, � � ��

Djj����/��2j + 1��2j� + 1�� if j � j�
� ,

�8�

where

Nj��� 	 �
�

�T�n̂j����n̂j��0�� , �9�

Djj��� 	
1

2 �
���

����

�T�n̂j����n̂j���0�� ,

Dj�j���� 	
1

2�
���

�T��n̂j����n̂j����0� + n̂j������n̂j��0���

�10�

with � ranging over the 2j+1 states of j �similarly �� and j��.
Then

�J��� = �
j

�j + 1��jNj��� − Djj���� . �11�

Note that at �=0, Nj�0�=nj, and Djj��0�=djj� where the num-
ber of electrons in the 4f shell is nf =n5/2+n7/2 and the asso-
ciated double occupation is df =d5/2,5/2+d5/2,7/2+d7/2,7/2.
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The bare or instantaneous local moments corresponding
to each of Eqs. �1�–�3� are given by their �=0 values, e.g.,

Jb�Jb + 1� = �Ĵ2� = �J�� = 0� = �
j

�j + 1��jnj − djj� .

�12�

For f electrons with integer nf =n shell populations 0�n
�14, one might expect in the strongly localized, atomic limit
that

n5/2 = min�n,6� ,

d5/2,5/2 = n5/2�n5/2 − 1�/2,

n7/2 = max�0,n − 6� ,

d7/2,7/2 = n7/2�n7/2 − 1�/2,

which leads to the filled data points �only spin orbit� in Fig.
1. Inclusion of the appropriate intra-atomic exchange terms
would give the correct Hund’s rules values designated by the
open squares. For the case of Ce, such terms correspond to
an exchange interaction J of about 0.7 eV,51 as compared to
a spin-orbit splitting of about 0.4 eV.52 Unfortunately it is
still a challenge to treat the full rotationally invariant set of
Hund’s rules exchange terms in DMFT calculations. The
spin-orbit-only results are seen to give the correct qualitative

behavior with filling and the correct values of �Ĵ2� for sub-
shells with one or no holes or electrons. As will be seen in
this paper, they also appear to give the qualitatively correct
evolution from localized to itinerant behavior with compres-
sion since much of that originates from volume-dependent
changes in the double occupation which is captured cor-
rectly.

Information about screened moments comes from the
static susceptibility �J�
=0�. Given Curie-Weiss behavior,
an effective moment can be extracted from the slope of
�J�
=0� versus T−1, thus

Js�Js + 1� = T�J�
 = 0� =
1


�

0



d��J��� . �13�

At small volume �strong hybridization� and low temperature,
�J��� falls away between its maximal values at �=0 and  as
seen in Fig. 2, which leads to Js�Jb. On the other hand, at

large volume and thus weak hybridization, Ĵ approximately
commutes with the Hamiltonian so that �J����constant and
thus there is no screening �Js�Jb�. There is also no screen-
ing in the high-temperature limit since �J���→�J�0� as 0
���1 /T→0, although such moments become significantly
larger than those at low temperature for the present materials
because of high temperature increases in nf. Note that Eq.
�12� becomes Jb�Jb+1�=12.75nf�1−nf /14� for uncorrelated,
equally populated f states where �n̂j�n̂j������nf /14�2 for j�
� j���.

The present calculations have been carried out at 632 K
due to a 1 /T3 computational expense which has precluded
examination of room temperature. Nonetheless, one can
probe the relevant temperature sensitivities by raising the
temperature instead and Fig. 3�a� compares Js�Js+1� for Ce
at 948 K �6 mRy� and 632 K �4 mRy� as obtained with L
=80 time slices. Since raising the temperature decreases
screening, the 948 K result lies above the 632 K curve except
at large volume where both moments are unscreened and
equal to the atomic value. The predominant visual difference
is that the lower temperature curve appears shifted to larger
volume by �2 Å3 /atom at half the atomic value. The vol-
ume offset between where the Kondo temperature TK equals
948 versus 632 K is 0.9 Å3 /atom,25 by comparison, which
should be smaller since Js�Js+1� /Jb�Jb+1�=0.5 at TK and
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FIG. 1. Atomic moments �Ĵ2�=Ja�Ja+1� for the rare earths.
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FIG. 2. �J��� for Ce at 632 K and various volumes. The �=0

values �circles� give the bare moment squared �Ĵ2�=Jb�Jb+1� while
the � average gives the screened quantity Js�Js+1�. There is little
screening at large volume while the two moments are quite different
at small volume. The � and � sides of the collapse are at volumes of
27.8 and 33.1 Å3 /atom, respectively, correspondingly roughly to
the middle two curves. The equilibrium volume is 34.4 Å3 /atom.
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Jb�Jb+1� increases for V�35 Å3 /atom, as will be seen later.
Since the V�TK� offset from 632 to 300 K is
�1.3 Å3 /atom,25 we anticipate the 300 K Js�Js+1� will be
shifted to larger volume by �3 Å3 /atom compared to our
632 K results. We find differences for Jb�Jb+1� �not shown�
to be smaller, with the analogous 948–632 K offset
�1 Å3 /atom in the vicinity of the transition and much
smaller away from this regime.

B. Charge susceptibility �c(�)

The exact expression for the local charge susceptibility
Eq. �4� may be written using the definitions Eqs. �9� and �10�
as

�c��� = �
j

Nj��� + 2 �
j�j�

Djj���� − nf
2. �14�

Following the language of Ref. 53 the local charge “fluctua-
tions” are

��n̂f
2� 	 ��n̂f − nf�2� = �c�� = 0� = 2df − nf�nf − 1� �15�

while the local static charge “susceptibility” is

�c
�1� 	 �c�
 = 0� = �

0



d��c��� . �16�

Note that T�c
�1�� ��n̂f

2� since T�c
�1� is the � average of �c���

which drops from its �=0,  maxima of ��n̂f
2� to smaller

values in the mid � range, similar to Fig. 2 for the spin case.
This upper bound for T�c

�1� is of interest since it helps to
identify a large �c

�1�, which signals the existence of prominent
low-energy charge excitations as occurs, e.g., in the Yb va-
lence transition.53

Clearly ��n̂f
2� and T�c

�1� are the charge susceptibility ana-
logs of Jb�Jb+1� and Js�Js+1�, respectively, for the spin
case. Similarly, ��n̂f

2� and T�c
�1� must approach one another in

the large-volume localized limit as n̂f becomes an eigenop-

erator of the system with vanishing hybridization. However,
in contrast to the spin case, ��n̂f

2�→0 �and thus also �c
�1�

→0� in this limit for the trivalent rare earths since nf →n and
df →n�n−1� /2, where n is the nominal integer 4f occupa-
tion, e.g., n=1 for Ce.

The charge fluctuations ��n̂f
2� show negligible change for

V�22 Å3 /atom on raising the temperature from 632 to 948
K for Ce in L=80 calculations, although are 10% larger by
14 Å3 /atom. The charge susceptibility �c

�1� is �60% larger
at the higher temperature, except at volumes near the transi-
tion, where the change is smaller.

III. CONFIGURATION WEIGHTS

The probabilities or configuration weights wk of finding
integer k f-shell electrons on a given site are useful in dis-
cussing delocalization and are related to �c��=0�= ��n̂f

2� in-
sofar as they may also be expressed as linear combinations of
nf and df near the localized limit. The wk are given by

wk = Zk/�
k�

Zk�,

Zk = �
sk

�kske−�Ĥ−�N̂�ksk� . �17�

Here Ĥ is the Hamiltonian; N̂, the total number operator for
all types of electrons; �, the chemical potential; and �ksk��, a
complete set of eigenstates of n̂f, n̂fksk�=kksk�, where all
other quantum numbers besides k are lumped into sk. Evalu-
ating the thermal expectations �¯ � of 1, n̂f, and n̂f�n̂f
−1� /2 using the same complete basis yields

1 = �
k

wk,

nf = �
k

kwk,

df = �
k

k�k − 1�wk/2, �18�

which shows the statistical nature of nf and df.
At sufficiently large volumes and low temperatures where

only wk for k=n, n�1 are non-negligible, these three wk
may be expressed via Eq. �18� in terms of nf and df

wn−1 = df − df
min�nf� + �nf − n − nf + n�/2,

wn = 1 – 2�df − df
min�nf�� − nf − n ,

wn+1 = df − df
min�nf� + �nf − n + nf − n�/2. �19�

Here it is convenient to use a function df
min�nf� which is the

minimum possible double occupation for an ensemble of
sites whose average f-shell population is nf. This is a piece-
wise linear function which assumes the values k�k−1� /2 at
integer k values of nf and may be expressed,

df
min�nf� = �n�n − 1� + �2n − 1��nf − n� + nf − n�/2 �20�

for the range n−1�nf �n+1. Note that Eq. �19� gives the
same results for Ce �n=1� as used before,43 namely, w0=1
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FIG. 3. Results for �a� the screened moment Js�Js+1�=T�J�

=0� and �b� the configuration weight w0 for Ce at T=948 and 632 K
as obtained with L=80 time slices.
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−nf +df, w1=nf −2df, and w2=df. Even though spin orbit is
now included while not in Ref. 43, we may still calculate the
weights wk irrespective of how the k electrons are distributed
among the j=5 /2 and 7/2 states, and this simpler diagnostic
appears more than adequate for present discussion of delo-
calization.

Equation �19� appears intuitively to separate the effects of
delocalization from those arising more simply out of changes
in nf due to a possible f-shell electron reservoir. Should nf
increase due to such a reservoir while the system is still in
the strongly localized limit, where presumably df =df

min�nf�,
then wn−1=0, wn=1−nf +n, and wn+1=nf −n. This suggests
wn−1 is untainted by such reservoir effects for nf �n or more
generally from Eq. �19�

df − df
min�nf� = �wn+1 n − 1 � nf � n

wn−1 n � nf � n + 1
� , �21�

which we argue in Sec. V is a useful diagnostic for delocal-
ization. By contrast the local charge fluctuations

��n̂f
2� = wn−1 + wn+1 − �nf − n�2 �22�

appear to mix delocalization and reservoir effects and so are
therefore less useful.

Figure 3�b� shows a test of the temperature sensitivities
for the Ce configuration weight w0 as calculated at 948 and
632 K with L=80 time slices. The offset for volumes V
�22 Å3 /atom is less than 1 Å3 /atom, as generally found
with other equal-time quantities. At smaller volumes both w0
and w2 increase with temperature, suggesting that higher
temperature enhances delocalization in this volume range.
This effect may be exaggerated in Fig. 3�b�, however, as the
632 K L=80 result will be seen to be not yet fully converged
with L for V�22 Å3 /atom.

All f configuration weights w0 ,w1 , . . . ,w14, may be ob-
tained by using the higher multiple occupancies beyond df in
Eq. �18�, which are trivially available in certain limits. In the
extreme itinerant limit where hybridization has also domi-
nated spin orbit, one might take �n̂�1

n̂�2
¯ n̂�k

���nf /14�k,
where �= j� and none of the �i are equal. In this case it
appears that the wn�2 are reduced a factor of 2 or more over
their adjacent wn�1 and more distant wn�k, by up to an order
of magnitude over their adjacent weights closer to n. An
overly localized limit, on the other hand, is provided by
DMFT calculations using the atomiclike Hubbard I self-
energy. Such results for Ce at 632 K give w1=1 �or w1+w2
=1 for V�17.6 Å3 /atom� with all other weights exponen-
tially small. The validity of truncations such as Eq. �19� is
justified by being close to a limit where the peripheral
weights vanish, wn�1→0 as we have at large volume, al-
though Eq. �19� will eventually break down at sufficiently
small volume.

IV. COMPUTATIONAL DETAILS

The LDA+DMFT calculations reported in this paper have
generally been carried out as in previous work on the com-
pressed rare earths.42–44 All calculations were performed for
an assumed fcc structure and at a temperature of 632 K �4

mRy�, with selected tests also at 948 K �6 mRy�. The spin-
orbit interaction was included in addition to the scalar part of
the 4f Coulomb interaction, i.e., the screened Slater integral
F0	Uf, however, not the higher Slater integrals �Fk ,k
=2,4 ,6� which describe the Hund’s rules intra-atomic ex-
change. While this gives the wrong values for some 4f mo-
ments in the localized limit, the volume dependence accom-
panying delocalization of these moments may still be
reasonably captured as this appears to follow from fairly
general behavior in the evolution of such quantities as the
double occupancy. As in the earlier papers, the LDA contri-
bution to the present work was provided by linear muffin-tin
orbital calculations in the atomic-sphere approximation as
described elsewhere.4 The auxiliary Anderson impurity prob-
lem was solved using the Hirsch-Fye QMC algorithm,54,55

with results obtained for L=80 and 112 time slices extrapo-
lated to L=� assuming a 1 /L2 dependence. This was unnec-
essary for �J��� where the two L values gave essential agree-
ment. The disposition of Ufn̂f terms between the kinetic and
interaction parts of the auxiliary impurity Hamiltonian in the
Hirsch-Fye QMC, and the impact of this choice on Trotter
corrections, is discussed in the Appendix.

The susceptibilities reported in this work were calculated
within the QMC using Wick’s theorem, e.g., Eq. �154� of
Ref. 40. They were obtained from runs of �350 000 and
�100 000 sweeps for L=80 and 112, respectively, using pre-
viously converged self-energies to get the input bath Green’s
functions. Error estimates were obtained from Eq. �5.3� of
Ref. 56 in conjunction with an examination of the bin depen-
dence of the data stored as a function of sweep.

V. RESULTS

We now present results of the susceptibility and configu-
ration weight calculations giving first comparisons between
Ce, Pr, and Nd as a function of volume, then turning to
insights provided by these results in regard to the experimen-
tally observed transitions. Definitions of the quantities calcu-
lated have been presented in Secs. II and III. The volume
range studied is from 10 to 50 Å3 /atom which may be com-
pared to 300 K experimental volumes of 14.8, 14.1, and
14.2 Å3 /atom at a pressure of 100 GPa; and 34.4, 34.5, and
34.2 Å3 /atom at 0 GPa; for Ce,10,57 Pr,13,57 and Nd,6,57 re-
spectively.

Figure 4 shows results for J�J+1� corresponding to the
bare Jb�Jb+1�=�J��=0� and screened Js�Js+1�=T�J�
=0�
moments in Ce, Pr, and Nd, divided by the atomic-limiting
values Ja�Ja+1�=8.75, 14, and 15.75, respectively, from Fig.
1. These are the “only spin-orbit” values of that figure, which
give the correct J�J+1� for Ce, however, are 30% and 36%
smaller than the true Hund’s rules values for Pr and Nd,
respectively. It is particularly evident for the screened results
that the changes are most abrupt and occur at the largest
volumes for Ce, and then successively moderate and shift to
smaller volume for Pr and then Nd, a pattern which will be
seen throughout the present results. The bare moments in-
crease with compression simply because the nf values
increase.58 Since a completely random population of the 4f

states would also have �Ĵz
2� and therefore �Ĵ2� increase with
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nf, this does not imply the kind of coherent physical moment
at the smallest volumes that one certainly has in the large-
volume localized limit.

Figure 5 shows the local charge fluctuations ��n̂f
2�=�c��

=0� and T times the local static charge susceptibility T�c
�1�

=T�c�
=0�, which are the charge analogs of the bare and

screened J�J+1� of Fig. 4. Both quantities show rapid in-
creases with compression in the same region as the changes
seen in Fig. 4. Like the spin case these two quantities must
also approach one another in the large-volume limit at low
temperatures, although these limiting values are not finite but
0 for the charge case. This follows from nf →n and df
→n�n−1� /2 in this limit, where n=1 �Ce�, 2 �Pr�, and 3
�Nd�, and given that ��n̂f

2�=2df −nf�nf −1� from Eq. �15� and
��n̂f

2��T�c
�1� as discussed in Sec. II. The significance of the

vanishing 4f charge fluctuations in the large-volume, low-
temperature limit is disappearance of the Kondo resonance
thus leaving a gapped 4f spectra overlapping the Fermi level.

Also interesting in Fig. 5 is how much smaller the local
static charge susceptibility �c

�1� is compared to its limiting
maximum ��n̂f

2� /T, e.g., T�c
�1� / ��n̂f

2�=0.017, 0.031, and
0.033 at V=15, 28, and 41 Å3 /atom, respectively, for Ce,
with similarly small values for Pr and Nd. In contrast this
ratio is 0.25, 0.58, and 0.09 at the same volumes for the
second to the last rare earth, Yb.53 As pointed out in Ref. 53
the small ratios for Ce, Pr, and Nd constitute normal behav-
ior where the large onsite Coulomb interaction suppresses
low-energy charge excitations leading to a small local static
susceptibility �c

�1�. The oddball is Yb which has a valence
transition from divalent �f14� at large volume to trivalent
�f13� at small volume. The large Yb ratio 0.58 at 28 Å3 /atom
is in the midst of the valence transition where the near de-
generacy of f13 and f14 configurations leads to prominent
low-energy charge excitations and a consequent large local
static charge susceptibility. Finally, all four rare earths ex-
hibit decreasing ratios T�c

�1� / ��n̂f
2� for compression ap-

proaching the smallest volumes considered, which reflects
screening of the charge fluctuations similar to screening of
the moments as has been noted.53

The probability or configuration weight wk of finding in-
teger k f electrons on a given site is of some interest in
understanding the manner in which the rare earths evolve
from localized to itinerant character under compression. As
all sites are pinned at specific integer occupations n in the
large volume, localized limit at low temperatures, then for
some range of smaller volumes away from this limit only wn
and wn�1 are non-negligible and may be determined from the
average number of 4f electrons nf and their associated
double occupation df according to Eq. �19�. Figure 6 shows
wn−1 and wn+1 �the latter +0.1 for visual clarity� calculated in
this manner for Ce, Pr, and Nd �n=1, 2, and 3, respectively�.
Equation �19� assumes wn=1−wn−1−wn+1 so that the limit
wn=1 and wk�n=0 is evidently being approached at large
volumes.

As volume is reduced away from the localized limit, two
things happen. First, for purely one-electron reasons, the 6s
and 6p bands rise relative to the 4f levels, causing an in-
crease in nf �Ref. 58� and thus a shift in weight from wn to
wn+1. Second, as hybridization grows, the 4f electrons begin
to hop to f states on neighboring sites or into and out of
valence levels, causing both wn�1 to grow at the expense of
wn. Only wn−1 is a true measure of the second, delocalization
effect uncomplicated by the consequences of increasing nf.

59

Or more generally, this diagnostic for delocalization is given
by Eq. �21� which is wn−1 for nf �n and wn+1 for nf �n.

Figure 6 shows clear evidence of both the rising 6s and 6p
bands and delocalization. Note first the onset of delocaliza-
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FIG. 4. �Color online� Bare Jb�Jb+1�=�J��=0� and screened
Js�Js+1�=T�J�
=0� moments for Ce, Pr, and Nd at 632 K, relative
to the atomic-limiting values Ja�Ja+1� of Fig. 1 for the only spin-
orbit case. Smoothed curves are drawn through the points giving
L=80 �circles� and 112 �triangles� results.
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FIG. 5. �Color online� Local charge fluctuations ��n̂f
2�=�c��

=0� and the static charge susceptibility �c
�1�=�c�
=0�, the latter

multiplied by T, for Ce, Pr, and Nd at 632 K. Both show rapid
increases under compression coincident with the changes observed
in Fig. 4. T�c

�1� is everywhere more than an order of magnitude
smaller than ��n̂f

2� reflecting the absence of low-energy charge fluc-
tuations and the ratio T�c

�1� / ��n̂f
2� becomes even smaller at small

volumes reflecting screening of the charge fluctuations. All points
are 1 /L2 extrapolations to L=�, with smoothed curves drawn
through them.
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tion as wn−1 increases with compression and how much more
abrupt this behavior is compared to the smoother wn+1 curves
which reflect also the effects of increasing nf. These onsets
occur near the equilibrium volume of Ce �V0
=34.37 Å3 /atom� but at somewhat smaller volumes than the
corresponding V0 of Pr �34.54� and Nd �34.17�. At the largest
volumes �V�42 Å3 /atom�, wn+1 is an order of magnitude
larger than wn−1�0.003 for all three rare earths, suggesting
the behavior there is predominantly the increase in nf due to
the rising 6s and 6p bands. Since the Fermi level in this
regime lies in between and does not overlap either of the two
Hubbard bands, this suggests that the large-volume shift in
weight wn→wn+1 is not mixed valence in the sense of the
Fermi level moving into the upper Hubbard band but rather
that the rising 6s and 6p bands transfer electrons into the 4f
quasiparticle peak, which is nonetheless still quite small in
this region.60

There have been experimental determinations of the Ce
configuration weights w0,1,2 using Anderson impurity model
analyses of photoemission27 and resonant inelastic x-ray
scattering22 data, and a number of LDA+DMFT
calculations41–44,46 of these quantities or related nf =1−w0
+w2. All are consistent with w1→1 and wk�1→0 in the
large-volume limit. There is an asymmetry between f1-f0 and
f1-f2 mixing in solutions of the Anderson impurity model
which tends to lead to the predominant transfer w1→w0 with
growing hybridization, and thus a decrease in nf across the �
to � collapse and w0�w2 in the � phase.28 This behavior is
seen in the analyses of both experimental papers.22,27 The
present and our earlier work42–44 concur with the predomi-
nant transfer w1→w0 across the collapse, however, has ev-

erywhere a larger w2 than these analyses, quite possibly re-
flecting the impact on nf of the rising 6s and 6p bands which
may not be well treated in the impurity model simulations.
Thus we see a nonmonotonic dip in nf across the collapse but
generally nf �1 and w0�w2.58

We turn now to possible insights provided by the present
results into the experimentally observed 300 K volume col-
lapse transitions �shaded regions� and phase structure �de-
marcated by vertical solid lines� as shown in Fig. 7 for
Ce,8–10 Pr,12–15 and Nd.5,6 At large volume only the fcc phase
is labeled, which is the end of the localized, trivalent rare-
earth series,1 with all three rare earths found in the preced-
ing, double-hexagonal-close-packed phase at ambient condi-
tions. The two most dramatic theoretical diagnostics are
shown for comparison, Js�Js+1� and wn−1, and while they
were calculated everywhere assuming an fcc structure, it is
hoped nonetheless that their volume dependence is suffi-
ciently insensitive to structure so as to still provide useful
insights. This is not an issue for Ce where both � and �
phases bounding the volume collapse are fcc. While the
theory results are for 632 K, temperature sensitivities exam-
ined in Secs. II and III for Ce suggest the predominant dif-
ference on reducing the temperature to 300 K would be a
�3 Å3 /atom shift of the Js�Js+1� curves to larger volume
and perhaps half that shift for the wn−1 curves.

LDA+DMFT calculations41–46 have consistently sup-
ported the KVC scenario25–28 for Ce. They show, e.g., a rapid
build up of the Kondo resonance for volume reduced across
the �-� two-phase region, which is taken as a signature of
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FIG. 6. �Color online� Configuration weights wn−1 and wn+1 �lat-
ter +0.1� for Ce �n=1�, Pr �n=2�, and Nd �n=3�. The former is a
measure of delocalization wn−1=df −df

min�nf� since n�nf �n+1 ev-
erywhere and shows a dramatic rise with compression for Ce, struc-
ture which successively softens and shifts to smaller volumes in
moving to Pr and then Nd. The weights wn+1 are complicated by the
general increase in nf with compression due to the rising 6s and 6p
bands. All points are 1 /L2 extrapolations to L=�, with smoothed
curves drawn through them.
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FIG. 7. �Color online� Screened moments Js�Js+1� �solid
curves� and configuration weights wn−1 �dashed curves� for �a� Ce,
�b� Pr, and �c� Nd. All calculations are for an assumed fcc structure
at 632 K, however, are compared to the observed 300 K phases
demarcated by the vertical lines, with shading for Ce and Pr indi-
cating significant two-phase regions. Theoretical temperature sensi-
tivities are discussed in the text. The moments appear divided by
their atomic-limiting values Ja�Ja+1� of Fig. 1 for the only spin-
orbit case. The smoothed curves are drawn through the combined
L=80 �circles� and 112 �triangles� points for the moments, and ex-
trapolated to L→� for the wn−1. The vertical dashed lines show the
volumes where the Kondo temperature is 632 K.
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the onset of screening. The present results now directly re-
port the screened moment and indeed one sees a large reduc-
tion in Js�Js+1� from the � to the � side of the collapse.
Moreover, if the Kondo temperature TK is defined by the
condition T�J�
=0� /�J��=0�=0.5, then TK=632 K at the
volume V=29.0 Å3 /atom �vertical dashed line� for the iso-
thermal results in Fig. 7�a�. This value is consistent with the
combined experimental results of Refs. 22 and 27, except for
the middle 10 kbar point of the former which appears out of
place given the roughly exponential behavior expected for
TK�V�.25

The competing MT scenario for the Ce volume collapse
relies on 4f electron delocalization as the underlying driving
mechanism.23,24 If Eq. �21� is accepted as one suitable diag-
nostic, then w0 in Fig. 7�a� suggests that the collapse also
coincides with delocalization, a point that has been made
previously.42,43 To be careful, note that Eq. �19� for the wk

does break down when configurations fk for k−n�2 be-
come important as the itinerant limit is approached, as dis-
cussed in Sec. III. It would seem from the present and earlier
LDA+DMFT calculations that the following are all different
facets of the same continuous and extended evolution with
compression of a nominally fn trivalent rare earth: �1� trans-
fer of 4f spectral weight from Hubbard side bands to a
Fermi-level structure, �2� screening of the 4f moments, �3�
growth of 4f charge fluctuations, and �4� dispersal of con-
figuration weight away from wn=1 to neighboring and then
more distant configurations. Some of these facets look more
Kondo like and some seem more consistent with intuitive
ideas of delocalization.

There is striking similarity between the theoretical diag-
nostics for Ce and those for Pr and Nd in Fig. 7, although the
screening and delocalization effects shift to smaller volume
and become more gradual for Pr, and then more so for Nd.
The stability fields of the distorted fcc �dfcc� structures in
both Pr and Nd appear analogous to the �-� two-phase re-
gion in Ce, according to progression of the two theoretical
diagnostics. Only on further compression is there a volume
collapse in Pr from dfcc to �-U while Nd passes through two
additional phases before reaching the same �-U structure,
absent any large-volume changes. It is conceivable that this
progression in collapse size and location follows simply
from the shift to smaller volumes and moderation in the cor-
relation contributions which must then compete with the ever
bigger underlying benign part of the equation of state. While
there are suggestions of a Van der Waals loop in the LDA
+DMFT free energy corresponding to the isostructural fcc
Ce collapse,42–44,46 one must worry about the need to include
the proper Hund’s rules exchange for multi-f electron Pr and
Nd, as well as performing the calculations for all of the ob-
served structures, e.g., �-U. Moreover, the Ce collapse has a
critical temperature of only 480 K �Ref. 61� while for Pr, the
dfcc phase is absent above about 700 K with yet a new Pr-VI
phase intermediate between the �-U and fcc phases.14 These
temperature sensitivities are also a reminder of the need to
include lattice vibrational contributions, which may them-
selves further modify the nature of the collapse
transitions.61,62

VI. SUMMARY

We have reported LDA+DMFT calculations as a function
of volume at 632 K, for the 4f spin and charge susceptibili-
ties, and the probabilities of finding 4fn�1 configurations in
the nominally 4fn trivalent rare earths Ce �n=1�, Pr �n=2�,
and Nd �n=3�. We find these metals to remain localized at
pressures up through the fcc ��-Ce� phases, the last structure
of the initial close-packed series,1 as indicated by sharp 4fn

populations, unscreened moments with atomic-limiting val-
ues, and small charge fluctuations indicating little 4f state
density overlapping the Fermi level. On subsequent com-
pression there is rapid and dramatic screening of the mo-
ments and concurrent increase in charge fluctuations and the
static charge susceptibility. These changes also coincide with
rapid growth in the 4fn−1 configuration weights, which we
argue offer a truer measure of delocalization than do the
4fn+1 weights which are complicated by the overall increase
in the number of 4f electrons due to the rising 6s and 6p
bands. Combined with earlier LDA+DMFT results, this
work suggests a continuous and extended evolution with
compression of a nominally 4fn trivalent rare earth in which
there is �1� transfer of 4f spectral weight from Hubbard side
bands to the vicinity of the Fermi level, �2� screening of the
4f moments, �3� growth of 4f charge fluctuations, and �4�
dispersal of configuration weight away from 4fn to adjacent
and then more distant configurations 4fk. The static charge
susceptibility �c

�1� mirrors the volume dependence of the
charge fluctuations ��n̂f

2� and further indicates screening of
these fluctuations at small volume, and suppression of low-
energy charge fluctuations by the Coulomb interaction at all
volumes.53

This work suggests that a proper understanding of the
volume collapse transitions in the compressed trivalent rare
earths will require their analysis in the context of diagnostics
for the underlying and robust evolution associated with
4f-electron delocalization. Much effort remains here, includ-
ing a clearer understanding of the approach to the itinerant
limit in terms of all of the configuration weights as well as
the vanishing Hubbard spectral features, and an examination
of the relation between electron delocalization and screening
of the moments. As to the thermodynamics, LDA+DMFT
calculations do hint at a Van der Waals loop in the Ce free
energy at about the right place,42–44,46 however, the full story
for Pr and Nd may await inclusion of the Hund’s rules ex-
change for these multi-f electron cases and assumption of the
correct structures for all phases �e.g., �-U�. The Ce case also
raises the prospect of the need for lattice vibrational contri-
butions in all cases.61,62
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APPENDIX: TROTTER CORRECTIONS AND THE BATH
GREEN’S FUNCTION

One issue related to application of Hirsch-Fye54 QMC to
the rare-earth series deserves attention. It illustrates remark
�iii� on page 910 of Ref. 38 for the present case, where we
suggest a related but slightly different choice for the modi-
fied impurity problem. To prepare for the Hubbard-
Stratonovich transformation, one rewrites the interaction part

Î of the auxiliary impurity Hamiltonian

Uf �
����

n̂�n̂�� = Uf �
����

�n̂�n̂�� −
1

2
�n̂� + n̂���� +

13

2
Ufn̂f ,

�A1�

where � labels the 14f states. A strict generalization of the
Hirsch-Fye treatment would be to remove the Ufn̂f term from
the right side of in Eq. �A1� and add it to the one-body or

kinetic-energy part K̂ of the Hamiltonian, with the conse-
quent changes in unperturbed or bath Green’s function G���
and also the Trotter breakup. However, for Uf =6 eV and
T=600 K, this would lead to an f bath Green’s function,
absent hybridization and spin orbit for simplicity, of

G f��� = −
1

14�
�

Tr��̂f����f�
†�0��/Tr��̂� �

− e−���f+6.5Uf−��

e−��f+6.5Uf−�� + 1

� − 10−300�/. �A2�

Here �̂=exp�−�K̂−�N̂��, � is the chemical potential, N̂ the
total electron number operator, 0���, and we take a Ce-
like site energy � f −��−Uf /2. Such a function may get into
a region of underflow errors at large � in numerical compu-
tation. Note this problem arises here in the seven-band case
only because the Ufn̂f term in question is 13 times larger
than in the familiar one-band case. For this reason we left the
Ufn̂f term alone in previous work on the early rare
earths,42–44 and took the kinetic and interaction parts of the
auxiliary impurity Hamiltonian to be

K̂ = � fn̂f + �
�,��

c�
†�t���c��, �A3�

Î = Uf �
����

�n̂�n̂�� −
1

2
�n̂� + n̂���� +

13

2
Ufn̂f , �A4�

where � ranges over both f and the additional bath degrees
of freedom, and �t covers the rest of the one-body terms.

Keeping the Ufn̂f term in Î can be handled with a minor
modification of the Hirsch-Fye technique.

Since � f −� itself varies from about −0.5Uf for Ce to
about −6.5Uf for Lu, the choice Eq. �A3� then leads to simi-
lar problems for the bath Green’s function of the late rare

earths. A more consistent treatment for the series as a whole
would be to use one of the Hubbard bands as the effective f
site energy in the bath Green’s function, and we use the
approximate position of the lower Hubbard band, �LH=� f
+ �n−1�Uf, with the integer n being the nominal f occupa-
tion. Thus we take

K̂ = �� f + �n − 1�Uf�n̂f + �
�,��

c�
†�t���c��, �A5�

Î = Uf �
����

�n̂�n̂�� −
1

2
�n̂� + n̂���� + �15

2
− n�Ufn̂f ,

�A6�

which was successfully used in Hirsch-Fye calculations for
the second to last rare earth, Yb �n=13� �Ref. 53� while for
Ce �n=1�, Eqs. �A5� and �A6� are identical to Eqs. �A3� and
�A4�.

We note here that even for the light rare earths such as Pr
�n=2� and Nd �n=3� that Eqs. �A5� and �A6� serve to accel-
erate convergence of the susceptibilities with increasing L
relative to Eqs. �A3� and �A4�. This is seen for Nd in Fig. 8,
where the instantaneous spin �J��=0�=Jb�Jb+1� and charge
�c��=0�= ��n̂f

2� susceptibilities are shown as functions of
volume. Results using � f �Eqs. �A3� and �A4�, circles, up
triangles� and �LH �Eqs. �A5� and �A6�, squares, down tri-
angles� as effective f site energies are given for L=80 and
112 time slices. The former points are quite different indicat-
ing significant Trotter corrections while the latter are essen-
tially on top of one another except for the charge case at the
smallest volumes. It is reassuring that L−2 extrapolations to
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2� for Nd as a function of volume. Results for
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angles� and �LH �squares, down triangles� effective f site energies in
the QMC. The lines show L−2 extrapolation to L=�. It is evident
that the Trotter corrections are considerably smaller using the �LH

choice Eqs. �A5� and �A6�. The horizontal dashed line in �a� is the
atomic-limiting value.
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L=� �lines� for the � f and �LH cases are fairly close at
smaller volumes. On the other hand, extrapolation of the � f
results yields an unphysical negative �c��=0� at large vol-
umes �not shown� indicating non-L−2 behavior and the need
for larger L. By contrast the �LH results are already con-

verged by L=80 for both spin and charge cases at large vol-
ume. While we believe both approaches will give the same
results for Ce, Pr, and Nd in the limit L→�, it is clear that
Eqs. �A5� and �A6� converge faster with L, and all results in
the present paper have been obtained in this manner.

1 J. C. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 �1977�.
2 U. Benedict, J. Alloys Compd. 193, 88 �1993�.
3 W. B. Holzapfel, J. Alloys Compd. 223, 170 �1995�.
4 A. K. McMahan, C. Huscroft, R. T. Scalettar, and E. L. Pollock,

J. Comput.-Aided Mater. Des. 5, 131 �1998�.
5 J. Akella, S. T. Weir, Y. K. Vohra, H. Prokop, S. A. Catledge, and

G. N. Chesntnut, J. Phys.: Condens. Matter 11, 6515 �1999�.
6 G. N. Chesnut and Y. K. Vohra, Phys. Rev. B 61, R3768 �2000�.
7 D. G. Koskimaki and K. A. Gschneidner, Jr., in Handbook on the

Physics and Chemistry of Rare Earths, edited by K. A.
Gschneidner, Jr. and L. R. Eyring �North-Holland, Amsterdam,
1978�, p. 337.

8 J. S. Olsen, L. Gerward, U. Benedict, and J. P. Itié, Physica B &
C 133, 129 �1985�.

9 M. I. McMahon and R. J. Nelmes, Phys. Rev. Lett. 78, 3884
�1997�.

10 Y. K. Vohra, S. L. Beaver, J. Akella, C. A. Ruddle, and S. T.
Weir, J. Appl. Phys. 85, 2451 �1999�.

11 H. K. Mao, R. M. Hazen, P. M. Bell, and J. Wittig, J. Appl. Phys.
52, 4572 �1981�; G. S. Smith and J. Akella, ibid. 53, 9212
�1982�; W. A. Grosshans and W. B. Holzapfel, J. Phys. �Paris�
45, C8 �1984�.

12 Y. C. Zhao, F. Porsch, and W. B. Holzapfel, Phys. Rev. B 52,
134 �1995�.

13 G. N. Chesnut and Y. K. Vohra, Phys. Rev. B 62, 2965 �2000�.
14 B. J. Baer, H. Cynn, V. Iota, C.-S. Yoo, and G. Shen, Phys. Rev.

B 67, 134115 �2003�.
15 N. C. Cunningham, N. Velisavljevic, and Y. K. Vohra, Phys. Rev.

B 71, 012108 �2005�.
16 H. Hua, Y. K. Vohra, J. Akella, S. T. Weir, R. Ahuja, and B.

Johansson, Rev. High Pressure Sci. Technol. 7, 233 �1998�.
17 R. Patterson, C. K. Saw, and J. Akella, J. Appl. Phys. 95, 5443

�2004�.
18 K. A. McEwen, Handbook on the Physics and Chemistry of Rare

Earths �Ref. 7�, Vol. 1, p. 411, see Table 6.1.
19 J. W. Ward, P. D. Kleinschmidt, and D. E. Peterson, in Handbook

on the Physics and Chemistry of the Actinides, edited by A. J.
Freeman and C. Keller �North-Holland, Amsterdam, 1986�, Vol.
4, p. 309.

20 A. P. Murani, S. J. Levett, and J. W. Taylor, Phys. Rev. Lett. 95,
256403 �2005�.

21 B. R. Maddox, A. Lazicki, C. S. Yoo, V. Iota, M. Chen, A. K.
McMahan, M. Y. Hu, P. Chow, R. T. Scalettar, and W. E. Pickett,
Phys. Rev. Lett. 96, 215701 �2006�.

22 J.-P. Rueff, J.-P. Itié, M. Taguchi, C. F. Hague, J.-M. Mariot, R.
Delaunay, J.-P. Kappler, and N. Jaouen, Phys. Rev. Lett. 96,
237403 �2006�.

23 B. Johansson, Philos. Mag. 30, 469 �1974�.
24 B. Johansson, Phys. Rev. B 11, 2740 �1975�.
25 J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106 �1982�.

26 M. Lavagna, C. Lacroix, and M. Cyrot, Phys. Lett. 90A, 210
�1982�.

27 L. Z. Liu, J. W. Allen, O. Gunnarsson, N. E. Christensen, and O.
K. Andersen, Phys. Rev. B 45, 8934 �1992�.

28 J. W. Allen and L. Z. Liu, Phys. Rev. B 46, 5047 �1992�.
29 O. Eriksson, M. S. S. Brooks, and B. Johansson, Phys. Rev. B

41, 7311 �1990�.
30 I. S. Sandalov, O. Hjortstam, B. Johansson, and O. Eriksson,

Phys. Rev. B 51, 13987 �1995�.
31 A. B. Shick, W. E. Pickett, and A. I. Liechtenstein, J. Electron

Spectrosc. Relat. Phenom. 114–116, 753 �2001�.
32 P. Söderlind, Phys. Rev. B 65, 115105 �2002�.
33 Z. Szotek, W. M. Temmerman, and H. Winter, Phys. Rev. Lett.

72, 1244 �1994�.
34 A. Svane, Phys. Rev. Lett. 72, 1248 �1994�; Phys. Rev. B 53,

4275 �1996�.
35 A. Svane, J. Trygg, B. Johansson, and O. Eriksson, Phys. Rev. B

56, 7143 �1997�.
36 O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 50, 604

�1983�; Phys. Rev. B 28, 4315 �1983�; 31, 4815 �1985�.
37 K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blumer, A. K.

McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, and D.
Vollhardt, Phys. Status Solidi B 243, 2599 �2006�.

38 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-
collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.

39 D. Vollhardt, in Correlated Electron Systems, edited by V. J.
Emery �World Scientific, Singapore, 1993�, Vol. 57; Th. Prus-
chke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 �1995�.

40 A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev.
Mod. Phys. 68, 13 �1996�.

41 M. B. Zölfl, I. A. Nekrasov, Th. Pruschke, V. I. Anisimov, and J.
Keller, Phys. Rev. Lett. 87, 276403 �2001�.

42 K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404 �2001�.

43 A. K. McMahan, K. Held, and R. T. Scalettar, Phys. Rev. B 67,
075108 �2003�.

44 A. K. McMahan, Phys. Rev. B 72, 115125 �2005�.
45 K. Haule, V. Oudovenko, S. Y. Savrasov, and G. Kotliar, Phys.

Rev. Lett. 94, 036401 �2005�.
46 B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan,

Phys. Rev. Lett. 96, 066402 �2006�.
47 K. Held and R. Bulla, Eur. Phys. J. B 17, 7 �2000�.
48 P. van Dongen, K. Majumdar, C. Huscroft, and F.-C. Zhang,

Phys. Rev. B 64, 195123 �2001�.
49 L. de’ Medici, A. Georges, G. Kotliar, and S. Biermann, Phys.

Rev. Lett. 95, 066402 �2005�.
50 A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev. B

72, 045128 �2005�.
51 B. Amadon, F. Jollet, and M. Torrent, Phys. Rev. B 77, 155104

�2008�.

MCMAHAN, SCALETTAR, AND JARRELL PHYSICAL REVIEW B 80, 235105 �2009�

235105-10



52 F. Herman and S. Skillman, Atomic Structure Calculations
�Prentice-Hall, Englewood Cliffs, NJ, 1963�.

53 E. R. Ylvisaker, J. Kuneš, A. K. McMahan, and W. E. Pickett,
Phys. Rev. Lett. 102, 246401 �2009�.

54 J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 �1986�.
55 See Ref. 40 and M. Jarrell, in Numerical Methods for Lattice

Quantum Many-Body Problems, edited by D. Scalapino
�Addison-Wesley, Reading, MA, 1997� for one-band DMFT
�QMC�.

56 M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 �1996�.
57 D. A. Young, Phase Diagrams of the Elements �University of

California, Berkeley, 1991�.
58 Fig. 2 in Ref. 44 shows nf �n for Ce �n=1�, Pr �2�, and Nd �3�,

with nf monotonically increasing under compression except for
Ce in the range 24�V�29 Å3 /atom.

59 For a single-band Hubbard model at fixed filling n=1, the
weights wn−1=wn+1 contain identical information concerning
possible localization transitions. One can partially restore this
symmetry even in the present multiband case, when the filling

drifts away from integer values, by subtracting off the
excess density. In particular, the identities in Eq. �18� yield
wn+1 − �nf −n�=wn+1 − ��n − 1�wn−1 + nwn+ �n+1�wn+1�=wn+1

− �−wn−1+wn+1�=wn−1. Note, however, that the asymmetry be-
tween f1-f0 and f2-f1 mixing described in Ref. 28 suggests this
attempt to make the two weights equivalent should not be
pushed too strongly.

60 Additional evidence that the increase in nf over n at large vol-
umes involves the quasiparticle peak comes from DMFT calcu-
lations with the Hubbard I self-energy which are incapable of
generating the quasiparticle peak. In this approximation nf is
found to remain pinned to n until quite small volumes, e.g., for
all V�17.6 Å3 /atom in Ce.

61 M. J. Lipp, D. Jackson, H. Cynn, C. Aracne, W. J. Evans, and A.
K. McMahan, Phys. Rev. Lett. 101, 165703 �2008�.

62 I.-K. Jeong, T. W. Darling, M. J. Graf, Th. Proffen, R. H. Hef-
fner, Yongjae Lee, T. Vogt, and J. D. Jorgensen, Phys. Rev. Lett.
92, 105702 �2004�.

SCREENING OF 4f MOMENTS AND DELOCALIZATION… PHYSICAL REVIEW B 80, 235105 �2009�

235105-11


