
Stable Solutions of Linear Systems

Involving Long Chain of Matrix Multiplications

Zhaojun Bai∗ Roger Lee† Ren-Cang Li‡ Shufang Xu§

Dedicated to Prof. G. W. Stewart on the occasion of his 70th birthday

Abstract

This paper is concerned with solving linear system (In +BL · · ·B2B1)x = b arising from
the Green’s function calculation in the quantum Monte Carlo simulation of interacting
electrons, where the order of the system and integer L are adjustable. Also adjustable is
the conditioning of the coefficient matrix to give rise an extreme ill-conditioned system.
Two numerical methods based on the QR decompositions with column pivoting and the
singular value decomposition, respectively, are studied in this paper. It is proved that the
computed solution x̃ by each of the methods is weakly backward stable in the sense that
the computed x̃ is close to the exact solution of a nearby linear system

[In + (BL + ∆BL) · · · (B2 + ∆B2)(B1 + ∆B1)]x̃ = b

with each ∆Bi small in norm relatively to Bi.

1 Introduction

We are concerned with numerically solving the following linear system of equations involving
a long chain of matrix multiplication:

(In + BL · · ·B2B1)x = b, (1.1)

where each Bi is n×n, L is an integer, and In is the n×n identity matrix. The linear system of
the form (1.1) arises from the quantum Monte Carlo (QMC) simulation of interacting electrons
in condensed-matter physics [2, 3, 13, 15, 1]. In the QMC simulation, matrices Bi depend on
several parameters which, along with n and L, can be adjusted to give linear systems of any
sizes, any number of Bi’s, and any difficulty in terms of the condition number

κ(In + BL · · ·B2B1) ≡ ‖In + BL · · ·B2B1‖ ‖(In + BL · · ·B2B1)
−1‖

∗Department of Computer Science and Department of Mathematics, University of California, Davis, CA
95616 (bai@cs.ucdavis.edu).

†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan (cherung@gmail.com).
‡Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 (rcli@uta.edu).
§School of Mathematical Sciecnes, Peking University, Beijing 100871, P. R. China (xsf@math.pku.edu.cn).

Part of this work was completed while this author was visiting Department of Mathematics, University of Texas
at Arlington.

1

being arbitrarily large, where ‖ · ‖ is a matrix norm. In view of this fact, getting accurate
solutions by conventional means, e.g., first forming In +BL · · ·B2B1 and then factorizing it, is
very difficult, if at all possible. The standard perturbation theory for linear systems suggests
that the computed solution x̃ would be contaminated with a relative error in the order of
ǫm κ(In + BL · · ·B2B1), i.e.,

‖x̃ − x‖

‖x‖
= O(ǫm κ(In + BL · · ·B2B1)),

where ǫm is the machine unit roundoff (ǫm = 2−24 for IEEE single precision and 2−53 for IEEE
double precision); see for example [5, 18, 11]. Since the quantity ǫm κ(In + BL · · ·B2B1) can
easily be 1 or larger, it means potentially that the computed x̃ has no correct significant digits
at all. Therefore different methods are called for in order to solve (1.1).

In this paper, we will study two numerical methods to meet the challenge. One is based
on the QR decomposition (QRD) with column pivoting and the other is based on the singular
value decomposition (SVD). The first one is based on the current practice by computational
physicists in the field [12, 13]. Our error analysis shows that the computed solution by either
method is weakly backward stable, namely it is close to the exact solution of a nearby system
of (1.1), a weaker statement than saying the methods are backward stable. The essence of the
first method is about how to accurately compute the graded QR decompositions of the product
of matrices BL · · ·B2B1 before solving the linear system (1.1) for x. In this sense, it is also a
classical matrix computational problem and has been studied by Stewart [16] and others, see
[20] and references therein.

This paper focus on the real case only, i.e., Bi and b are real. This is because the linear
systems (1.1) from Hubbard quantum Monte Carlo simulation in condensed matter physics,
which motivate our investigation here in the first place, are real. Our presentation can be
straightforwardly modified to deal with the complex case.

The rest of this paper is organized as follows. In section 2, we discuss two schemes to
transform the linear systems (1.1) to better-conditioned systems via QR decompositions and
SVD, and present the resulting numerical algorithms. Error analysis of two methods are
presented in section 3. Numerical examples and concluding remarks are in sections 4 and 5,
respectively.

We will adopt a MATLAB-like convention to access a matrix’s row, column, and diagonal:
X(i,:) and X(:,j) are X’s ith row and jth column, respectively, and diag(X) is the diagonal
matrix having the same diagonal entries as X, and u(i) is the ith entry of the column vector

u. XT is X’s transpose, |X| takes entry-wise absolute values, and |X| ≤ |Y | is understood
entry-wisely. For 1 ≤ p ≤ ∞, the ℓp vector norm of a column vector u and the ℓp-operator
norm of a matrix X are defined as

‖u‖p =

(
∑

i

|u(i)|
p

)1/p

, ‖X‖p = max
u

‖Xu‖p

‖u‖p
.

When X is invertible, we define κp(X) = ‖X‖p‖X
−1‖p, the ℓp-condition number of X.

2

2 Transforming to Better-Conditioned Systems

We have pointed out that the linear systems (1.1) are often very ill-conditioned. Naturally one
would attempt to improve their conditioning by certain equivalent transformations. In this
section, we shall present two ways to do the transformations: via QRD with column pivoting
[4, p.103], [10, p.248], [17, p.370], or via SVD by the one-sided Jacobi method [6, 7, 8, 9]. The
former is faster, and the latter is provably more robust as our later error analysis will show.
The approach via QRD is being used in [12]. What distinguishes ours here from theirs is that
we do one more step beyond their equivalent linear systems to arrive at well-condition ones in
the sense that the condition numbers of our final transformed systems are usually modest.

2.1 Via QRD

In what follows, 1 ≤ p ≤ ∞. We present the transformation in any given p in an effort to be a
little bit more general. Practically, p is likely to be 1, 2, or ∞. In fact, it takes the least effort
to extract Dj in (2.1) and (2.4) below when1 p = 1 because then Dj = diag(Rj).

Let
B1 = Q1R1P1

be B1’s QRD with column pivoting, Q1 is orthogonal, R1 is upper triangular, and P1 is the
permutation matrix as the result of the column pivoting. While offering no guarantee in
general, the diagonal entries of the R-factor in QRD with column pivoting often reflects the
singular value magnitudes well in practice. Now set

D1 = diag(‖(R1)(i,:)‖p), T1 = D−1
1 R1P1. (2.1)

we have
B1 = Q1R1P1 = Q1D1(D

−1
1 R1P1) = Q1D1T1. (2.2)

This pick of D1 serves two purposes: to make T1 well-conditioned (as much as possible and
yet numerically cheap to do) and to make ‖T1‖p of O(1). The need to have ‖T1‖p of O(1)
shows up later in our forward error bound for the computed solution of the transformed linear
system. There is no need to have a well-conditioned T1 as a whole, but rather that the first
many rows of T1 must be well-conditioned as we shall explain later in Remark 2.1. Exactly
how many first rows of T1 are needed to be so depends, but making whole T1 well-conditioned
will make sure the well-conditionedness of any number of rows of T1. A theorem of van der
Sluis [19] (see also [11, p.125]) guarantees that with this D1, T1 is nearly optimally conditioned
among all possible diagonal matrices in the sense that

κp(T1) ≤ n1/p min
diagonal D

κp(D
−1R1P1).

Now for j from 2 to L, perform QRD with column pivoting on BjQj−1Dj−1 to get

BjQj−1Dj−1 = QjRjPj = QjDj(D
−1
j RjPj) ≡ QjDjTj , (2.3)

where
Dj = diag(‖(Rj)(i,:)‖p), Tj = D−1

j RjPj . (2.4)

1The ℓp norm of a row vector should be understood by regarding the row vector as a matrix with 1 row, and
the definition of the ℓp-operator norm of a matrix applies.

3

This pick of Dj serves the same two purposes as D1 does before. It follows from (2.2) and
(2.3) that

BL · · ·B2B1 = QLDL(TL · · ·T2T1), (2.5)

and finally the linear system (1.1) is transformed into

[In + QLDL(TL · · ·T2T1)]x = b. (2.6)

The decomposition (2.5) is referred to as a column-stratified matrix decomposition in [13] since
the diagonal entries of DL are typically ordered in their magnitudes from the largest to smallest,
while TL · · ·T2T1 is modestly well-conditioned.

Up to this point, we are doing exactly what have been done in [12], namely obtaining (2.6).
In [12], it further rewrites the system (2.6) as

[QT
L(TL · · ·T2T1)

−1 + DL]y = QT
Lb and (TL · · ·T2T1)x = y. (2.7)

Thus two linear systems need to be solved. The standard perturbation theory for linear systems
suggests the computed solution could suffer from a relative error as much as

O
(
ǫmκ2(QLT−1 + DL)κ2(T)

)
, (2.8)

where T = TL · · ·T2T1. This is bad news because while κ2(T) appears to be under control
(still it can be nontrivial such as in the order of thousands), κ2(QLT−1 + DL) is comparable
to κ2(In + BL · · ·B2B1). This seems that no better solution can be gotten this way than
to solve the original system (1.1) by any conventional approach. However, computational
physicists have been doing it in this way and getting numerical results that conform to the
underlying physics more often than not, but no theoretical analysis has been done to show
whether the current practice works or otherwise [13, 15, 14]. What makes this method right
in this case? One plausible explanation for this discrepancy between theory and practice may
be the following. We may safely assume that QT

LT−1 has modest magnitude and condition
numbers. Since the first many diagonal entries of DL are typically huge, the first many rows
of QT

LT−1 + DL are diagonally dominant, and in fact these rows are pretty much a diagonal
matrix appended by a zero block to its right. Therefore, the relative error in the computed y is
proportional to the condition number of the remaining rows. So roughly speaking, κ2(QLT−1+
DL) can be effectively reduced to the condition number of the remaining rows which is much
smaller. But to put this explanation into precise mathematical statement can be necessarily
messy and complicated. Fortunately there is a better approach to solve (2.6) which we will be
proposing. It will lead to a more accurate numerical solution.

Now we describe a better approach to solve (2.6). In view of the wide magnitudes of DL’s
diagonal entries, care must be taken. For this purpose, we define two n × n diagonal matrices
Db and Ds as follows: for 1 ≤ i ≤ n

(Db)(i,i) =

{
(DL)(i,i) if |(DL)(i,i)| > 1,

1 otherwise,
(2.9)

and

(Ds)(i,i) =

{
(DL)(i,i) if |(DL)(i,i)| ≤ 1,

1 otherwise.
(2.10)

4

Then DL = Db Ds. Now (2.6) becomes

[D−1
b QT

L + DsT]x = D−1
b QT

Lb (2.11)

and thus can be solved as

x = [D−1
b QT

L + DsT]−1 [D−1
b (QT

Lb)]. (2.12)

Remark 2.1 There is a variation to the above derivation, too. Consider p = 1 in both (2.1)
and (2.4), and thus Dj = diag(Rj). Doing so effectively eliminates the discrepancy of the
magnitudes in diagonal entries of each Rj and eventually propagates the discrepancy to DL.
In (2.11), we split DL into two: Db with larger magnitudes and Ds with smaller magnitudes,
and then pull out Db while leaving Ds in place. D−1

b effectively annihilates the top many rows
of QT

L while Ds does the same to the bottom many rows of T , and finally the sum D−1
b QT

L+DsT

becomes fairly well-conditioned. This suggests that it may not be necessary to pull out the
smaller diagonal entries, along with the larger ones, of Rj in the absolute value out in the first
place. Namely in (2.1) and (2.4), instead of Dj = diag(Rj), we may set for 1 ≤ i ≤ n

(Dj)(i,i) =

{
(Rj)(i,i) if |(Rj)(i,i)| > 1,

1 otherwise.
(2.13)

Then, we still have (2.6) in the same form, but instead of (2.11), we will just have

[D−1
L QT

L + T]x = D−1
L QT

Lb. (2.14)

We have compared the numerical solutions via solving (2.11) and (2.14), respectively, and found
that for our tests, there is little difference in the conditioning of (2.11) and (2.14), but

∏
i ‖Ti‖

grows much faster for with (2.13) than with (2.1) and (2.4) for p = 1 as the conditioning of
the original system (1.1) gets worse. That makes solving (2.14) accurately potentially more
difficult than solving (2.11).

In summary, the transformations via QRD with column pivoting naturally lead to the
following algorithm to solve the linear system (1.1).

Algorithm 2.1 ASvQRD: Accurate Solution via QRD with column pivoting

Input: B1, B2, . . . , BL and b.
Output: Solution of (1.1)

1. Q1R1P1 = B1 (QRD with column pivoting);

2. D1 = diag(R1), T1 = D−1
1 R1P1;

3. for j = 2, 3, . . . , L do
4. Cj = (BjQj−1)Dj−1 (respect the parentheses);
5. QjRjPj = Cj (QRD with column pivoting);

6. Dj = diag(Rj), Tj = D−1
j RjPj;

7. enddo
8. Decompose DL = Db Ds as in (2.9) and (2.10);
9. T = TL · · ·T2T1;

10. H = D−1
b QT

L + DsT ;

11. Solve Hx = D−1
b (QT

Lb) for x.

5

Remark 2.2 In Lines 2 and 6, Dj is chosen as in (2.1) and (2.4) with p = 1. But any other
p, in particular 2 or ∞, gives good Dj , too. QRD with column pivoting in Lines 1 and 5 can
be implemented with Householder transformations. Our later analysis for Line 11 assumes a
backward stable solution. This can be done, for example, by a QRD (with/without column
pivoting). In practice, often Gaussian elimination with partial pivoting suffices, although with
no guarantee [5].

2.2 Via SVD by One-Sided Jacobi Method

The part of transforming (1.1) into an equivalent one with a manageable condition number is
very similar to what we have done in subsection 2.1, except here we will use SVD computed
by the one-sided Jacobi method [6, 7, 8, 9]. Let

B1 = U1Σ1V
T
1 , (2.15)

be B1’s SVD, where U1 and V1 are orthogonal, Σ1 is diagonal. It is not necessary for this SVD
to be computed by a one-sided Jacobi method, but rather any stable methods [5], e.g., the QR
algorithm or the divide-and-conquer algorithm, will be sufficient.

For j from 2 to L, compute SVD of BjUj−1Σj−1 by the one-sided Jacobi method from the
left to get

BjUj−1Σj−1 = UjΣjV
T
j . (2.16)

It follows from B1 = U1Σ1V
T
1 and (2.16) that SVD of BL · · ·B2B1 is

BL · · ·B2B1 = ULΣL(V1V2 · · ·VL)T,

and finally the linear system (1.1) is transformed into

[In + ULΣL(V1V2 · · ·VL)T]x = b. (2.17)

For ill-conditioned system (1.1), the diagonal entries of ΣL have wide range of magnitudes,
while (V1V2 · · ·VL)T, being orthogonal, is perfectly well-conditioned. This latter is the major
advantage of using SVD over QRD, upon comparing (2.17) with (2.6).

We adopt the same strategy to solve (2.17) as we did for (2.6). Define two n × n diagonal
matrices Σb and Σs as follows: for 1 ≤ i ≤ n

(Σb)(i,i) =

{
(ΣL)(i,i) if (ΣL)(i,i) > 1,

1 otherwise,
(2.18)

and

(Σs)(i,i) =

{
(ΣL)(i,i) if (ΣL)(i,i) ≤ 1,

1 otherwise.
(2.19)

Then ΣL = Σb Σs. Now (2.17) becomes
[
Σ−1

b UT
L + Σs(V1V2 · · ·VL)T

]
x = Σ−1

b UT
L b (2.20)

and thus can be solved as

x =
[
Σ−1

b UT
L + Σs(V1V2 · · ·VL)T

]−1 [
Σ−1

b (UT
L b)

]
. (2.21)

6

Remark 2.3 A remark similar to Remark 2.1 is applicable here. Namely, instead of (2.16),
we do for j from 2 to L

BjUj−1Ωj−1 = UjΣjV
T
j , (2.22)

where Ωj is diagonal and defined by for 1 ≤ i ≤ n

(Ωj)(i,i) =

{
(Σj)(i,i) if (Σj)(i,i) > 1,

1 otherwise.
(2.23)

Finally, instead of (2.17) and (2.20), we will have

[
Ω−1

L UT
L + ΛLV T

L · · ·Λ2V2Λ1V1

]
x = Ω−1

L UT
L b, (2.24)

where Λj is diagonal and defined by for 1 ≤ i ≤ n

(Λj)(i,i) =

{
(Σj)(i,i) if (Σj)(i,i) ≤ 1,

1 otherwise.

We have also compared the numerical solutions via solving (2.20) and (2.24), respectively, and
found that the solutions were about equally good.

In summary, we have the following SVD-based method to solve the linear system (1.1).

Algorithm 2.2 ASvSVD: Accurate Solution via SVD

Input: B1, B2, . . . , BL and b.
Output: Solution of (1.1)

1. U1Σ1V
T
1 = B1 (SVD by any stable method);

2. for j = 2, 3, . . . , L do
3. Cj = (BjUj−1)Σj−1 (respect the parentheses);
4. UjΣjV

T
j = Cj (SVD by one-sided Jacobi method);

5. enddo
6. Decompose ΣL = Σb Σs as in (2.18) and (2.19);
7. V = V1V2 · · ·VL;

8. H = Σ−1
b UT

L + ΣsV
T;

9. Solve Hx = Σ−1
b (UT

L b) for x.

Remark 2.4 SVD in Line 1 can be computed by any backward stable method as we already
pointed out. Our later analysis for Line 9 assumes a backward stable solution, similarly to
what we remarked for Algorithm 2.1.

3 Error Analysis

In this section we will show that the transformations in Section 2, if done in the IEEE floating
arithmetic, will lead to transformed systems that have the same solutions as certain nearby
systems of (1.1), and that the computed solutions of the transformed systems have small
forward errors. This, however, is not the same as the usual notion of being backward stable,

7

but a weaker statement. In view of this, we call any computed solution that is close to the
exact solution of a nearby problem is a weakly backward stable solution, and any algorithm
that computed such a solution is a weakly backward stable algorithm.

Assume the entries in Bj and b are already stored in the IEEE floating point format, and
let ǫm be the machine unit roundoff. In exact arithmetic, the linear system (2.6) is equivalent
to the original system (1.1), i.e., both have the same solution. Computationally, we do not
have (2.6) exactly. Instead, we have the following computed one by ASvQRD (Algorithm 2.1):

[
In + Q̂LD̂L(T̂L · · · T̂2T̂1)

]
x̂ = b (3.1)

Likewise, we do not have (2.17) exactly but have the following computed one by ASvSVD
(Algorithm 2.2): [

In + ÛLΣ̂L(V̂1V̂2 · · · V̂L)T
]
x̂ = b. (3.2)

In the rest of the analysis in this section, we shall adopt the following notation convention:
denote their computed counterparts for those objects in (2.2) – (2.6) and in (2.15) – (2.17) by
the same symbols with a hat, i.e., the computed Qj is Q̂j , with an exception that x̂ is the exact
solution of (3.1) in the case of ASvQRD algorithm, and that of (3.2) in the case of ASvSVD.
We will also use fl(·) to denote the computed result of an expression whenever convenient.

Our analysis is intended to demonstrate only the order of error magnitudes, instead of
precise error bounds. Doing so significantly simplifies the analysis, making it much easier to
understand and yet suggestive as to how big the errors may be. In particular, X = O(α) means
‖X‖p ≤ f(n)α for some low degree polynomial of n, where X is either a vector or matrix. In
view of this simplification, the choice of which norm becomes insignificant, and thus ‖ · ‖2 will
be used throughout.

We begin by analyzing ASvQRD algorithm (Algorithm 2.1). The theorem below says that
the computed counterpart (3.1) of (2.6) is equivalent to a structurally nearby system of (1.1).

Theorem 3.1 The computed system (3.1) by Lines 1–7 of ASvQRD is structurally backward

stable. Specifically (3.1) is equivalent to

[In + (BL + ∆BL) · · · (B2 + ∆B2)(B1 + ∆B1)]x̂ = b, (3.3)

where ∆Bj = O (ǫm‖Bj‖2) for 1 ≤ j ≤ L.

Proof It is known that for the QR decomposition (2.2) [11, pp.360-361]

Q̂1R̂1P1 = B1 + E1,

where Q̂1 = Q1 + ∆Q1, ∆Q1 = O (ǫm) and (E1)(:,i) = O
(
ǫm‖(B1)(:,i)‖2

)
. Since

T̂1 = fl((D̂1)
−1R̂1P1) = [(D̂1)

−1R̂1 + F1]P1, |F1| ≤ ǫm |D̂1|
−1|R̂1|, (3.4)

we have

Q̂1D̂1T̂1 = Q̂1R̂1P1 + Q̂1D̂1F1P1

= B1 + E1 + Q̂1D̂1F1P1

≡ B1 + ∆B1, (3.5)

8

where
∆B1

def
= E1 + Q̂1D̂1F1P1 = O (ǫm‖B1‖2) . (3.6)

Now for the decomposition (2.3), we have similarly2,

Q̂jR̂jPj = fl(fl(BjQ̂j−1)D̂j−1) + Ej

=
[
(BjQ̂j−1 + Fj,1)D̂j−1 + Fj,2

]
+ Ej , (3.7)

Q̂j = Qj + ∆Qj , (3.8)

where

Fj,1 = O (ǫm‖Bj‖2)

|Fj,2| ≤ ǫm |BjQ̂j−1 + Fj,1| |D̂j−1|,

∆Qj = O (ǫm) ,

(Ej)(:,i) = O

(
ǫm

∥∥∥∥
[
(BjQ̂j−1 + Fj,1)D̂j−1 + Fj,2

]

(:,i)

∥∥∥∥
2

)
.

Since
T̂j = fl((D̂j)

−1R̂jPj) = [(D̂j)
−1R̂j + Fj,3]Pj , |Fj,3| ≤ ǫm |D̂j |

−1|R̂j |, (3.9)

we have

Q̂jD̂jT̂j = Q̂jR̂jPj + Q̂jD̂jFj,3Pj

=
[
(BjQ̂j−1 + Fj,1)D̂j−1 + Fj,2

]
+ Ej + Q̂jD̂jFj,3Pj

≡ (Bj + ∆Bj)Q̂j−1D̂j−1, (3.10)

where
∆BjQ̂j−1 ≡ Fj,1 + Fj,2D̂

−1
j−1 + Ej D̂−1

j−1 + Q̂jD̂jFj,3PjD̂
−1
j−1. (3.11)

We claim that each of the four summands in the right-hand side of this equation is of O (ǫm‖Bj‖2).
Consequently we have

∆Bj = O (ǫm‖Bj‖2) (3.12)

since Q̂j−1 is orthogonal to the working precision3. We now look into the summands in the
right-hand side of (3.11). Fj,1 = O (ǫm‖Bj‖2) by (3.7) whose second equation says |Fj,2D̂

−1
j−1| ≤

ǫm |BjQ̂j−1 + Fj,1| and therefore Fj,2D̂
−1
j−1 = O (ǫm‖Bj‖2) also. For the third summand, we

have for 1 ≤ i ≤ n,

(
Ej D̂−1

j−1

)

(:,i)
= O

(
ǫm

∥∥∥∥
(
BjQ̂j−1 + Fj,1 + Fj,2D̂

−1
j−1

]

(:,i)

∥∥∥∥
2

)
= O (ǫm‖Bj‖2)

2Technically speaking, Qj in (3.8) is not the same as the one in (2.3). But rather it is the Q-factor in QRD

with column pivoting for
[
(BjQ̂j−1 + Fj,1)D̂j−1 + Fj,2

]
in the exact arithmetic. This abuse of the notation Qj

will unlikely cause any problem in this analysis. What we really need from (3.8) is the mere fact that Q̂j can
be made an orthogonal matrix to the full working precision with a perturbation ∆Qj = O (ǫm).

3By that X is orthogonal to the working precision, we mean that X+∆X is orthogonal for some ∆X = O(ǫm).

9

which leads to Ej D̂−1
j−1 = O (ǫm‖Bj‖2). Finally for the fourth summand, we notice by (3.9)

and (3.7) that

|D̂jFj,3PjD̂
−1
j−1| ≤ ǫm |R̂jPjD̂

−1
j−1|,

Q̂jR̂jPjD̂
−1
j−1 = BjQ̂j−1 + Fj,1 + Fj,2D̂

−1
j−1 + Ej D̂−1

j−1.

Therefore

Q̂jD̂jFj,3PjD̂
−1
j−1 = O

(
‖D̂jFj,3PjD̂

−1
j−1‖2

)

= O
(
ǫm ‖R̂jPjD̂

−1
j−1‖2

)

= O
(
ǫm ‖Q̂jR̂jPjD̂

−1
j−1‖2

)

= O
(
ǫm‖BjQ̂j−1 + Fj,1 + Fj,2D̂

−1
j−1 + Ej D̂−1

j−1‖2

)

= O (ǫm‖Bj‖2) ,

as was to be shown. Thus (3.12) holds. It follows from (3.5) and (3.10) that

(BL + ∆BL) · · · (B2 + ∆B2)(B1 + ∆B1) = (BL + ∆BL) · · · (B2 + ∆B2)Q̂1D̂1 T̂1

= (BL + ∆BL) · · · (B3 + ∆B3)Q̂2D̂2 T̂2T̂1

= Q̂LD̂L (T̂L · · · T̂2T̂1).

This completes the proof.

Our next theorem shows that the numerical solution to (3.1) by Lines 8–11 of ASvQRD algo-
rithm suffers from an error, relative to the exact solution x̂ of (3.1), approximately O (ǫmκ(H))
modulo a factor typically of O(1) in practice. This is done with the modest assumption that
Line 11 of ASvQRD algorithm is backward stable.

Theorem 3.2 The computed solution x̃ of (3.1) by Lines 8–11 of ASvQRD satisfies

‖x̃ − x̂‖2

‖x̂‖2
= O

(
ǫm κ2(Ĥqr)

[
1 + ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2

‖Ĥqr‖2

+
‖b‖2

‖D̂−1
b [Q̂−1

L b]‖2

])
, (3.13)

assuming Line 11 of ASvQRD is backward stable, where

Ĥqr = D̂−1
b Q̂T

L + D̂s(T̂L · · · T̂2T̂1). (3.14)

Proof The exact solution x̂ satisfies, upon substituting D̂L = D̂b D̂s,

[D̂−1
b Q̂−1

L + D̂s(T̂L · · · T̂2T̂1)]x̂ = D̂−1
b [Q̂−1

L b]. (3.15)

The computed solution is obtained through solving

H̃y = fl(D̂−1
b (Q̂T

Lb)), where H̃ = fl(D̂−1
b Q̂T

L + D̂s (T̂L · · · T̂2T̂1)). (3.16)

10

It can be seen that4

fl(D̂−1
b (Q̂T

Lb)) = D̂−1
b (Q̂−1

L b + f1) + f2

≡ D̂−1
b [Q̂−1

L b] + f,

H̃ =
(
D̂−1

b Q̂−1
L + F1

)
+
[
D̂s(T̂L · · · T̂2T̂1) + F2

]
+ F3

≡
[
D̂−1

b Q̂−1
L + D̂s(T̂L · · · T̂2T̂1)

]
+ F,

where5

f1 = O (ǫm‖b‖2) ,

|f2| ≤ ǫm |D−1
b | |Q̂−1

L b + f1|

≤ ǫm |Q̂−1
L b + f1|,

f = D̂−1
b f1 + f2

= O (ǫm‖b‖2) ,

F1 = O (ǫm) ,

F2 = O
(
ǫm‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖1

)
, (3.17)

F3 = O
(
ǫm max

{
1, ‖D̂s(T̂L · · · T̂2T̂1)‖2

})
,

F = F1 + F2 + F3

= O
(
ǫm(1 + ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2)

)
. (3.18)

Therefore the exact solution x̂ of (3.15) and the exact solution y of (3.16) satisfy [5, p.32]

‖y − x̂‖2

‖y‖2
= O

(
ǫm κ2(Ĥqr)

[
1 + ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2

‖Ĥqr‖2

+
‖b‖2

‖D̂−1
b [Q̂−1

L b]‖2

])
. (3.19)

Since it is assumed that the computed solution x̃ of (3.16) is backward stable, we have

‖x̃ − y‖2

‖y‖2
= O

(
ǫm κ(Ĥqr)

)
. (3.20)

Finally (3.13) is a consequence of (3.19) and (3.20), upon noticing that ‖y‖2 ≈ ‖x̂‖2.

Remark 3.1 In Subsection 2.1, we mentioned two purposes of picking of Di, i.e., to make Tj

well-conditioned and to make ‖Tj‖2 near 1, that dictate the choices of D1 and Dj as in (2.1)
and (2.4). We now see why. Making ‖Tj‖2 nearly 1 is to make sure that the ratio

1 + ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2

‖Ĥqr‖2

4Both f1 and F1 contain the rounding errors from floating point arithmetic operations and the O (ǫm) error

from replacing Q̂T
L by Q̂−1

L .
5In contributing to f , part of f1 is considerably offset by the first many diagonal entries of D̂−1

b
with

extremely tiny magnitudes. This is often the case even for modest well-conditioned Bj and modest L such as
κ2(Bj) ≥ 100 and L ≥ 8. But since f1 is unknown, it is very difficult to incorporate such an observation into
the error estimate. In general, the estimate for F2 in (3.17) is attainable, but often in practice it may be more

like O
(
ǫm‖D̂s(T̂L · · · T̂2T̂1)‖2

)
.

11

in the right-hand side of (3.13) does not grow out of control. It also keeps the two summands in
Ĥqr to have similar magnitudes and potentially removes any ill-conditionedness in Ĥqr, other-
wise due to potentially large differences between their magnitudes. To explain why Tj should
be made well-conditioned, we notice that the top many rows of D̂−1

b Q̂T
L and the bottom many

rows of D̂s(T̂L · · · T̂2T̂1) are very much negligible because of the behavior of the magnitudes of
the entries in D̂−1

b and D̂s. Thus roughly speaking the top many rows of Ĥqr are pretty much

those of T̂L · · · T̂2T̂1, and thus for Ĥqr to be well-conditioned, it is necessary that the top many
rows T̂L · · · T̂2T̂1 must be well-conditioned. To make sure of that, one thing we can do is to
make sure all T̂j well-conditioned.

We now analyze ASvSVD algorithm (Algorithm 2.2). The technicality is very much similar.

Theorem 3.3 The computed (3.2) by Lines 1–5 of ASvSVD is structurally backward stable.

Specifically (3.2) is equivalent to some

[In + (BL + ∆BL) · · · (B2 + ∆B2)(B1 + ∆B1)]x̂ = b, (3.21)

where ∆Bj = O (ǫm‖Bj‖2) for 1 ≤ j ≤ L.

Proof It is well-known that for the decomposition (2.15) [5]

Û1Σ̂1V̂
T
1 = B1 + ∆B1, (3.22)

where ∆B1 = O (ǫm‖B1‖2), Û1 and V̂1 are orthogonal to the working precision. Now for the
SVD (2.16) by the one-sided Jacobi method on fl((BjÛj−1)Σ̂j−1), we have [7, 8, 9]

fl((BjÛj−1)Σ̂j−1) = (BjÛj−1 + Fj,1)Σ̂j−1 + Fj,2, (3.23)

ÛjΣ̂j V̂
T
j = fl((BjÛj−1)Σ̂j−1) + Fj,3

=
[
(BjÛj−1 + Fj,1)Σ̂j−1 + Fj,2

]
+ Fj,3

≡ (Bj + ∆Bj)Ûj−1Σ̂j−1, (3.24)

where Ûj and V̂j are orthogonal to the working precision, and

Fj,1 = O (ǫm‖Bj‖2) ,

|Fj,2| ≤ ǫm |BjÛj−1 + Fj,1|Σ̂j−1,

‖(Fj,3)(:,i)‖2 = O

(
ǫm

∥∥∥∥
[
(BjÛj−1 + Fj,1)Σ̂j−1 + Fj,2

]

(:,i)

∥∥∥∥
2

)
,

∆Bj ≡ Fj,1Û
−1
j−1 + (Fj,2 + Fj,3)Σ̂

−1
j−1Û

−1
j−1

= O (ǫm‖Bj‖2) . (3.25)

It follows from (3.22) and (3.25) that

(BL + ∆BL) · · · (B2 + ∆B2)(B1 + ∆B1) = (BL + ∆BL) · · · (B2 + ∆B2)Û1Σ̂1V̂
T
1

= (BL + ∆BL) · · · (B3 + ∆B3)Û2Σ̂2V̂
T
2 V̂ T

1

= ÛLΣ̂L (V̂1V̂2 · · · V̂L)T.

This completes the proof.

12

Theorem 3.4 The computed solution x̃ of (3.2) by Lines 6–9 of ASvSVD satisfies

‖x̃ − x̂‖2

‖x̂‖2
= O

(
ǫm κ2(Ĥsvd)

[
1

‖Ĥsvd‖2

+
‖b‖2

‖Σ̂−1
b [Û−1

L b]‖2

])
, (3.26)

assuming that Line 9 of ASvSVD is backward stable, where

Ĥsvd = Σ̂−1
b ÛT + Σ̂s(V̂1V̂2 · · · V̂L)T. (3.27)

Proof It is similar to the proof of Theorem 3.2.

Theorems 3.1 and 3.3 guarantee that the transformed linear systems via QRD and SVD at
the intermediate step of ASvQRD and ASvSVD in the floating point environment are equivalent
to some nearby linear systems of the original one, and neither one of the nearby systems is
more accurate than the other as far as the sizes of the backward errors are concerned. However,
when taking Theorems 3.2 and 3.4 into consideration, the computed solutions by ASvSVD are
expected to be closer to their nearby systems than the ones by ASvQRD. This is especially
so when ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2 is much larger than 1. But the extra accuracy is achieved at
additional cost since the SVD by the one-sided Jacobi method is typically a few times more
expensive than the QRD.

Theorems 3.1 to 3.4 together prove that both ASvQRD and ASvSVD are weakly backward
stable.

4 Numerical Examples

In this section we present numerical experiment results for the two methods presented in
section 2 and analyzed in section 3. All our test problems of the linear systems (1.1) are
drawn from the quantum Monte Carlo simulation of the Hubbard model in condensed-matter
physics [2, 3, 13, 15, 1]. Specifically, for i = 1, 2, . . . , L, the n × n matrix Bi = e(∆τ)KeΓi , K

is the so-called hopping matrix. It is an adjacency matrix of the m × m square lattice, i.e.,
K = K1 ⊗ Im + Im ⊗ K1,

K1 =

0 1 1
1 0 1

. . .
. . .

. . .
. . .

. . . 1
1 1 0

.

n = m2. ∆τ is the time discretization parameter. The product β = (∆τ)L is the inverse
templates. Γi is a diagonal matrix of random diagonal elements λ or −λ of equal probability,
where λ = cosh−1(eU(∆τ)/2), and U is a potential energy parameter for local repulsion between
electrons. Two crucial parameters are β and U , which dictate the conditioning of Bj ; the larger
β and/or U are, the worse the conditioning of Bj is and consequently the worse-conditioning of
(1.1) becomes. Note that there are certain randomness in generating Bj , too. The right-hand
side b is simply taken to be a random vector as returned by MATLAB function randn.

Both methods are tested for different parameter values of the linear systems (1.1). Let us
examine a typical set of numerical results in detail. Consider n = 16 × 16 = 256 and L = 16

13

0 50 100 150 200 250 300
10

−80

10
−60

10
−40

10
−20

10
0

10
20

10
40

10
60

10
80

Absolute values of the diagonal entries of D
L

i

β=1, U=1
β=3, U=3
β=4, U=5
β=6, U=6
β=15, U=6
β=20, U=8

0 50 100 150 200 250 300
10

−80

10
−60

10
−40

10
−20

10
0

10
20

10
40

10
60

10
80

 the diagonal entries of Σ
L

i

β=1, U=1
β=3, U=3
β=4, U=5
β=6, U=6
β=15, U=6
β=20, U=8

Figure 4.1: Left: the absolute values of the diagonal entries of DL by ASvQRD algorithm;
Right: the diagonal entries of ΣL by ASvSVD algorithm.

and various β and U . Figure 4.1 plots the absolute values of the diagonal entries of DL as the
results of ASvQRD and the diagonal entries of ΣL as the results of ASvSVD. Table 4.1 and
Table 4.2 display quantities needed by Theorems 3.2 and 3.4. The relative error bound (3.13)
in Theorem 3.2 is given by

ǫqr = ǫmκ2(Ĥqr)(α1 + α2),

where

α1 =
1 + ‖T̂L‖2 · · · ‖T̂2‖2‖T̂1‖2

‖Ĥqr‖2

, α2 =
‖b‖2

‖D̂−1
b [Q̂T

Lb]‖2

.

Similarly, the relative error bound (3.26) in Theorem 3.4 is given by

ǫsvd = ǫmκ2(Ĥsvd)(α3 + α4),

where

α3 =
1

‖Ĥsvd‖2

, α4 =
‖b‖2

‖Σ̂−1
b [ÛT

L b]‖2

.

These sets of tests lead us to draw the following observations:

1. The diagonal entries of DL and ΣL modestly vary in magnitudes for small β and U ,
but wildly as β and U get larger and larger (see Figure 4.1). Since roughly κ2(In +
BL · · ·B2B1) is comparable to |(DL)(1,1)| and (ΣL)(1,1), it grows rapidly with β and U .
For the listed parameter pairs (β,U), it is unlikely for the conventional approach of
forming In +BL · · ·B2B1 explicitly before solving (1.1) to produce meaningful numerical
solutions for β, U ≥ 6. On the other hand, κ2(Ĥqr) and κ2(Ĥsvd) grow fairly slowly with
respect to β and U , relative to the growth of κ2(In + BL · · ·B2B1).

2. According to Table 4.1 and Theorem 3.2, the numerical solutions by ASvQRD have have
roughly 8 up to 14 significant decimal digits correct, comparing to the solutions of nearby
systems of (1.1).

14

(β,U) κ2(Ĥqr) ‖Ĥqr‖2
∏

i ‖T̂i‖2 ‖D̂−1
b [Q̂T b]‖2 α1 α2 ǫqr

(1,1) 1.6e+1 6.5e+0 3.0e+1 1.1e+1 4.5e+0 1.4 2.1e-14

(3,3) 1.5e+2 1.2e+1 9.2e+2 9.8e+0 7.9e+1 1.6 2.8e-12

(4,3) 3.5e+2 1.4e+1 1.1e+3 1.1e+1 7.9e+1 1.5 6.4e-12

(3,4) 2.6e+2 1.3e+1 1.3e+3 1.0e+1 1.0e+2 1.5 6.1e-12

(4,5) 2.0e+3 1.7e+1 6.1e+3 1.1e+1 3.6e+2 1.4 1.6e-10

(5,6) 2.2e+3 1.2e+1 1.0e+4 1.1e+1 8.7e+2 1.5 4.2e-10

(6,6) 1.7e+4 1.8e+1 1.8e+4 1.1e+1 9.8e+2 1.5 3.8e-09

(10,6) 7.9e+5 1.8e+1 4.7e+4 9.8e+0 2.6e+3 1.6 4.5e-07

(15,6) 1.0e+5 2.0e+1 4.1e+4 9.6e+0 2.0e+3 1.6 4.5e-08

(20,8) 7.4e+5 1.7e+1 7.6e+4 1.0e+1 4.5e+3 1.5 7.4e-07

Table 4.1: Results by ASvQRD algorithm for various β and U

(β,U) κ2(Ĥsvd) ‖Ĥsvd‖2 ‖Σ̂−1
b [ÛT b]‖2 α3 α4 ǫsvd

(1,1) 2.6e+0 2.0 1.1e+1 5.1e-1 1.4 1.1e-15

(3,3) 8.4e+0 1.8 1.1e+1 5.5e-1 1.4 3.6e-15

(4,3) 1.1e+1 1.8 9.7e+0 5.5e-1 1.5 5.0e-15

(3,4) 1.6e+1 1.8 9.8e+0 5.7e-1 1.5 7.5e-15

(4,5) 7.4e+1 1.7 1.0e+1 6.0e-1 1.4 3.3e-14

(5,6) 1.3e+2 1.7 1.1e+1 6.0e-1 1.4 5.9e-14

(6,6) 6.5e+2 1.6 1.1e+1 6.4e-1 1.4 2.9e-13

(10,6) 1.8e+4 1.6 1.0e+1 6.4e-1 1.4 8.1e-12

(15,6) 1.9e+3 1.6 1.0e+1 6.3e-1 1.4 8.9e-13

(20,8) 1.7e+4 1.4 9.7e+0 7.1e-1 1.5 8.6e-12

Table 4.2: Results by ASvSVD algorithm for various β and U

15

3. According to Table 4.2 and Theorem 3.4, the numerical solutions by ASvSVD have
roughly 12 up to 15 significant decimal digits correct, comparing to the solutions of
nearby systems of (1.1).

4. Using the SVD-based algorithm ASvSVD produces more accurate solutions than by
the QRD-based algorithm ASvQRD. The difference stems primarily from α1 which has∏

i ‖T̂i‖2 in its numerator and α3 whose numerator is always 1.
∏

i ‖T̂i‖2 grows initially
with β and U , but quickly settle down to a level, in this case about 103.

5. Given all Bi and thus DL and QL by ASvQRD and ΣL and UL by ASvSVD, it is not
hard to see that artificial b can be constructed to make α2 and α4 huge. In fact, α2 can
be made arbitrarily large by making Q̂T

Lb have nontrivial entries only at its top many
entries, while α4 can be made arbitrarily large by making ÛT

L b have nontrivial entries
only at its top many entries. When these happen, the bounds by Theorems 3.2 and 3.4
will be very big, suggesting that the computed solution by either algorithms unlikely be
close to a nearby system of (1.1). But such highly correlated b is hardly realistic from a
practical point of view. In our tests, b is a random vector and both α2 and α4 are very
modest.

6. ‖Ĥqr‖2 and ‖Ĥsvd‖2 does not vary much with β and U .

5 Conclusions

In this paper, we studied two numerical methods for solving linear systems (1.1) – Algorithm
ASvQRD is based on the QR decomposition with column pivoting and Algorithm ASvSVD
is based on the singular value decomposition computed by the one-sided Jacobi method. Our
first method, ASvQRD, is an improved version of an algorithm already used in the quantum
Monte Carlo simulation [12]. Both methods share similarities. Our error analysis suggest that
both methods are weakly backward stable, meaning that the computed solutions are close to
the exact solutions of (structurally) nearby linear systems. Numerical results are presented
to illustrate the error analysis, with test problems drawn from the quantum Monte Carlo
simulation of the Hubbard model in condensed-matter physics.

Acknowledgment

The authors wish to thank Prof. Z. Drmač for sending them his MATLAB code for the
one-sided Jacobi SVD method that was used in Section 4.

Bai was supported in part by the Department of Energy grant DE-FC02-06ER25793. Li was
supported in part by the NSF grant DMS-0702335 and DMS-0810506. Xu’s visit to University
of Texas at Arlington was supported in part by the NSF grant DMS-0702335.

References

[1] Z. Bai, W. Chen, R. T. Scalettar and I. Yamazaki, Numerical methods for quantum

Monte Carlo simulations of the Hubbard model, in Multi-scale Phenomena in Complex
Fluids, ed. T. Hou et al, Higher Education Press, China, 2009 (114 pages).

16

[2] R. Blankenbecler, D. J. Scalapino and R. L. Sugar, Monte Carlo calculations of
coupled Boson-fermion systems I. Phys. Rev. D, 24(1981), pp.2278-2286.

[3] D. J. Scalapino and R. L. Sugar, Monte Carlo calculations of coupled Boson-fermion
systems II. Phys. Rev. B, 24(1981), pp.4295-4308.

[4] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

[5] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[6] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix
Anal. Appl., 13 (1992), pp. 1204–1245.

[7] J. W. Demmel, M. Gu, S. C. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač,
Computing the singular value decomposition with high relative accuracy, Linear Algebra
Appl., 299 (1999), pp. 21–80.

[8] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. I, SIAM J.
Matrix Anal. Appl., 29 (2008), pp. 1322–1342.

[9] , New fast and accurate Jacobi SVD algorithm. II, SIAM J. Matrix Anal. Appl., 29
(2008), pp. 1343–1362.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, 3rd ed., 1996.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadephia,
2nd ed., 2002.

[12] E. Y. Loh Jr., J. E. Gubernatis, R. T. Scalettar, R. L. Sugar and S. R. White,
Stable matrix-multiplication algorithms for the low-temperature simulations of fermions,
In Interacting Electronics in Reduced Dimensions, eds. D. Baeriswyl and D. K. Campbell.
1989.

[13] E. Y. Loh Jr. and J. E. Gubernatis, Stable numerical simulations of models of inter-

acting electrons in condensed-matter physics, In Electronic Phase Transitions, ed. by W.
Hanke and Yu. V. Kopaev, Elsvier Science Publishers B. V. 1992, pp.177–235.

[14] E. Y. Loh Jr., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino

and R. L. Sugar, Numerical stability and the sign problem in the determinant quantum

Monte Carlo method, Inter J. Modern Physics, 16 (2005), pp. 1319–1322.

[15] A. Muramatsu, Quantum Monte Carlo for lattice fermions, in Proceedings of the NATO
Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry,
ed. M. P. Nightingale and C. J. Umriga, 1999.

[16] G. W. Stewart, On graded QR decompositions of products of matrices, Elect. Trans.
Numer. Anal., 3 (1995), pp. 39–49.

[17] G. W. Stewart, Matrix Algorithms Vol. I: Basic Decompositions, SIAM, Philadelphia,
1998.

17

[18] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston,
1990.

[19] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14
(1969), pp. 14–23.

[20] Future directions in tensor-based computation and modeling, NSF work-
shop report prepared by C. Van Loan. May 1, 2009. Available at
http://www.cs.cornell.edu/cv/TenWork/FinalReport.pdf

18

