
Advancing Large Scale Many-Body QMC Simulations on GPU accelerated
Multicore Systems

Andrés Tomás∗, Chia-Chen Chang†, Richard Scalettar‡ and Zhaojun Bai§
∗Dept. of Computer Science

University of California, Davis, CA 95616
Email: andres@cs.ucdavis.edu

†Dept. of Physics
University of California, Davis, CA 95616

Email: cxc639@gmail.com
‡Dept. of Physics

University of California, Davis, CA 95616
Email: scalettar@physics.ucdavis.edu

§Dept. of Computer Science
University of California, Davis, CA 95616

Email: bai@cs.ucdavis.edu

Abstract—The Determinant Quantum Monte Carlo (DQMC)
method is one of the most powerful approaches for understand-
ing properties of an important class of materials with strongly
interacting electrons, including magnets and superconductors.
It treats these interactions exactly, but the solution of a system
of N electrons must be extrapolated to bulk values. Currently
N ≈ 500 is state-of-the-art and increasing N is required before
DQMC can be used to model newly synthesized materials like
functional multilayers.

The DQMC requires millions of linear algebra computations
of order N matrices and scales as N3. Over years, researchers
have come to realize that DQMC cannot exploit distributed
memory parallel computers efficiently due to limited scalability
with the small matrix sizes and stringent procedures for numer-
ical stability. Today, the combination of multi-socket multi-core
processors and GPUs provide widely available platforms and
opportunities for DQMC parallelization.

The kernel of DQMC is the Green’s function calculations,
which involve long products of matrices. These products must
be computed using a graded decomposition generated by the
pivoted QR. The high communication overhead of pivoting
limits parallel efficiency. In this paper, we propose a novel
approach that exploits the progressive graded structure to
reduce the communication costs of pivoting. We show that this
method preserves the same numerical stability and achieves
70% performance of highly optimized DGEMM on a two-
socket six-core Intel processor.

We have integrated this new method and other paralleliza-
tion techniques into QUEST, a modern DQMC simulation
package. Using 36 hours on the same Intel processor, we
are able to compute accurately the magnetic properties and
Fermi surface of a system of N = 1024 electrons, which is
almost an order of magnitude more difficult than N ≈ 500,
owing to the N3 scaling. We will also show preliminary results
which further accelerate DQMC simulations by using GPU
processors. This increase in system will size allow, for the first
time, the computation of the magnetic and transport properties
of layered materials with DQMC.

Keywords-Quantum Monte Carlo; QRP; multicore; GPU

I. INTRODUCTION

The Hubbard model [1] is one of the most important
models in condensed matter physics [2], [3] and material sci-
ences [4]. It provides a theoretical framework for describing
electron interactions that are responsible for several fascinat-
ing phenomena such as magnetism and high-temperature su-
perconductivity. Quantum Monte Carlo (QMC) simulations
have contributed greatly to the understanding of magnetic
correlations and metal-insulator transitions of this Hamil-
tonian [5], [6], [7], [8], [9], [10], [11], [12]. Advances in
algorithms as well as in hardware have allowed lattice sizes
up to 24x24 to be simulated [13]. These are large enough
to address the finite size effects which are the primary
challenge to QMC.

Attention is now turning to exploration of the behavior
at the interface between materials. Advances in materials
synthesis [14] have made possible increasing precision in
the creation and characterization of boundaries. These break-
throughs hold the potential for producing new systems with
novel, and technologically important, functional properties
[15], [16], [17]. However, this endeavor also raises new
challenges to QMC simulations. In order to model an
interface, one needs minimally to couple two 2D layers.
More realistically, six to eight layers must be studied to
allow for the most important effects of the boundary to
penetrate into the bulk. State-of-the-art QMC simulations of
around 500 sites are only barely sufficient for this purpose:
a system of eight 8x8 layers has an aspect ratio for which
the extent of each plane is only marginally greater than the
dimension perpendicular to the interface.

Thus in order to address the physics of forefront materials
science, a further increase in QMC simulation capabilities

is required. In this paper we report on the development
of simulation software using recent multicore and GPU
technology which achieves this aim.

QUantum Electron Simulation Toolbox (QUEST)1 is a
Fortran 90/95 package that implements the Determinant
Quantum Monte Carlo (DQMC) method [18], [19]. QUEST
have been extensively used to study magnetism, metal-
insulator transition and superconductivity in the Hubbard
Hamiltonian. QUEST uses a two-dimensional periodic rect-
angular lattice as the default geometry in the simulation.
The lattice size and physical parameters are configurable
through an input file and several physical measurements for
the Hubbard model can be calculated by the program.

Matrix sizes used in DQMC are not sufficiently big to
achieve good parallel performance with a large number of
processors. This workload is not enough to compensate
the communication overhead even with a few processors.
Therefore, DQMC cannot be efficiently parallelized in dis-
tributed memory computers. However, current multisocket
multicore computers offer shared memory parallelism with
low communication overhead. In these computers, linear
algebra operations can be efficiently parallelized even for
the small matrices involved [20]. Also, recent GPUs pro-
vide a similar parallel paradigm which is suitable to these
kind of operations [21], [22]. Therefore, the combination
of multicore processors and a GPU provide an efficient
and widely available platform for DQMC parallelization.
This paper is focused on the parallel implementation of
QUEST in such computers. This parallelization uses opti-
mized BLAS/LAPACK [23] implementations, such as Intel
MKL and Nvidia CUBLAS, and custom OpenMP/CUDA
code for some operations not available in these libraries.

Green’s function calculation is the main kernel in QUEST.
The Green’s function Gij is a matrix whose rows and
columns are labeled by the sites of the lattice. The im-
portance of the Green’s function is that it determines the
probability for the electron to travel between sites i and
j. Specifically, this evaluation consists of computing the
inverse of a long product of matrices and numerical stability
is a critical issue. Traditional algorithms for computing a de-
composition of this product of matrices are based on graded
decompositions generated by the pivoted QR (QRP) [24]
that guarantees the numerical stability of the procedure.

Although QRP in the LAPACK library has been extended
to use BLAS level 3 operations as much as possible, still
requires a BLAS level 2 operation for updating the pivot
criteria [25]. Our results show, for the matrix sizes used in
DQMC simulations, that the QRP decomposition is not as
efficient as the standard QR in state of the art multicore
implementations of LAPACK. In this paper, we propose a
novel approach that exploits the progressive graded structure
in the algorithm to reduce the communication costs of

1http://www.cs.ucdavis.edu/∼bai/PETAMAT

pivoting. This approach replaces most of the pivoted QR
decompositions by regular QR decompositions, providing
equivalent numerical stability and greatly improved parallel
performance.

The rest of this paper is organized as follows. In section
II, we present a brief introduction to DQMC simulations and
show the relevance of Green’s function evaluations. Section
III explains in detail the techniques used in QUEST for
Green’s function evaluation and for reducing its computa-
tional cost. In section IV we introduce a novel technique
which achieves better parallel performance than the tradi-
tional approach in multicore processors. Section V confirms
the validity of our implementation by computing some
simulations that can be compared with previous results in
the literature. Our results show that QUEST is as robust
as previous DQMC implementations but faster allowing
to tackle simulations with bigger number of sites. Finally,
section VI shows preliminary results using a GPU to further
accelerate DQMC simulations and the paper is summarized
in section VII.

II. DQMC SIMULATIONS

A. The Hubbard model

The Hubbard model consists of three terms

H = HT +HV +Hµ,

where HT , HV , and Hµ are kinetic energy, interaction
energy, and chemical potential terms respectively. At a finite
temperature T , the expectation value of a physical observ-
able O in the Hubbard model, for example the momentum
distribution or the spin-spin correlation, is given by the
thermal average

〈O〉 =
1
Z

Tr
(
Oe−βH

)
,

where “Tr” is a trace over the Hilbert space of the Hubbard
Hamiltonian H, and

Z = Tr
(
e−βH

)
is the partition function. β = 1/(kBT) is the inverse
temperature with kB being Boltzmann’s constant.

In a numerical simulation, the Hubbard model is put on a
lattice of N = Lx ×Ly sites. Next, the inverse temperature
is discretized β = L∆τ , where L denotes the number of
inverse temperature slices and ∆τ is the time step size. The
partition function is then written as

Z = Tr

(
L∏
l=1

e−∆τH

)

= Tr

(
L∏
l=1

e−∆τHKe−∆τHV

)
+O(∆τ2),

where HK = HT + Hµ includes the kinetic energy and
chemical potential terms which are quadratic in electron

operators. Each of the L potential energy terms, which is
quartic in electron operators, is decoupled into quadratic
form by introducing N binary Hubbard-Stratonovich (HS)
fields hl,i = ±1, one for each of the lattice sites where elec-
trons interact. After these steps, the trace can be evaluated
analytically and the partition function becomes

Z =
∑
h

detM+(h) detM−(h), (1)

with h denotes the N ×L HS fields collectively. The matrix
Mσ(h) (σ = ±) is defined as

Mσ(h) = I +BL,σ(hL)BL−1,σ(hL−1) . . . B1,σ(h1),

where I is an identity matrix, and

Bl,σ(hl) = eσν diag(hl,1,hl,2,...,hl,N) e−∆τK . (2)

The N ×N matrix K describes how electrons move among
lattice sites, and its diagonal elements contain the chemical
potential terms. The parameter ν = cosh−1(eU∆τ/2) with
U > 0 parameterizes the strength of electron interactions.
The multidimensional summation in Eq. (1) is carried out
stochastically by Monte Carlo sampling which will be de-
scribed in the next subsection. For a more detailed derivation
of the partition function and the DQMC algorithm, we refer
the reader to the article [18].

B. DQMC simulations

In the DQMC simulation, matrices are of the dimension
N . They involve the product of L matrices. The com-
putational complexity of the sequential code is of order
N3L. Currently, DQMC simulations can be done on several
hundreds of sites, up to a maximum of around N = 500.
This ability makes the DQMC method particularly suitable
for simulating strongly correlated two dimensional materials,
since long range correlations (ten or more lattice spacings)
can be computed. However, as several layers are considered,
the transverse direction has to shrink and this essential long
range information will be lost unless algorithmic improve-
ments can be devised.

As described in the previous subsection, the DQMC
method uses a discrete auxiliary field approach to formulate
a computable form of the partition function [18]. The
resulting multidimensional summation is then carried by
Monte Carlo sampling. The DQMC method implements the
Metropolis algorithm to find feasible spin configurations via
local search on the HS field. Initially, a random configuration
of the HS field is given. During the simulation, each element
of the HS field is visited, and a new configuration that flips
the element’s value is proposed. The acceptance of the new
configuration is determined by the ratio of the product of
determinants before and after flipping. A complete visiting
of all LN elements of the HS field is called a sweep
(Algorithm 1).

Algorithm 1 DQMC sweep
1) l = 1, i = 1
2) Flip h′l,i = −hl,i
3) Compute the Metropolis ratio

rl,i =
|M+(h′)| |M−(h′)|
|M+(h)| |M−(h)|

4) Acceptance condition (random number r)

hl,i ← h′l,i if r ≤ rl,i

5) If i < N then
i← i+ 1, go to step 2

6) If i = N and l < L then
i← 1, l← l + 1, go to step 2

7) Compute physical measurements

The DQMC simulation consists of two stages: warmup
stage and sampling stage. Each stage utilizes the Metropolis
algorithm for different purposes. In the warmup stage, the
Metropolis algorithm is used to thermalize the field configu-
rations; while in the sampling stage, the physical observables
are measured as the field continues to be sampled.

The Green’s function associated with a configuration in
Algorithm 1 is defined as

Gσ(h) = Mσ(h)−1

From this function, the Metropolis ratio rl,i can be easily
computed thanks to the fact that Mσ(h′) is a rank-1 update
of Mσ(h). For example, at the spatial site i = 1:

h′1,1 = −h1,1

and the Metropolis ratio r11 is given by

r11 = d+d−,

where for σ = ±,

dσ = 1 + α1,σ(1− eT1 Mσ(h)−1e1)

= 1 + α1,σ(1−Gσ1,1(h)),

and
α1,σ = e−2σνh1,1 − 1.

Therefore, the gist of computing the Metropolis ratio
r11 is to compute the (1, 1)-element of the inverse of the
matrix Mσ(h)−1. If the Green’s function Gσ(h) has been
computed explicitly in advance, then is essentially free, O(1)
operations, to compute the ratio r11.

In the DQMC simulation, if the proposed h′ is accepted,
then the Green’s function is updated by a rank-1 matrix:

Gσ(h)← Gσ(h)− α1,σ

r11
uσw

T
σ

where
uσ = (I −Gσ(h))e1

and
wσ = (Gσ(h))T e1.

At the spatial site i = 2:

h′1,2 = −h1,2.

By a similar derivation as for the previous case, we have

r12 = d+d−,

where for σ = ±,

dσ = 1 + α2,σ(1−Gσ1,2(h)),

and
α2,σ = e−2σνh1,2 − 1.

Correspondingly, if necessary, the Green’s function is up-
dated by the rank-1 matrix

Gσ(h)← Gσ(h)− α2,σ

r12
uσw

T
σ

where
uσ = (I −Gσ(h))e2

and
wσ = (Gσ(h))T e2.

In general, for i = 3, 4, . . . , N , we can immediately see
that the same procedure can be used for computing the
Metropolis ratios r1i and updating the Green’s functions.
In QUEST, this update of the Green’s functions is delayed
to lead to a block rank update instead of individual rank-1
updates [26]. After i = N , the Green’s function cannot be
updated anymore and it must recomputed from scratch. This
computational kernel takes roughly 95% of the simulation
execution time with previous DQMC implementations. The
next two sections in this paper focus on numerical stability
and performance improvements of the Green’s functions
evaluation in QUEST.

III. GREEN’S FUNCTION EVALUATION

DQMC simulations require a large number of consecutive
Green’s function evaluations. In this section, the algorithm
required for numerical stable evaluation is discussed first.
Following, we present general techniques implemented in
QUEST to reduce its computational cost, exploiting the
relation between successive evaluations.

A. Initial evaluation

1) Stratification: In a simplified formulation, the Green’s
function is of the form

G = (I +BLBL−1 · · ·B1)−1, (3)

where Bi = Bi,σ(hi) as defined in Eq. 2. Each Bi matrix
is stored as

Bi = ViB,

where Vi = eσνdiag(hi) is a diagonal matrix and B = e−∆τK

is a matrix exponential which does not change during the
simulation.

When L or U is large (that is, low temperatures or
strong interactions), the product matrix BLBL−1 · · ·B1 in
(3) is extremely ill-conditioned. Several methods have been
proposed [27], [28], [19], [24] to stabilize the computation
by stratifying the magnitude of elements in the matrix multi-
plications. All those methods inevitably require the pivoted
QR decomposition. The stratification method proposed by
Loh et al [19] is currently used in QUEST to calculate the
Green’s function G. In this algorithm, elements of different
energy levels, which corresponds to different magnitude of
numbers, are stratified by the pivoted QR decomposition.

Algorithm 2 Stratification method
1) Compute the pivoted QR: B1 = Q1R1P

T
1

2) Set U1 = Q1, D1 = diag(R1) and
T1 = D−1

1 R1P
T
1

3) For i = 2, 3, · · · , L
a) Compute Ci = (BiUi−1)Di−1

b) Compute the pivoted QR: Ci = QiRiP
T
i

c) Set Ui = Qi, Di = diag(Ri), and
Ti = (D−1

i Ri)(PTi Ti−1)
4) Compute G = (T−TL QTLDb +Ds)−TDbQ

T
L

At the last step Db and Di are computed from DL as

Db(i) =
{

1/|DL(i)| if |DL(i)| > 1
1 otherwise

Ds(i) =
{

DL(i) if |DL(i)| ≤ 1
sgn(DL(i)) otherwise

The stability analysis of the stratification method can be
found in [24]. This stratification process protects small
numbers form being rounded by mixing with large ones
in matrix products. All products in the algorithm involve
matrices that have elements of similar magnitude except
for the diagonal matrices. The parenthesis in the step 3 (a)
instruct to first multiply Bi and Ui−1, and then this result by
Di−1. Using the typical parameters for DQMC simulations,
Bi has not very big elements and Ui−1 is a orthogonal
matrix so their product could be computed accurately. As
Di−1 is diagonal the second product is just a column
scaling, without involving any addition, therefore can be
also accurately computed using floating point arithmetic
irrespective of the magnitude of the numbers. Obviously,
we assume that these products can be represented without
either overflow or underflow. In step 3 (c) the product
Ti = (D−1

i Ri)(PTi Ti−1) has also the same property. In this
case the QR decomposition with pivoting make all D−1

i Ri
elements about the same order of magnitude, therefore the
whole product chain TL can be accurately computed. The

splitting of DL into Db and Ds in the last step of the
algorithm is also made for increasing the accuracy of the
computation in the same way as before.

2) Matrix clustering: In order to reduce the computa-
tional cost of the Green’s function evaluation, the strat-
ification algorithm in QUEST works with Lk = dLk e
matrices built by clustering k of the original Bi matrices.
For example, if we define B̂1 = BkBk−1 · · ·B1 we can
transform the product

BLBL−1 · · ·Bk+1Bk · · ·B1 = BLBL−1 · · ·Bk+1B̂1.

Similarly, with B̂2 = B2kB2k−1 · · ·Bk+1 this product
becomes

BLBL−1 · · ·B2kB2k−1 · · ·Bk+1B̂1 = BLBL−1 · · · B̂2B̂1.

Extending these definitions to all the sequence we obtain

BLBL−1 · · ·B1 = B̂Lk
B̂Lk−1 · · · B̂1

where each B̂i is defined as

B̂i = BikBik−1 · · ·B(i−1)k+2B(i−1)k+1.

In this way the number of loop iterations in Algorithm 2
is reduced by a factor k. Usually, a value of k ≈ 10 gives
significant performance boost while maintaining numerical
stability [29].

B. Green’s function updating

1) Wrapping: As the simulation goes from one inverse
temperature slice to the next, for example from l = 1 to
l = 2 in Algorithm 1, the new Green’s function takes the
form

Ĝ = (I +B1BLBL−1 · · ·B2)−1

By this relationship, the new function can be cheaply com-
puted from the previous G by noting that

Ĝ = B1GB
−1
1 .

This trick is called wrapping and can be use only for a
few times ` ≈ 10 until the Green’s function evaluation
loses numerical accuracy, and must be re-computed by the
stratification method (Algorithm 2) from scratch.

2) Computation recycling for matrix clustering: When
using wrapping and matrix clustering with k = ` for
the whole DQMC simulation (thousands of sweeps), the
stratification algorithm computes a sequence of Green’s
functions such as

(I + B̂Lk
B̂Lk−1 · · · B̂1)−1

(I + B̂1B̂Lk
B̂Lk−1 · · · B̂2)−1

(I + B̂2B̂1B̂Lk
B̂Lk−1 · · · B̂3)−1

· · ·

(I + B̂Lk−1B̂Lk−2 · · · B̂1B̂Lk
)−1

Figure 1. Performance comparison of relevant LAPACK routines using
the Intel MKL library in a two socket 6 core Intel Westmere computer.

and starts over again. In all these cases, as the Metropolis
algorithm only changes the rightmost matrix in the sequence,
the rest of matrix clusters B̂i are the same on the next
Green’s function evaluation. In order to reduce the com-
putational cost, QUEST stores these matrix clusters instead
of recomputing them on each evaluation. Typical DQMC
simulations requires storing less than one hundred matrices
of size up to 1024 × 1024 (8 MBytes per matrix). This
amount is not significant on current computers which easily
have far more than 1 GByte of main memory.

IV. MULTICORE IMPLEMENTATION

The main performance limit of the stratification algorithm
is the extensive use of the QR decomposition with pivoting
(line 3b of Algorithm 2). Current LAPACK implementations
use BLAS level 3 operations for the trailing matrix update
during the decomposition. However, the choice of pivots still
requires a BLAS level 2 operation for each Householder
reflector computed [25]. Therefore, the QR decomposition
with pivoting (DGEQP3) is not a fully blocked algorithm
like LU or regular QR decompositions (DGEQRF). This
imposes a limit to the algorithm performance in current
multicore architectures with deep memory hierarchies [30],
as Figure 1 shows for the Intel MKL library running in a
two socket 6 core Intel Westmere computer.

On this computer, matrix multiplication (DGEMM) ob-
tains excellent performance even for small matrix sizes.
Actually, DGEMM performance for 1024 × 1024 matrix
is very close to the maximum GFlops rate for bigger
matrices. DGEQRF performance is not as good as DGEMM

because of the impact of panel updates in the block QR
decomposition for these matrix sizes [31], [32]. But even
in this case, DGEQRF performance is much better than
DGEQP3. Therefore, it would be interesting to modify the
stratification algorithm so most calls to DGEQP3 could be
replaced by DGEQRF, as the next section shows.

A. Stratification with pre-pivoting

As the stratification algorithm iterates the difference be-
tween largest and smallest elements in Di increases, making
the matrix Ci with an almost graded structure where the
columns are ordered by its norm. In our experience, the
QRP decomposition of Ci produces a permutation with few
columns interchanges from the initial ordering.

Based on this observation, we propose a variant of the
stratification algorithm where a regular QR is used instead
of QRP and the permutation P is computed before the
decomposition. This permutation is computed in the same
way as the QRP algorithm, where matrix columns are sorted
by decreasing norms. Our experimental results show that the
QRP will interchange few columns during the decomposition
and these permutations do not affect the result of the
stratification procedure. This improved algorithm preserves
the graded structure of Ci, but not as strong as in the original
stratification. Also, the elements of D−1

i Ri are no longer
close to one, but their magnitude is much smaller than the
Ci matrix and not sufficient big to cause stability problems.

Algorithm 3 Stratification with prepivoting method
1) Compute the pivoted QR: B1 = Q1R1P

T
1

2) Set U1 = Q1, D1 = diag(R1) and
T1 = D−1

1 R1P
T
1

3) For i = 2, 3, · · · , L
a) Compute Ci = (BiUi−1)Di−1

b) Compute the permutation Pi such as Ĉi = CiPi
has decreasing norm columns

c) Compute a regular QR: Ĉi = QiRi
d) Set Ui = Qi, Di = diag(Ri), and

Ti = (D−1
i Ri)(PTi Ti−1)

4) Compute G = T−1
L (UTL T

−1
L +DL)−1UTL

This variant allows to exploit most of the processing
power of current computers because most of the operations
can now be expressed with blocked implementations: QR
decompositions and matrix products.

B. OpenMP parallelization

Some operations in the previous algorithm are not avail-
able in the BLAS library or can be implemented more
efficiently. The first kind of operations are the matrix scal-
ings by rows or columns. These are present in two places
(lines 3a and 3d) in Algorithm 3. Due to the definition of
Bi = ViB each product by Bi in line 3a also includes a

Figure 2. Green’s function evaluation performance in GFlops.

row scaling. These matrix scalings are implemented using
OpenMP to distribute the work, assigning different columns
to different processors. The second kind of operations are the
computation of column norms for the pre-pivoting. Although
BLAS provides an optimized routine for computing the norm
of one column, there is not enough work in this operation
to achieve good parallel performance. Our implementation
uses OpenMP to compute several norms simultaneously and
obtains better parallel efficiency.

These parallelizations do not achieve the full performance
of all available cores because they are limited by memory
bandwidth. However, as the matrices are relatively small
with respect to cache sizes, our implementations can benefit
from the memory hierarchy parallelism inside the multicore
processors.

C. Performance analysis

In this section, we show the performance of the improved
Green’s function evaluation in QUEST. Figure 2 shows the
GFlops achieved for different matrix dimensions (number
of sites N) and L = 160. These tests were run using
a computer with two six core Intel Westmere processors
at 2.93 GHz for a total of 12 cores. The performance
reported is the average during a simulation that requires 1000
warming and 2000 measurements sweeps (Algorithm 1).
These evaluations combine all the improvements presented
so far in this paper, multicore implementation, stratification
with pre-pivoting, wrapping and reuse of matrix clustering
with k = ` = 10.

The cost of Algorithm 3 is O(N3L), however there
are several operations like matrix scaling by a diagonal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(0,0) (π,π) (π,0) (0,0)

32x32
28x28
24x24
20x20
16x16

Figure 3. Mean momentum distribution 〈nk〉 of the two-dimensional
Hubbard model at average density ρ = 1, interaction strength U = 2, and
inverse temperature β = 32. 〈nk〉 is plotted along the momentum space
symmetry line (0, 0)→ (π, π)→ (π, 0)→ (0, 0).

and norm computations (BLAS level 2 operations) with
total cost O(N2L). As N is relatively small, the impact
of these operations is not negligible with respect of the
O(N3L) asymptotical cost. Taking into account this effect,
the performance of QUEST Green’s function evaluation is
impressive, roughly 70% of the DGEMM GFlops rate and
even better than the QR decomposition (DGEQRF).

V. APPLICATIONS

To demonstrate the capability of the optimized QUEST
package, we show in this section full simulation results for
the two-dimensional Hubbard model. The performance of
these full simulations will also be analyzed.

A. Hubbard model simulation results

We first focus on two important physical observables of
the Hubbard model, namely, the momentum distribution

〈nk,σ〉

and the z-component spin-spin correlation function

Czz(r) =
1
N

∑
r′

〈(nr+r′,↑ − nr+r′,↓) (nr′,↑ − nr′,↓)〉.

In these equations, nk,σ and nr,σ are electron density
operators in momentum and real space respectively, and
σ =↑, ↓.

The momentum distribution 〈nk,σ〉 is an important quan-
tity because it provides the information of the Fermi surface
(FS) and the renormalization factor (discontinuity at the
FS). Both properties are fundamental quantities in the so-
called Fermi liquid theory — one of the most important
theoretical paradigms in condensed matter physics and ma-
terial sciences. In Figure 3, the mean momentum distribution
(averaged over two spin components) is plotted along the

symmetry line in the momentum space for several lattice
sizes. At the interaction strength U = 2, a sharp FS can be
identified near the middle of the segment (0, 0) → (π, π).
Results for N ≤ 576 are in agreement with published results
[13]. Most importantly, 〈nk〉 obtained on the 32×32 lattice
provides a much better estimation of the renormalization
factor due to its excellent spatial resolution in the momentum
space.

To further illustrate the benefit gained from the large-
scale 32 × 32 lattice simulation, the color contour plot of
the mean momentum distribution is shown in Figure 4 for
two different lattice sizes. It is clear that result obtained on
the 32×32 lattice reveals much more detail than the 12×12
data.

Next we examine the z-component spin-spin correlation
function Czz(r) which is often used to measure the magnetic
structure in the Hubbard model. In the simulated case,
namely average density ρ = 1, interaction strength U = 2,
and inverse temperature β = 32, the Hubbard model exhibits
an antiferromagnetic (AF) order where electron spin-spin
correlation shows a chessboard pattern. This is demonstrated
in Figure 5. However, in order to determine whether there
is a true magnetic order in the bulk limit N → ∞, the
correlation function at the longest distance Czz(Lx/2, Ly/2)
will need to be measured on different lattice sizes. The
results are then extrapolated to the N → ∞ limit to
determine the existence of the magnetic structure in the bulk
limit. While both panels in Figure 5 show AF order, it is
clear that results obtained on large lattices provide a better
estimation of the asymptotic behavior of Czz(Lx/2, Ly/2).

B. Performance analysis

Figure 6 shows the time required to compute 1000
warming and 2000 measurement steps for the previous
simulations. The line in the plot is the nominal execution
time predicted by the cost O(N3L) of DQMC using the
256 sites simulation as a reference. The actual execution
time for 256 sites is 1.25 hours but for 1024 sites is only 28
times as much (35.3 hours). This performance is better than
predicted by the asymptotical cost, where a simulation with
4N sites should be 43 = 64 times slower than a simulation
with N sites. However, this model does not take into account
that linear algebra parallel efficiency improves as matrix
size grows but still fits in cache memory. For the number
of sites (matrix sizes) reported, this parallel performance
increase is sufficiently big to partially compensate for the
large asymptotical cost of DQMC simulations.

Table I shows the relative computation time for each of
the different steps in the simulations presented before. The
Green’s function evaluation computational time is reduced
from 95% of overall time in previous DQMC implementa-
tions to a 65% in QUEST, thanks to all the improvements
presented in this paper.

-π 0 π

kx

-π

0

π
k y

0.0

0.2

0.4

0.6

0.8

1.0

-π 0 π

kx

-π

0

π

k y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Color contour plot of the mean momentum distribution 〈nk〉 of the two-dimensional Hubbard model on 12 × 12 (left) and 32 × 32 (right)
lattices. Simulation parameters are the same as Figure 3.

-6 0 6

x

-6

 0

 6

y

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

-16 -8 0 8 16

x

-16

-8

 0

 8

 16

y

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

Figure 5. z-component spin-spin correlation Czz(r) on 12× 12 (left) and 32× 32 lattices with average density ρ = 1, interaction strength U = 2, and
inverse temperature β = 32.

Number of sites
256 400 576 784 1024

Rank-1 update 14.2% 16.5% 16.7% 14.9% 13.9%
Stratification 48.5% 45.5% 44.1% 44.5% 44.2%
Clustering 8.4% 9.1% 9.7% 11.3% 12.0%
Wrapping 8.8% 9.4% 10.2% 11.5% 11.9%
Physical meas. 20.0% 19.4% 19.2% 17.9% 18.0%

Table I
EXECUTION TIME IN PERCENTAGE OF THE DIFFERENT STEPS IN A

QUEST SIMULATION.

VI. GPU ACCELERATION

Graphics processors currently offer more computational
power than multicore processors. DQMC requires double
precision computations for numerical stability but the pre-
vious GPUs offered single precision arithmetic. This has
changed with the latest generation of the hardware, making
GPUs a suitable option for DQMC simulations. Develop-
ment tools and environments for GPUs are evolving towards
greater simplicity of programming in each new hardware
generation. However, GPUs are designed for a particular
application and it still is more difficult to achieve good effi-

Figure 6. Actual time in QUEST and nominal (based on N3 scaling) for
a whole DQMC simulation with different number of sites.

ciency than with conventional multipurpose processors. The
easiest way of using GPUs for numerical applications is by
optimized libraries, such as NVIDIA CUBLAS. This library
follows the classical BLAS concept, that is, it provides a
standard interface for basic vector and matrix operations
while hiding the actual details of implementation. This is
very important for GPU because these details depend a lot
on the hardware architecture, such as load balancing among
processors and memory access patterns. In this section we
show how to use a GPU to accelerate the clustering and
wrapping of the Green’s function evaluations discussed in
sections III-B1 and III-A2.

A. GPU implementation details

Our implementation is based on the the latest DGEMM
development for GPUs included in the CUBLAS [33], [34]
library. However, this is not sufficient for achieving good
performance in our application and we need to develop some
customized CUDA code.

Algorithm 4 shows how to implement the product of
several Bi matrices required by the matrix clustering. The
main bottleneck when using a GPU for some parts of a
computation is usually the data transfer between main and
graphics memories. In DQMC simulations, the matrix B
is fixed during all the process and it can be computed and
stored at the start of the program. However, the diagonal ma-
trices Vi could change and should be copied to the graphics
memory each time. Also, the result A must be copied back
to main memory. These transactions are relatively small,

Algorithm 4 Compute A = Bi+1 · · ·Bi+k using CUBLAS

Send V to GPU cublasSetMatrix
B ← T cublasDcopy
for j = 1, 2, . . . , n

Aj,1:n ← Vi,j × Tj,1:n cublasDscal
end
for i = 2, 3, . . . , k

T ← B ×A cublasDgemm
for j = 1, 2, . . . , n

Tj,1:n ← Vi,j × Tj,1:n cublasDscal
end
A← T cublasDcopy

end
Send A to CPU cublasGetMatrix

Algorithm 5 CUDA kernel for A = diag(V)× C

i = blockIdx.x× blockDim.x+ threadIdx.x
if i < n

t = Vi
for j = 1, 2, . . . , n

Ai,j = t× Ci,j
end

end

N×L and N×N floating point values, and are not relevant
compared to the whole algorithm execution time.

The computation of each Bi = ViB in Algorithm 4 is
made by a copy of the B matrix and repeat calls to the vector
scaling routine for each row. This trivial implementation
is not quite efficient because these kind of BLAS level 1
routines are not able to achieve the full performance of the
GPU. More important is that memory access pattern is row
by row which does not exploit the coalescing memory access
features of the graphics memory. Algorithm 5 is the CUDA
kernel for computing efficiently this product Bi = ViB.

With Algorithm 5, each thread of the GPU computes the
scaling of one matrix row. This guarantees sufficient threads
to keep the multiple computing elements occupied and all
threads do exactly the same operations in the same order.
Both conditions are critical to get good performance in a
GPU. Also, consecutive threads read and write in consecu-
tive memory positions, technique known as coalesced access,
which allows full memory bandwidth. Moreover, the number
of memory reads is minimized by storing the Vi value in
local memory for each thread. Like BLAS level 1 routines
this procedure does not exploit the full computational speed
of the processor because is it limited by memory access, but
it is optimal in the sense of memory bandwidth. Last but not
least, this procedure allows us to avoid the matrix copy in
Algorithm 4.

Algorithm 6 Compute A = BiCB
−1
i using CUBLAS

Send C to GPU cublasSetMatrix
Send Vi to GPU cublasSetVector
T ← B × C cublasDgemm
A← T ×B−1 cublasDgemm
for i = 1, 2, . . . , n

Ai,1:n ← Vi ×Ai,1:n cublasDscal
end
for j = 1, 2, . . . , n

A1:n,j ← A1:n,j/Vi cublasDscal
end
Send A to CPU cublasGetMatrix

Algorithm 7 CUDA kernel for computing A = diag(V)×
A× diag(V)−1

i = blockIdx.x× blockDim.x+ threadIdx.x
if i < n

t = Vi
for j = 1, 2, . . . , n

u = Vj (via texture)
Ai,j = t×Ai,j/u

end
end

The GPU can also be used for accelerating the wrapping
step in DQMC simulations. Algorithm 6 is a implementation
of Ĝ = BiGB

−1
i using the GPU via CUBLAS for all

operations. As before, B and B−1 can be computed and
stored in graphics memory at the start of the simulation.
Also, the scaling by the diagonal Vi is difficult to compute
efficiently. Algorithm 7 is the CUDA kernel for a more
efficient way of computing this scaling. This implementation
is based on the previous algorithm 5 with the addition
of the column scaling factor u. This value is different
for each element inside the loop, giving a non-coalesced
memory access for each iteration. However, as all threads
read simultaneously the same position a texture cache can
be used to increase memory bandwidth.

B. Performance analysis

In this section, we show the impact of the GPU imple-
mentation proposed in the performance of Green’s function
evaluations for DQMC simulations. The tests were run using
one node from the Carver cluster at NERSC using the Intel
MKL and Nvidia CUBLAS libraries. These nodes have
two Intel Nehalem processors at 2.4 GHz with four cores
and a NVIDIA Tesla C2050 graphics processor with 448
computing elements.

Figure 7 compares the Gflops obtained by the GPU im-
plementation we have presented, including memory transfer

Figure 7. Gflops achieved for computing bG = BiGB
−1
i (wrapping) andbB = Bi+1Bi+2 · · ·Bi+k (blocking) compared to DGEMM CPU and

GPU performance.

times, with the peak DGEMM CPU and GPU performance.
This plot shows that our implementation for computing
blocks B̂ = Bi+1Bi+2 · · ·Bi+k is quite efficient, that is,
close to GPU DGEMM performance, because several k
matrix products are computed for each block with only one
memory transfer. The GPU implementation for wrapping
only computes two matrix products for each transfer and
does not achieve this level of performance. However, its
performance is always better than the CPU DGEMM, and
its efficiency increases with the matrix dimension.

Figure 8 shows the performance of Green’s function eval-
uations using the GPU for matrix clustering and wrapping,
with different matrix dimensions (number of sites N) and
L = 160. These evaluations combine all the improvements
presented in this paper, multicore implementation, strati-
fication with pre-pivoting, wrapping and reuse of matrix
clustering with k = ` = 10. The performance reported is
the average for several runs during a simulation, and shows
that the combination of a multicore processor with a GPU
accelerator allows QUEST to obtain better performance than
on a CPU only system.

VII. CONCLUSIONS

In this paper we present QUEST, a parallel implemen-
tation of the DQMC simulation on multicore processors.
Parallelization of DQMC is extremely challenging due to
the sequential nature of the underlying Markov chain and
numerical stability issues. Although typical lattice sizes give

Figure 8. Green’s function evaluation performance in GFlops per second.

matrices that are not sufficiently big to exploit large paral-
lel computers, we show that current multisocket multicore
processors can be quite efficient in this case.

The main kernel in DQMC simulation is the Green’s
function evaluation, which involves computing the inverse of
a long chain of matrix multiplications. Traditional algorithms
for these evaluations are based on graded decompositions
generated by pivoted QR. In this paper we show that pivoted
QR is far from efficient as the regular QR decomposition on
current multicore processors. Therefore, we propose a novel
algorithm which exploits the graded structure to spare the
use of pivoting for the QR decomposition. The implementa-
tion of this algorithm using the MKL library and custom
OpenMP code achieves an impressive 70% of DGEMM
performance in a computer with two Intel Westmere 6 core
processors.

We have integrated this new method and other improve-
ments, such as some techniques to reuse computations
for evaluating consecutive Green’s functions, into QUEST.
Using 36 hours on the same Intel processor, we are able
to compute accurately the magnetic properties and Fermi
surface of a system of N = 1024 electrons. This is almost
an order of magnitude more difficult than current state
of the art N ≈ 500, owing to the N3 scaling of the
algorithms involved. The numerical stability of the QUEST
implementation is validated by comparing simulations with
previous results in the literature.

Furthermore, we show preliminary results using a GPU to
accelerate parts of the DQMC simulation, showing promis-
ing performance. Our future research direction is to imple-

ment most of the DQMC simulation on the GPU using the
recent work for QR decompositions on GPU [35], [36].

We anticipate that the combination of multicore proces-
sors and GPU accelerators will allow to increase the lattice
sizes to a level never being tried before for DQMC simula-
tions. These larger systems will allow Quantum Monte Carlo
simulations, which have been essential to the understanding
of two dimensional systems, to be applied to a new and very
important set of multi-layer materials.

VIII. ACKNOWLEDGMENTS

This work was supported by the DOE SciDAC project un-
der grant DOE-DE-FC0206ER25793 and National Science
Foundation grant NSF PHY 1005502.

This research used resources of the National Energy
Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. Hubbard, “Electron correlations in narrow energy bands,”
Proc. R. Soc. London, Ser A, vol. 276, p. 283, 1963.

[2] D. J. Scalapino and S. R. White, “Numerical results for
the Hubbard model: Implications for the high Tc pairing
mechanism,” Found. Phys., vol. 31, p. 27, 2001.

[3] D. J. Scalapino, “Numerical studies of the 2D Hubbard
model,” in Handbook of High Temperature Superconductivity,
J. R. Schrieffer and J. S. Brooks, Eds. Springer, 2007, ch. 13.

[4] P. W. Anderson, “The resonating valence bond state in
la2cuo4 and superconductivity,” Science, vol. 235, p. 1196,
1987.

[5] J. E. Hirsch and S. Tang, “Antiferromagnetism in the two-
dimensional Hubbard model,” Phys. Rev. Lett., vol. 62, pp.
591–594, Jan 1989.

[6] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, “Numerical study of the two-
dimensional Hubbard model,” Phys. Rev. B, vol. 40, pp. 506–
516, Jul 1989.

[7] L. Chen, C. Bourbonnais, T. Li, and A.-M. S. Trem-
blay, “Magnetic properties of the two-dimensional Hubbard
model,” Phys. Rev. Lett., vol. 66, pp. 369–372, Jan 1991.

[8] M. Jarrell, “Hubbard model in infinite dimensions: A quantum
Monte Carlo study,” Phys. Rev. Lett., vol. 69, pp. 168–171,
Jul 1992.

[9] R. Preuss, F. Assaad, A. Muramatsu, and W. Hanke, The
Hubbard Model: its Physics and Mathematical Physics,
D. Baeriswyl, Ed. New York: Plenum Press, 1995, NATO
ASI series. Series B.

[10] S. Zhang and H. Krakauer, “Quantum Monte Carlo method
using phase-free random walks with slater determinants,”
Phys. Rev. Lett., vol. 90, p. 136401, Apr 2003.

[11] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
“Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions,” Rev. Mod. Phys.,
vol. 68, pp. 13–125, Jan 1996.

[12] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, “Quan-
tum cluster theories,” Rev. Mod. Phys., vol. 77, pp. 1027–
1080, Oct 2005.

[13] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell,
and R. T. Scalettar, “Quantum Monte Carlo study of the two-
dimensional fermion Hubbard model,” Phys. Rev. B, vol. 80,
no. 7, p. 075116, Aug 2009.

[14] S. B. Ogale and J. Mannhart, “Interfaces in materials with cor-
related electron systems,” in Thin Films and Heterostructures
for Oxide Electronics, ser. Multifunctional Thin Film Series,
O. Auciello and R. Ramesh, Eds. Springer US, 2005, pp.
251–278.

[15] J. Mannhart and D. G. Schlom, “Oxide interfaces – an
opportunity for electronics,” Science, vol. 327, no. 5973, pp.
1607–1611, 2010.

[16] Transport in Multilayered Nanostructures: The Dynamical
Mean Field Theory Approach. Imperial College Press,
London, 2006.

[17] S. B. Ogale and A. Millis, “Electronic reconstruction at
surfaces and interfaces of correlated electron materials,” in
Thin Films and Heterostructures for Oxide Electronics, ser.
Multifunctional Thin Film Series, O. Auciello and R. Ramesh,
Eds. Springer US, 2005, pp. 279–297.

[18] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, “Monte
Carlo calculations of coupled boson-fermion systems. i,”
Phys. Rev. D 24,, vol. 24, pp. 2278–2286, 1981.

[19] E. Loh and J. Gubernatis, Stable Numerical Simulations of
Models of Interacting Electrons in Condensed Matter Physics.
Elsevier Sicence Publishers, 1992, ch. 4.

[20] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore ar-
chitectures,” LAPACK Working Note, Tech. Rep. 191, Sep.
2007.

[21] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore systems,”
Parallel Computing, vol. 36, no. 5-6, pp. 232 – 240, 2010.

[22] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense
linear algebra solvers for multicore with GPU accelerators,”
in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, april
2010, pp. 1–8.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
3rd ed. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1999.

[24] Z. Bai, C.-R. Lee, R.-C. Li, and S. Xu, “Stable solu-
tions of linear systems involving long chain of matrix
multiplications,” Linear Algebra and its Applications, 2010,
doi:10.1016/j.laa.2010.06.023.

[25] G. Quintana-Ortı́, X. Sun, and C. H. Bischof, “A BLAS-
3 version of the QR factorization with column pivoting,”
vol. 19, no. 5, pp. 1486–1494, 1998.

[26] M. Jarrell, private comunication.

[27] G. Sugiyama and S. Koonin, “Auxiliary field Monte-Carlo for
quantum many-body ground states,” Annals of Physics, vol.
168, no. 1, pp. 1 – 26, 1986.

[28] S. Sorella, S. Baroni, R. Car, and M. Parrinello, “A novel
technique for the simulation of interacting fermion systems,”
EPL (Europhysics Letters), vol. 8, no. 7, p. 663, 1989.

[29] Z. Bai, W. Chen, R. Scalettar, and I. Yamazaki, “Numerical
methods for quantum Monte Carlo simulations of the Hub-
bard model,” in Multi-Scale Phenomena in Complex Fluids,
T. Y. H. et al, Ed. Higher Education Press, 2009, pp. 1–110.

[30] Z. Drmač and K. Veselić, “New fast and accurate jacobi SVD
algorithm: I,” LAPACK Working Note, Tech. Rep. 169, Aug.
2005.

[31] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Enhancing
parallelism of tile QR factorization for multicore architec-
tures.” LAPACK Working Note, Tech. Rep. 222, Sep. 2009.

[32] E. Agullo, J. Dongarra, R. Nath, and S. Tomov, “A fully
empirical autotuned dense QR factorization for multicore
architectures,” in Proceedings of the 17th international con-
ference on Parallel processing - Volume Part II, ser. Euro-
Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 194–
205.

[33] R. Nath, S. Tomov, and J. Dongarra, “An improved Magma
GEMM for Fermi graphics processing units,” Interna-
tional Journal of High Performance Computing Applications,
vol. 24, no. 4, pp. 511–515, 2010.

[34] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs
for Fermi,” LAPACK Working Note, Tech. Rep. 245, Apr.
2011.

[35] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR factorization on a multicore
node enhanced with multiple GPU accelerators,” in Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE In-
ternational, may 2011, pp. 932 –943.

[36] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer,
“Communication-avoiding QR decomposition for GPUs,”
Parallel and Distributed Processing Symposium, Interna-
tional, vol. 0, pp. 48–58, 2011.

	Introduction
	DQMC Simulations
	The Hubbard model
	DQMC simulations

	Green's function evaluation
	Initial evaluation
	Stratification
	Matrix clustering

	Green's function updating
	Wrapping
	Computation recycling for matrix clustering

	Multicore implementation
	Stratification with pre-pivoting
	OpenMP parallelization
	Performance analysis

	Applications
	Hubbard model simulation results
	Performance analysis

	GPU acceleration
	GPU implementation details
	Performance analysis

	Conclusions
	Acknowledgments
	References

