
Elementary Introduction to the Hubbard Model

I. INTRODUCTION

The Hubbard model offers one of the most simple ways to get insight into how the interac-
tions between electrons can give rise to insulating, magnetic, and even novel superconducting
effects in a solid. It was written down in the early 1960’s and initially applied to understand-
ing the behavior of the transition metal monoxides (FeO, NiO, CoO), compounds which are
antiferromagnetic insulators, yet had been predicted to be metallic by methods which treat
strong interactions less carefully.
Over the intervening years, the Hubbard model has been applied to the understanding

of many systems, from ‘heavy fermion’ systems in the 1980’s, to high temperature super-
conductors in the 1990’s. Indeed, it is an amazing feature of the model that, despite its
simplicity, its exhibits behavior relevant to many of the most subtle and beautiful properties
of solid state systems.
The Hubbard model has been studied by the full range of analytic techniques developed

by condensed matter theorists, from simple mean field approaches to field theoretic methods
employing Feynman diagrams, expansions in the degeneracy of the number of ‘flavors’ (spin,
orbital angular momentum), etc. It has also been extensively attacked with numerical
methods like diagonalization and quantum monte carlo.
The objective of these notes is to provide an introduction to the Hubbard model and to a

few of the most simple ways in which it is solved. We begin with a discussion of the second
quantized operators using which the Hubbard model is written.

II. CREATION AND DESTRUCTION OPERATORS

Creation and destruction operators a†, a are familiar from the treatment of the harmonic
oscillator. We will spend some time reviewing their properties, which parallel those of
the operators in the Hubbard model in many ways, in this more familiar setting. The
harmonic oscillator creation and destruction operators are defined in terms of the position
and momentum operators,

â =
√

mω
2~ x̂+ i

√

1
2mω~ p̂

â† =
√

mω
2~ x̂− i

√

1
2mω~ p̂

From [p̂, x̂] = −i~, it is easy to show that these operators obey the commutation relations,

[â, â†] = 1

and that the Hamiltonian is,

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 = ~ω(â†â+

1

2
).

The ‘number operator’ is defined to be n̂ = â†â, so that Ĥ = ~ω(n̂+ 1
2
).

Exercise 1: Verify the commutation relation [â, â†] = 1.
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Exercise 2: Verify the expression for Ĥ in terms of the creation and destruction operators.
Start with the usual expression for the Hamiltonian, Ĥ = p̂2/2m+mω2x̂2/2.

Exercise 3: Figure out the commutation relations [n̂, â†] and [n̂, â].

The ground state of the quantum oscillator is written as |0〉 and has the properties that,

â|0〉 = 0

Ĥ|0〉 =
ω

2
|0〉

The excited states are built up by applying the creation operator repeatedly to the ground
state.

â†|n〉 =
√
n+ 1 |n+ 1〉

and obey the formula,

Ĥ|n〉 = ~ω(n+
1

2
)|n〉

Exercise 4a: Using the form for Ĥ in terms of the creation and destruction operators, and
the commutation relations of Exercise 3, show that the state obeying â|0〉 is indeed an
eigenstate of Ĥ.

Exercise 4b: Show that the state |0〉 with components Ψ0(x) = 〈x|0〉 = e−mωx2/2~ in the
position representation (that is, in the basis of eigenstates of the position operator) obeys
â|0〉 = 0. Do this by using the form for â is terms of x̂ and p̂ and the fact that p̂ = ~

i
∂
∂x
in

the position basis. This helps connect the creation/destruction operator method with the
wavefunctions for the eigenstates of the harmonic oscillator obtained in more conventional
treatments.

Exercise 4c: Compute the wavefunctions Ψ1(x) = 〈x|1〉 and Ψ2(x) = 〈x|2〉 of the first two
excited states of the simple harmonic oscillator by using Ψ0(x) = 〈x|0〉 = e−mωx2/2~ and the
expression for â† in terms of x̂ and p̂.

Exercise 5: Show that the states obtained by acting multiple times with â† on |0〉 are
eigenstates of Ĥ.

One often refers to â and â† as ‘boson’ creation and destruction operators, for reasons
that are motivated by the result of Exercises 6 and 7 below. Note that henceforth I will be
setting ~ = 1. I will also set Boltzmann’s constant kB = 1.

Exercise 6: The partition function of a quantum mechanical system is Z = Tr e−βĤ . Here
Ĥ is the Hamiltonian, β = 1/T where T is the temperature, and the trace operation ‘Tr’
has its usual meaning as the sum of the diagonal elements. In other words, one chooses any

complete set of states |α〉 and then Tr e−βĤ =
∑

α〈α|e−βĤ |α〉. Show that for the Harmonic
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oscillator Z = e−βω/2 /(1 − e−βω). Use the occupation number states |n〉 as your complete
set.

Exercise 7: The finite temperature expectation value of any quantum mechanical operator

Â is given by 〈Â〉 = Z−1Tr[ Â e−βĤ ]. Show that 〈n̂〉 = 1/(e−βω − 1), for the quantum
harmonic oscillator. This is the Bose-Einstein distribution function.

The Hubbard model is written in terms of ‘fermion’ creation and destruction operators.
These operators differ in several respects from the operators â†, â for a single harmonic
oscillator. Perhaps most confusing is a conceptual difference: the fermion operators in the
Hubbard model are not introduced in terms of familiar position and momentum operators.
Rather they stand on their own.
Also, instead of just one creation and one destruction operator, in the Hubbard model

there is a set of such operators, which are distinguished by attaching indices j and σ. Thus
we write ĉ†jσ and ĉjσ. As we shall see shortly, the index j labels the spatial lattice site and
the index σ labels the electron spin (up or down).
As a consequence, the occupation number states are no longer characterized by a single

number n, as for a single harmonic oscillator, but instead by a collection of occupation
numbers njσ. One writes such states as |n1σ n2σ n3σ . . . . 〉
Because these operators are meant to describe fermions, they are defined to have certain

anticommutation relations. (The anticommutator of two operators {Â, B̂} is defined to be
ÂB̂ + B̂Â.)

{ĉjσ, ĉ†lσ′} = δj,lδσ,σ′

{ĉ†jσ, ĉ
†
lσ′} = 0

{ĉjσ, ĉlσ′} = 0.

An immediate consequence of these anticommutation relations is the Pauli principle: the
maximum occupation of a particular site with a given spin is 1.

Exercise 8: Show that the Pauli exclusion principle is a consequence of the anticommutation
relation amongst the fermion creation operators by considering j = i and showing that
ĉ†jσ|1〉 = 0. Here |1〉 is the state with one electron on site j and with spin σ.

Note that while a fermion creation operator annihilates a state which already has a
fermion in it, its action on the empty state is ĉ†|0〉 = |1〉, which looks just like the bosonic
operator â†. Besides the Pauli principle, the anticommutation relations also ensure that the
particles are fermions, that is, their wave function changes sign when two electrons with
different labels j are exchanged.

Exercise 9: In Exercise 6 we showed that the partition function of Ĥ = ωâ†â is Z =
(1− e−βω)−1 (eliminating the zero point energy term). Show that the partition function of

the analogous fermion Hamiltonian Ĥ = εĉ†ĉ is Z = (1 + e−βε).

Exercise 10: In statistical mechanics, one can work in either an ensemble of fixed particle
number, or one in which the particle number is allowed to vary, controlled by the chemical
potential µ. More precisely, the term −µN̂ is added to Ĥ, wehere N̂ is the total particle
number. Explore this idea within the context of the preceding problem by considering
Ĥ = (ε− µ)ĉ†ĉ. Plot 〈n̂〉 as a function of µ for different values of β.
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Because of the anticommutation relation of the fermion operators, one needs to spec-
ify a convention for the relation between a state like | 1 0 1 0 0 . . . 〉 and the vacuum
state |vac〉 = | 0 0 0 0 0 . . . 〉. The two possibilities, | 1 0 1 0 0 . . . 〉 = c†1c

†
3|vac〉 and

| 1 0 1 0 0 . . . 〉 = c†3c
†
1|vac〉 differ by a sign. Either definition is fine, but in all subsequent

manipulations whatever convention was chosen must be followed consistently.

Exercise 11: Suppose the index labeling the fermion operators runs over eight possible values.
Figure out the occupation number state which results from the following applications of
the indicated creation and destruction operators. Choose as your convention that a given
occupation number state is formed by acting on the vacuum state with the lowest indices
at the right of the string of creation operators. (This corresponds to the second of the two
choices discussed above.)

ĉ†5 ĉ
†
4 ĉ

†
2 |vac〉 = ?

ĉ†2 ĉ
†
4 ĉ

†
5 |vac〉 = ?

ĉ†4 ĉ
†
5 | 1 1 0 0 0 0 0 1 〉 = ?

ĉ†4 ĉ
†
5 | 1 1 0 0 1 0 0 1 〉 = ?

ĉ†1 ĉ2 | 0 1 0 0 1 0 0 1 〉 = ?
ĉ†1 ĉ4 | 0 1 0 0 1 0 0 1 〉 = ?
ĉ†1 ĉ5 | 0 1 0 0 1 0 0 1 〉 = ?

III. THE HUBBARD HAMILTONIAN

Having introduced creation and annihilation operators, we can now write down the Hub-
bard Hamiltonian. Before doing so, let’s think about how we might simply describe the
motion and interactions of electrons in a solid.
First, we need to account for the fact that there is a regular array of nuclear positions

in a solid, which for simplicity we consider to be fixed. (In other words, we will not worry
about lattice vibrations.) This suggests that we begin with a lattice of atoms (sites) on
which the electrons move. A single atom is already a very complex structure, with many
different energy levels. The most simple ‘atom’ we can imagine would have a single energy
level. Then, the Pauli principle would tell us that at most two electrons (one with spin up
and one with spin down) can sit on this ‘atom’.
In a solid where electrons can move around, the electrons interact via a screened Coulomb

interaction. The biggest interaction will be for two electrons on the same atom. For sim-
plicity, Hubbard stops just there, so that interactions are modeled by a term which is zero
if the atom is empty of electrons or has only a single electron on it, but has the value U if
the atom has two electrons. There is no interaction between electrons on different sites.
Our kinetic energy will consist of an expression which allows electrons to move from one

site to its neighbors. The energy scale t which governs this ‘hopping’ will be determined
by the overlap of two wavefunctions on the pair of atoms. Since wavefunctions die off
exponentially, we can begin by allowing hopping only between the closest atoms in our
lattice.
Now let’s formalize this construction. We define c†jσ to be the operator which creates

an electron of spin σ on lattice site j. (We will now drop all the ‘hats’ which I had been
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using to emphasize things were operators.) Similarly, cjσ is the destruction operator, and

njσ = c†jσcjσ is the number operator.
The Hubbard Hamiltonian is then,

H = −t
∑

〈j,l〉σ
c†jσclσ + U

∑

j

nj↑nj↓ − µ
∑

j

(nj↑ + nj↓).

The first term is the kinetic energy: It describes the destruction of an electron of spin σ on
site l and its creation on site j (or vice-versa). The symbol 〈j, l〉 emphasizes that hopping
is allowed only between two sites which are adjacent. The second term is the interaction
energy. It goes through all the sites and adds an energy U if it finds that the site is doubly
occupied. The final term is a chemical potential which controls the filling. (See Exercise 10.)
We refer to the situation where the filling is one electron per site as ‘half-filling’ since the
lattice contains half as many electrons as the maximum number (two per site). Studies of
the Hubbard model often focus on the half-filled case because it exhibits a lot of interesting
phenomena (Mott insulating behavior, anti-ferromagnetic order, etc.)

IV. ONE SITE

We can get a first insight into the Hubbard model by considering just a single site. Al-
ternately phrased, we can set t = 0 in the Hamiltonian, in which case we have a collection
of independent sites. The one site model is easily solved. We have four possibilities cor-
responding to the site being empty, having a single electron (either spin up or spin down)
or being doubly occupied. Each of the states |0〉, | ↑〉, | ↓〉, | ↑↓〉 is an eigenstate of H with
eigenvalues 0,−µ,−µ, U − 2µ respectively. The partition function is

Z =
∑

α

〈α|e−βH |α〉 = 1 + 2eβµ + e2βµ−βU ,

and the energy is,

E = 〈H + µn〉 = Z−1
∑

α

〈α|He−βH |α〉 = (1 + 2eβµ + e2βµ−βU)−1 U e2βµ−βU .

Exercise 12: Show that the occupation is given by,

ρ = 〈n〉 = 2(1 + 2eβµ + e2βµ−βU)−1(eβµ + e2βµ−βU)

Plot ρ vs. µ for U = 4 and T = 2. Plot ρ vs. µ for U = 4 and T = 0.5.

The plots of ρ versus µ you made in Exercise 12 exhibit some of the fundamental physics
of the Hubbard model, namely the “Mott insulating gap”. This will be discussed in more
detail in Section IX, but for now, consider the following: at T = 0 the chemical potential µ
has the property that µ = ∂E/∂ρ. In words, µ tells you how much the energy changes when
you change the density of the system. If you have a noninteracting system described by a
set of energy levels, and you have filled the levels up to some ‘Fermi energy’ EF the cost to
add a particle is the next energy level just above the last level you filled, that is, µ = EF .
If you reach a gap, a region of energy where there are no further levels to be filled, then

µ has to take a jump from the energy at the top of the band which has just been filled to
the energy at the bottom of the next band. Thus a jump in µ reflects the existence of a
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gap (and hence that your system is insulating). It turns out that even when interactions are
turned on, and you cannot describe the system in terms of a bunch of energy levels, a jump
in µ still indicates the existence of a gapped, insulating phase.
In Exercise 12 you found that at low temperature (T = 0.5) µ jumps suddenly to a higher

value when the filling crosses through ρ = 1. This is the most simple indication of a ‘Mott’
insulating phase in the half-filled Hubbard model.

Exercise 13: Show that E − µρ = −∂ lnZ/∂β. Can you show this is true generally, for any
H?

In Exercise 12 you should have found that you are at half-filling ρ = 1 when µ = U/2.
Because half-filling is so often studied, it is convenient to write the Hubbard Hamiltonian
as,

H = −t
∑

〈j,l〉σ
c†jσclσ + U

∑

j

(nj↑ −
1

2
)(nj↓ −

1

2
)− µ

∑

j

(nj↑ + nj↓)

This just corresponds to a shift in the chemical potential µ by U/2. When this is done,
half-filling conveniently occurs always at µ = 0 for any value of t, T, U . To emphasize, the
properties of this ‘new’ model are identical to the old one, if one compares them at the same
density. It’s just that the chemical potentials used to get those densities are offset.

Exercise 14: Write expressions for Z, E and ρ with this new convention for the interaction
term in the Hubbard model. You should notice that they are a bit more symmetric looking
at µ = 0.

Exercise 15: Make a plot of the energy E = 〈H〉 and the specific heat C = dE/dT at
half-filling as a function of T for U = 4.

A fundamental physical quantity in the Hubbard model is the ‘local moment’. Formally,
this quantity is defined by,

〈m2〉 = 〈(n↑ − n↓)
2〉.

In words, the local moment is zero if the site is either empty (|0〉) or has two oppositely
pointed spins (| ↑↓〉), but takes the value one if the site has a single electron (| ↑〉 or | ↓〉).
The following Exercise is of great importance. What you will see is that as U increases or as
T decreases, local moments form. This is our first hint concerning the magnetic properties
of the Hubbard model.

Exercise 16: Make a plot of the local moment as a function of U at half-filling for fixed
T = 2. Make a plot of the local moment as a function of T at half-filling for fixed U =
4. By considering the four different possible configurations of a site, explain why at high
temperatures the local moment takes on the value 〈m2〉 = 1

2
. Similarly, explain physically

why 〈m2〉 = 1 at low temperatures or large values of U .

Exercise 17: Show the local moment is related to the ‘double occupancy’ d = 〈n↑n↓〉 by,

〈m2〉 = 〈n↑ + n↓〉 − 2d.
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(You’ll need to use n2
σ = nσ. Why is that true?) At half-filling, the relation between the

moment and the double occupancy becomes 〈m2〉 = 1 − 2d. In this case, interpret the
evolution of the local moment between the two limits 〈m2〉 = 1

2
and 〈m2〉 = 1 in terms of

what the double occupancy d is doing.

V. ONE ELECTRON SECTOR

We begin with an Exercise.

Exercise 18: Show that the Hubbard Hamiltonian commutes with the operatorsN↑ =
∑

j nj↑
and N↓ =

∑

j nj↓. It is useful to begin by considering the commutator of the kinetic energy
on a single ‘link’ of the lattice connecting sites i and j with the total number of electrons on
those two sites. That is, begin by computing,

[c†iσcjσ + c†jσciσ, niσ + njσ]

After working through the algebra, can you think of an argument that this should be the case
based on the structure of H, that is, based on how the creation and destruction operators
appear together?

The implication of this Exercise is that in finding the eigenstates of the Hubbard model,
we can consider different sectors of N↑ and N↓ separately. So let’s consider the sector where
N↑ = 1 and N↓ = 0.

Exercise 19: The general rule for the eigenvalues of an NxN tridiagonal matrix with “a”
along the diagonal and “b” above and below the diagonal, with periodic boundary conditions,
is λn = a+2b coskn where kn = 2πn/N and n = 1, 2, 3, . . . N . Show this result is correct for
a 4x4 matrix. For general N , what is the eigenvector corresponding to n = N? What is the
eigenvector corresponding to n = N/2?

Exercise 20: Suppose you have a one dimensional lattice of eight sites. Write all the states in
this sector down. Figure out what H does to each state. Use ‘periodic boundary conditions’
so that site eight is considered a neighbor of site one. Write down the 8x8 matrix for H.
Determine the eigenvalues (using the result of the preceding Exercise).

VI. LIMIT OF NO INTERACTIONS

We just finished looking at the single site limit, t = 0. The other extreme of the Hubbard
model is obtained by setting U = 0. In the absence of interactions, it is convenient to
transform operators to momentum space by defining,

c†kσ =
1√
N

∑

l

eik·lc†lσ.

You can think about this process in analogy with the classical normal mode problem: You
are defining new (moemtum) creation operators as a linear combination of the old (position)
ones. As we shall see in Exercises 23 and 24, for the Hubbard model at U = 0 the different

7



momentum modes decouple from each other and behave independently, just as for classical
normal modes.
Notice that on a finite lattice the momentum k cannot be any real number but has dis-

cretized values. For a one-dimensional lattice of N sites, kn = 2πn/N , if periodic boundary
conditions are employed. For a two-dimensional square or three dimensional cubic lattice,
each component separately has such a discretization. These quantized momentum values
come from the identification of site N + 1 with site 1, thereby requiring that kN be an
integer muliple of 2π.
You know that the different Fourier functions are orthogonal. The analog for these

discrete site and momentum variables is given in the following Exercise:

Exercise 21: Prove the following two ‘orthogonality’ relations:

1

N

∑

l

ei(kn−km)l = δn,m

1

N

∑

n

eikn(l−j) = δl,j

Exercise 22: Use the orthogonality relations to prove,

c†lσ =
1√
N

∑

k

e−ik·lc†kσ.

Here, of course, the sum over k means you sum over the discrete allowed momenta kn.
With these relations in hand, we can show a lot of interesting things about the momentum
space operators.

Exercise 23: Verify that anticommutation relations

{ckσ, c†pσ′} = δk,pδσ,σ′

{c†kσ, c
†
pσ′} = 0

{ckσ, cpσ′} = 0.

In other words, the anticommutation relations are “preserved” by this change in “basis”
from site indices to momentum indices.

We can now write down the U = 0 Hubbard model in terms of these momentum space
operators.

Exercise 24: Show that for U = 0 the one dimensional Hubbard model is,

H =
∑

kσ

(εk − µ)c†kσckσ

where εk = −2t cosk. As part of this Exercise, you will show that the sum of all the number
operators over different spatial sites and spin equals the sum of all the number operators
over different momenta and spin. Is this reasonable?
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This Hamiltonian looks like the one arising in the quantum oscillator in the sense that it
is expressed in terms of independent number operators. Note also that this is precisely the
dispersion relation which we obtained when we looked at the one particle sector in Exercises
(18-19) of the preceding section. For U = 0 looking at the one particle sector, as we did
earlier, tells us everything about all the particle sectors: At U = 0, even if one has many
particles, they just occupy the one particle states in accordance with the Pauli principle.
When U is non-zero, however, the one particle sector eigenenergies do not tell us much about
the energies of the sectors with more particles.
It is important to realize that the result that an analysis of the one-particle sector gives

us full information about the model for any particle number rests only on the fact that the
interactions are turned off. It is not necessary that the hopping t between different sites be
the same for all pairs of sites, or that it be limited to near neighbors, or that the chemical
potential be the same on all sites. All that matters is that H be a quadratic form in the
fermion creation and destruction operators. To emphasize: To solve any Hamiltonian H
which takes the form H =

∑

i,j c
†
ihi,jcj with h a (symmetric) matrix of real numbers, simply

diagonalize h and allow the resulting energy levels to be filled in a way which satisfies the
exclusion principle. We will see an important application of this theorem when we do mean
field theory.

Exercise 25: Show that for U = 0 the two dimensional Hubbard model on a square lattice is

H =
∑

kσ

(εk − µ)c†kσckσ

where εk = −2t (coskx + cosky).

What have we accomplished? In real space, all the different sites in the U = 0 model
are mixed with each other: If you start an electron off on a given site, it will not remain
there. The kinetic energy will move it to adjacent sites. But in momentum space the
different modes are decoupled: A fermion operator of a give k appears only together with
operators of the same k. This means that the different momentum modes can be treated
independently, leading to the result in the following Exercise.

Exercise 26: Show that the partition function of the U = 0 Hubbard model is given by

Z =
∏

k

(1 + e−β(εk−µ)).

This is the generalization of Exercise 9 to many independent modes. It is useful to remember
that if a Hamiltonian is comprised of the sum of independent pieces then the partition
function is the product of the associated partition functions. Can you prove this? The
result is also true for classical systems.

Exercise 27: Compute the per site average occupation of the U = 0 Hubbard model and
show it is given by,

ρ =
∑

k

(1 + e+β(εk−µ))−1.

Note this takes the form of the sum of the occupations of different pieces, and that the Fermi
function, fk = 1/[1 + eβ(εσ(k)−µ)], naturally arises.
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Exercise 28: Compute the average energy of the U = 0 Hubbard model and show it is given
by,

E =
∑

k

εk(1 + e+β(εk−µ))−1.

Again, this takes the form of the sum of the energies of different pieces.

Exercise 29: Make a graph of E vs T for t = 1 and half-filling (µ = 0).

Much of this discussion also has analogues with the introduction of normal modes in
classical mechanics, where the goal is similarly to eliminate a set of degrees of freedom
which couple to each other in favor of ones which do not.
The allowed k values together with the dispersion relation determine the density of states

N(E) which counts the number of ways in which the system can have a given energy E.
Formally, N(E) is defined by

N(E) =
1

N

∑

k

δ(E − εk).

In the continuum limit (large number of sites) the sum over discrete momenta values is
replaced by an integral according to the rule 1

N

∑

k → (2π)−d
∫

dk , where d is the spa-
tial dimension. As a simple example, suppose we are in one dimension with a relativistic
dispersion relation εk = ck for k > 0. We can get the density of states as follows:

N(E) = (2π)−1

∫

dkδ(E − ck) = (2π)−1

∫

dk
1

c
δ(E/c− k) = (2cπ)−1(1− θ(k)).

Here the function 1 − θ(k) emphasizes that k > 0 is required. Likewise, for a quadratic
dispersion relation εk = ak2

N(E) = (2π)−1

∫

dkδ(E − ak2) = (2π)−1

∫

dk
1

2ak
δ(

√

E/a− k) = (4aπ)−1
√

a/E.

Exercise 30: Compute (analytically) the density of states N(E) of one dimensional Hubbard
model. You will need to remember how to deal with the δ function of a function f(x),
a simple example of which occurred above in the calculation of the density of states for
a quadratic dispersion. Explain why N(E) diverges at E = ±2t in terms of a picture of
the dispersion relation E(k) = −2tcosk. Compute N(E) numerically and compare to your
analytic calculation.

Exercise 31: Compute (numerically) the density of statesN(E) of the two dimensional square
lattice Hubbard model which has

εkx,ky = −2t(coskx + cosky).

Show the N(E = 0) diverges. Can you compute N(E) analytically? Comment: There are a
number of physical responses of a system which have a temperature scale T∗ = V1e

−1/(N(EF )V2)

where V1 and V2 are some energy scales in the problem and EF is the Fermi energy. If N(EF )
diverges, T∗ can be large. This was suggested as possibly playing a role in the origin of high
temperature superconductivity.
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Exercise 32: Compute (numerically) the density of states N(E) of the Hubbard model on a
two dimensional honeycomb lattice. You will need first to figure out the dispersion relation.
You should find that N(E) vanishes linearly at E = 0. The system is said to be a semi-metal
there. You will need to figure out how the periodic boundary conditions restricts the allowed
k values.

Exercise 33: Compute (numerically) the density of states N(E) of the Hubbard model on a
two dimensional triangular lattice. You will need first to figure out the dispersion relation.
Unlike all the preceding cases, you will find that N(E) 6= N(−E). This is a consequence of
the fact that the model is not “particle-hole” symmetric on a triangular lattice. This will
be discussed further below. As in the preceding Exercise, you will need to figure out how
the periodic boundary conditions restricts the allowed k values.

Actually, there are some more commonly occuring lattice structures in model Hamilto-
nians whose dispersion relation you might want to work out. They are discussed in the
following two Exercises:

Exercise 34: A model almost as widely studied as the Hubbard Hamiltonian is the ‘Periodic
Anderson Model’ (PAM). It consists first of a set of sites whose near neighbors are connected
with hopping ‘t’. These might be in a one-d chain, or a two-d square lattice arrangement
for example. Then there is a second set of sites in the same geometry, except they are
disconnected from each other. The electrons cannot hop between these sites. However, an
electron on one of these second set of sites can hop to their partners in the first set with
energy ‘V ’. In d=1 one might have the following picture:

t t t t t t t
O ----- O ----- O ----- O ----- O ----- O ----- O ----- ...
| | | | | | |

V | V | V | V | V | V | V |
| | | | | | |
O O O O O O O ...

Compute E(k) and N(E) for this model. Compare what happens at V = 0 with V 6= 0.
Do the words ‘level repulsion’ enter your discussion? How about ‘energy gap’? The physics
this model is attempting to describe is that of a set of ‘conduction electrons’ which can hop
from site to site and a set of ‘localized electrons’ which cannot move from site to site, but
which can move into the conduction orbital on the same site. If one adds a Hubbard U on
the localized orbitals one gets the Periodic Anderson model.
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Exercise 35: A three-band Hubbard model widely studied for high temperature supercon-
ductivity has the geometry:

O -- O -- O -- O -- O -- O -- O -- ...
| | | |
O O O O
| | | |
O -- O -- O -- O -- O -- O -- O -- ...
| | | |
O O O O
| | | |
O -- O -- O -- O -- O -- O -- O -- ...
| | | |
O O O O
| | | |
O -- O -- O -- O -- O -- O -- O -- ...

Compute E(k) and N(E). Does one of your bands have a very simple form? This geometry
can be viewed as a square array of sites with additional sites sitting on the links between
them. The copper atoms in high-Tc materials form just such a planar square arrays, whilst
the oxygen atoms sit between them.

VII. GREENS FUNCTION: DEFINITION AND EXAMPLES FOR U = 0

The one particle Greens function,

Gln(τ) = 〈cl(τ)c†n(0)〉
cl(τ) = eHτcl(0)e

−Hτ ,

is a fundamental quantity in understanding the many body physics of interacting electron
systems. Its momentum space and frequency transform yields the photoemission spectrum,
and from it two particle Greens functions which yield the charge and spin susceptibilities
can be obtained.
In the limit of no interactions, Gln(τ) can be computed analytically.

Exercise 36: Show that at U = 0,

ck(τ) = eHτck(0)e
−Hτ = e−εkτck(0)

You should do this two ways: First show that both expressions give the same result on the
two states |0〉 and |1〉. Next, prove the result using the general theorem that ∂A(τ)∂τ =
[H,A(τ)]. (This result immediately follows from the definition A(τ) = eHτA(0)E−Hτ .)

Exercise 37: Show that at U = 0,

Gln(τ) =
1

N

∑

k

eik·(n−l)(1− fk)e
−εkτ .

Notice that G is just a function of the difference n − l, as you would expect for a transla-
tionally invariant Hamiltonian.
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Exercise 38: Write a program to evaluate Gln(τ) numerically at U = 0 for a d = 1 chain and
a d = 2 square lattice.

Actually, we have been a little bit sloppy in defining G. Usually in many-body theory
one defines the so-called ‘time ordered’ Green’s function, Gk(τ) = −〈T ck(τ)ck(0)〉 where
the time ordering operator T is defined by

T ck(τ)ck(0) = ck(τ)ck(0) τ > 0

T ck(τ)ck(0) = −ck(0)ck(τ) τ < 0

This definition of G opens the door into the huge world of diagrammatic perturbation
theory and its application to the Hubbard model, an immense field that we cannot hope to
address. However, the next few Exercises take you down the road just a little way.

Exercise 39: Prove that G(τ + β) = −G(τ) for −β < τ < 0.

Exercise 40: Prove that the result of Exercise (39) requires that the Fourier transform of G
given by

G(τ) =
∑

n

G(i ωn)e
−iωnτ

employs the ‘Matsubara frequencies’ ωn = π(2n+ 1)/β.

Exercise 41: Prove the inversion relation

G(i ωn) =

∫ β

0

dτ

β
G(τ)ei ωnτ

Exercise 42: In Exercise (36) we solved for the time evolution of the fermion operator for

H = εkc
†
kck. Show that the Greens function is given by

Gk(τ) = −e−εkτ (1− fk) 0 < τ < β

Gk(τ) = e−εkτfk − β < τ < 0

Exercise 43: Using the result of Exercise (42) and the transformation rule of Exercise (41)
show that

Gk(i ωn) =
1

i ωn − εk
.

Exercise 44: Another way to get the result of Exercise (43) is to take ∂/∂τ of the definition
of the time ordered Greens function written in the form

Gk(τ) = 〈ck(τ)ck(0)〉 θ(τ)− 〈ck(0)ck(τ)〉 θ(−τ).

Be careful to take the appropriate derivatives of the step functions! Then Fourier transform
both sides and solve for Gk(i ωn). Show that this indeed reproduces Exercise (43).
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The approach used in Exercise (44) is the basis of the ‘equation of motion’ method for
computing G. One starts with the definition of G, takes a time derivative, evaluates the
resulting commutators of H with c and then Fourier transforms. If the Hamiltonian is
quadratic in the fermion operators, then the set of equations so obtained closes, even if the
different fermion operators mix.

Exercise 45: The ambitious student should use the above procedure to evaluate Gk(i ωn) and
Gd(i ωn) for

H =
∑

k

εkc
†
kck + V

∑

k

(c†kd+ d†ck) + εdd
†d

which describes the mixing of a single impurity orbital (labeled by ‘d’) with a band of
conduction electrons (labeled by ‘k’). You will need to write the two definitions of Gk(τ)
and Gd(τ), take their τ derivatives, and Fourier transform. You’ll end up with two equations
in two unknowns (the two Greens functions). Solving, your result for Gd should be

Gd(i ωn) = −
1

i ωn − εd − V 2
∑

k
1

i ωn−εk

VIII. GREENS FUNCTION: t = 0

It is also instructive to look at the Green’s function for a single site, that is, the t =
0 Hubbard model. We have previously written down the Hilbert space for this problem
and obtained the partition function and various equal time quantities. Now consider the
calculation of

G↑(τ) = 〈c↑(τ)c†↑(0)〉.

Only the states | 0 0 〉 and | 0 1 〉 contribute to the expectation value since the creation oper-
ator for up electrons needs to see an empty up state. We can easily compute the action of
the sequence of operators on | 0 0 〉:

c↑(τ)c
†
↑(0) | 0 0 〉 = eHτc↑(0)e

−Hτc†↑(0) | 0 0 〉 = eHτc↑(0)e
−Hτ | 1 0 〉

= eHτc↑(0)e
+Uτ/4 | 1 0 〉 = eHτe+Uτ/4 | 0 0 〉 = e+Uτ/2 | 0 0 〉

and similarly for | 0 1 〉.

Exercise 46: Complete the calculation begun above to show that,

G↑(τ) =
e+βU/4e−τU/2 + e−βU/4eτU/2

2 eβU/4 + 2 e−βU/4
.

Exercise 47: The Green’s function is related to the spectral density A(ω) by the relation,

G(τ) =

∫ +∞

−∞
A(ω)

e−ωτ

e−βω + 1
dω.
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Show that if you plug in

A(ω) =
1

2
( δ(ω − U/2) + δ(ω + U/2) )

and do the integral you get precisely the G(τ) we computed.

This is one way (there are others) to show that the spectral function in Hubbard-1 consists
of two delta function peaks separated by U (the Mott gap).
It is also interesting to compute G and A when there is a local site energy or chemical

potential present. To this end, we work with the Hamiltonian H = U(n↑ − 1
2
)(n↓ − 1

2
) −

µ(n↑ + n↓), Your first guess might be that,

A(ω) =
1

2
( δ(ω − U/2 + µ) + δ(ω + U/2 + µ) ).

The logic behind this guess is that the Hamiltonian now contains an on-site energy term
(the chemical potential) which seems like it should just shift all the energies ω down by µ.
But this is not right! The pole positions are correct, but the weights of the poles are no
longer equal.

Exercise 48: Show that the correct result is,

A(ω) = a+ δ(ω − U/2 + µ) + a− δ(ω + U/2 + µ).

a+ = ( eβU/2eβµ + e2βµ )/( 1 + 2 eβU/2eβµ + e2βµ)

a− = ( 1 + eβU/2eβµ )/( 1 + 2 eβU/2eβµ + e2βµ )

by evaluating G(τ) explicitly from its definition. µ now enters both the partition function Z
and the imaginary time propagation. The coefficients a+ and a− are obtained by equating
this expression for G(τ) with what you get from plugging A(ω) into the formula relating G
and A. Notice that at µ = 0 we recover a+ = a− =

1
2
, and that, regardless of what µ, β and

µ are, we always have a+ + a− = 1.

IX. INTERACTION TERM IN MOMENTUM SPACE

Even though we will not pursue this line of approach, it is interesting to write down the
interaction term in momentum space.

Exercise 49: Substitute the equation which relates real and momentum space operators for
each of the four real space creation operators in the interaction term of the Hubbard model.
As with the hooping term, the sum over sites leads to momentum conservation and reduces
the four momentum sums to three. Show that the result is

U

N

∑

k1,k2,k3

c†k1+k2−k3↑c
†
k3↓ck2↑ck1↓.

The physical content of the this form is that an up and down electron of momentum k2

and k1 scatter and emerge with momenta k3 and k1 + k2 − k3, the same total momentum
as initially.
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Actually, there are many equivalent ways to write the sum over the three momentum
variables. The most elegant is probably:

U

N

∑

k,p,q

c†p+q↑c
†
k−q↓cp↑ck↓.

Here q is the momentum exchanged in the collision of the two electrons of initial momenta
k and p.

X. METAL-INSULATOR TRANSITIONS

We have seen the physical phenomenon of moment formation in the Hubbard model, and
will discuss shortly the magnetic ordering of such moments on different sites. But first we
will give a physical picture for the way in which the Hubbard Hamiltonian can describe
metal-insulator transitions. The idea is simple: Imagine a half-filled lattice in which each
site has one electron. In order for an electron to move, it will have to go onto a site which is
already occupied. This costs an energy U . It is plausible to imagine that if U is very large,
the electrons will not want to move at all, and one will have an “Mott” insulator.
The Mott insulator can be described in a slightly more subtle way which however connects

a bit better with one’s picture of energy gaps as giving rise to insulators. Imagine a nearly
empty lattice and asking what the energy cost is to add an electron. This cost will not involve
U because it is easy to find a site which is empty. When one gets to half-filling, however,
suddenly the cost to add an electron jumps by U since inevitably an added electron must sit
on top of an electron which is already there. This sudden jump in the cost to add a particle
is referred to as the “Mott gap” and is similar in a way to the fact that the cost to add an
electron jumps by some amount if there is a gap in the energy bands. It is worth noting,
though, that this analogy goes only so far, and the Mott gap differs in a number of very
fundamental ways from band gaps.

XI. EXACT DIAGONALIZATION

We have considered the limits t = 0 and U = 0. The Hubbard model cannot be solved
exactly when both terms are non-zero. Our next approach is to consider a small cluster of
sites. Let’s start with two sites. The Hilbert space has 16 states, since each site can have
four possibilities: no electrons, an up electron, a down electron, or both. However, since H
commutes with N↑ and N↓ we actually have to consider only much smaller matrices.

Exercise 50: Show that the sixteen dimensional Hilbert space of the two site Hubbard model
factorizes into four spaces of dimension one, four spaces of dimension two, and one space of
dimension four. Construct the matrices by applying H to each of the vectors.

Exercise 51: Diagonalize the matrices of the preceding Exercise. Even the four dimensional
matrix can be done by hand. Compute the partition function and the energy.

Earlier, when we studied the one site Hubbard model, we learned that magnetic moments
form when the ratio U/T is large. Put another way, thermal fluctuations can destroy mag-
netic moments, while interactions cause them to form. This was at t = 0. We will now see
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that ‘quantum fluctuations’- the motion of the electrons which occurs when the hopping t
is made nonzero, also competes with moment formation.

Exercise 52: Compute the local moment 〈m2〉 in the sector with one up and one down
electron for low temperature. Plot 〈m2〉 as a function of U/t. Interpret your result in terms
of the effect of U and t on moment formation.

We have now learned that U drives the formation of moments on the sites of our lattice
and that thermal fluctuations (T ) and quantum fluctuations (t) both try to inhibit moments.
We conclude this discussion of the two site case by pointing out something about the order
of magnetic moments between sites in the Hubbard model.

Exercise 53: Compute the energy difference between the two states | ↑ ↑〉 and | ↓ ↓〉 (which
have the same energy) and the lowest energy state of the sector which connects the states
| ↑ ↓〉, | ↓ ↑〉, | ↑↓ 0〉, and | ↓↑ 0〉. Show that the lowest energy state in this N↑ = N↓ = 1
sector is lower in energy by an amount proportional to J = t2/U .

The result of the preceding Exercise tells us something about magnetic order in the
Hubbard model. In the half-filled sector, one elctron per site, the states with antiferromag-
netic order (neighboring sites have electrons with opposite spins) are lower in energy than
ferromagnetic ones (neighboring sites have parallel spins). Although this has come out of
consideration of only two sites, it is a general feature: The Hubbard model has antiferromag-
netic order at half-filling. Indeed, the antiferromagnetic ‘exchange’ energy scale J = t2/U
that we found is precisely the energy scale for this order even in the thermodynamic limit.
In addition to antiferromagnetism, one can see the Mott gap in this little two site model

by looking at the eigenvalues of the sector with one up and one down electron. As you
found in Exercise 35, there are two eigenvalues close to −U/2 and two close to +U/2. More
precisely, the eigenvalues are shifted by values involving the hopping t away from ±U/2.
The separation U between ±U/2 is the Mott gap, and, as one increases t the separation
becomes less and less clear. This puts a very simple quantitative face on the statement that
when U is large one has an insulator (a Mott gap) but when U is small, the electrons can
still move around.
This analysis of the two site model can be extended quite easily to somewhat larger

lattices by writing a program which generates the matrix elements of H and diagonalizes
the resulting matrices. In fact, this is one important way that information has been gained
concerning the Hubbard model. Although it is limited to 10-20 sites (depending on how
much computational effort one is willing to put up with) the results obtained are exact and
any possible quantity, including time dependent ones, can be computed.

Exercise 54: Write a program to diagonalize the four site Hubbard model. Compute E and
〈m2〉.

In these notes, the idea of diagonalization has arisen twice. First, we pointed out that
in the absence of interactions, the Hamiltonian is quadratic in the fermion creation and de-
struction operators, H =

∑

i,j c
†
ihi,jcj, and we can solve the Hubbard model by diagonalizing

the matrix h. Second, in the discussion immediately above, we talked about constructing
the matrix for H when the interactions are nonzero. However, there is a very important
difference in the two usages of the term “diagonalization.” This is emphasized in the Exercise
which follows.
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Exercise 55: Compare the computational cost of the diagonalizations in each of the two
cases, U = 0 and U 6= 0. How big are the matrices involved for N sites? How large a system
could you study in both cases?

XII. STONER’S CRITERION FOR FERROMAGNETISM

Stoner developed a very simple picture of ferromagnetism based on the competition be-
tween the kinetic energy cost of making the up and down spin electron numbers different and
the associated potential energy gain. The basic idea is the following: Because of the Pauli
principle the way to occupy a given set of energy levels with the lowest energy is to start
filling from the bottom and put two electrons, one of each spin, in each level. Otherwise, if
you make the numbers of up and down electrons unequal, and don’t fill each level with two
electrons, you will have to occupy higher energies.
However, if you make the number of up and down electrons unequal, you can reduce the

potential energy: Consider the limit of complete spin polarization where the are no electrons
of one spin species. Then, obviously, the potential energy is zero.
Let’s now make this argument more precise: Consider a system with density of states

N(E) and both up and down spin electrons filling the energy levels up to the same maximum
called the ‘Fermi level’ EF . The density of up and down electrons is equal. We’ll call it n.
Let’s compute the change in energy which results from a reduction in the density of down

spin electrons by δn and at the same time an increase the number of up spin electrons by
δn. The potential energy changes by,

δP = U(n+ δn)(n− δn)− Un2 = −U(δn)2.

If we shift an extra δn electrons into the up group, we will occupy energy levels above the
original EF . Recalling the definition of the density of states as the number of levels at an
energy E we see that N(E) = dN/dE whence δn = N(EF )δE. This tells us how big the
range of energies is above EF we are filling in terms of δn. Likewise, we are emptying levels
below EF that used to be occupied by down spin electrons. The net result of this process
is to shift δn electrons up in energy by an amount δE. The change in the kinetic energy is
then,

δK = +δnδE = +
1

N(EF )
(δn)2.

Putting these two expressions together,

δE = δP + δK = (−U +
1

N(EF )
)(δn)2 = (−UN(EF ) + 1)

(δn)2

N(EF )
.

We see that if UN(EF ) > 1 the total energy change δE < 0, so it is favorable to have
the up and down electron densities different and hence favorable to have ferromagntism.
This is called the Stoner criterion. It tells us that magnetism is favored by large electron
interactions.
As we shall see, this simple calculation yields results in precise agreement with mean field

theory.
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XIII. MEAN FIELD THEORY: FERROMAGNETISM

We have considered the Hubbard model in the simple limits of no hopping (t = 0),
no interactions (U = 0), very small system sizes (one and two sites), and using Stoner’s
approach. We now turn to our first ‘serious’ calculation of the Hubbard model- mean field
theory. Our goal is to study ferromagnetism.
What is mean field theory? We commented in an earlier section that a Hamiltonian

which is quadratic in the fermion creation and destruction operators, H =
∑

i,j c
†
ihi,jcj, can

be solved by diagonalizing the matrix h. Mean field theory is a method which produces such
a quadratic Hamiltonian from a model like the Hubbard model which has quartic terms
Uc†↑c↑c

†
↓c↓ involving four fermion creation and destruction operators. The approach begins

by expressing the number operators as an average value plus a deviation from the average:

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉)
ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉).

Substituting these expressions into the Hubbard interaction term, and dropping the ‘small’
term which is the product of the two deviations from the average yields,

ni↑ni↓ = [〈ni↑〉+ (ni↑ − 〈ni↑〉)][〈ni↓〉+ (ni↓ − 〈ni↓〉)]
≈ 〈ni↑〉〈ni↓〉+ 〈ni↓〉(ni↑ − 〈ni↑〉) + 〈ni↑〉(ni↓ − 〈ni↓〉)]
= ni↑〈ni↓〉+ ni↓〈ni↑〉)− 〈ni↑〉〈ni↓〉.

The interpretation of this expression is simple. The up spin electrons interact with the
average density of down spin electrons, and similarly the down spin electrons interact with
the average density of up spin electrons. These two terms overcount the original single
interaction term, so the product of the average densities is subtracted off.
Within this mean field replacement, the Hubbard Hamiltonian is now quadratic, and

takes the form (in one dimension)

H = −t
∑

lσ

(c†lσcl+1σ + c†l+1σclσ) + ni↑〈ni↓〉+ ni↓〈ni↑〉)− 〈ni↑〉〈ni↓〉.

Since H is quadratic, its solution is a matter of diagonalizing an appropriate matrix. Specif-
ically, for the case of ferromagnetism, one imagines that the average occupation is indepen-
dent of spatial site i but allowed to be different for the two spin species. That is, 〈ni↑〉 = n+m
and 〈ni↓〉 = n−m. Our goal is to calculate the energy E for fixed n as a function of m and
see whether the minimum is at m = 0 (paramagnetic state, no ferromagnetism) or m 6= 0
(ferromagnetism). Because the expectation values 〈ni↑〉 and 〈ni↓〉 have such a simple, site
independent form, the energy levels can easily be written down. (See Exercise 23.) They
are,

ε↑k = U(n−m)− 2t cosk
ε↓k = U(n+m)− 2t cosk.

Again, I have assumed we are in one dimension.
One merely has to take the various possible fillings of the lattice with up and down

electrons and add these levels up. That is, we proceed as follows:

(1) Fix the lattice size, N , to some fairly large value, for example N = 128 or greater.
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(2) Choose a total particle number Ntot and on-site repulsion U .

(3) Loop over N↑ = 0, 1, 2, . . . .Ntot. For each choice, set N↓ = Ntot − N↑. (Actually, your
answers should be symmetric on interchange of N↑ and N↓, so you really only need do half
the values N↑ = 0, 1, 2, . . . .Ntot/2.) Define the densities, n↑ = N↑/N and n↓ = N↓/N .

(4) Loop over the N allowed momentum values k = 2π/N{−N/2 + 1,−N/2 + 2, . . .N/2}.
Fill up the lowest N↑ and N↓ of the energy levels. That is, add the associated energy values
to some accumulator which stores the total energy. Recall that the levels are given by
ε↑(k) = −2 t cosk + U〈n↓〉 and ε↓(k) = −2 t cosk + U〈n↑〉.

(5) Finally, normalize your energy accumulator to the number of sites (divide by N) and
add in the term −U〈n↑〉〈n↓〉. This gives the energy for the given N↑ and N↓ = Ntot − N↑.
Make a list of them and see which is lowest.

(6) Repeat the calculation for different U and Ntot to get the phase diagram.

I will now show some real code for this problem and also a few results from running it.
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A. The code

implicit none
integer i,N,Nup,Ndn,Ntot
real*8 t,U,tpin,k,ekup,ekdn,denup,dendn
real*8 efup,efdn,eftot

write (6,*) ’N,Ntot,t,U’
read (5,*) N,Ntot,t,U
tpin=8.d0*datan(1.d0)/dfloat(N)
do 1000 Nup=0,Ntot,2

Ndn=Ntot-Nup
denup=dfloat(Nup)/dfloat(N)
dendn=dfloat(Ndn)/dfloat(N)

efup=0.d0
efdn=0.d0
do 200 i=-N/2+1,N/2

k=tpin*dfloat(i)
if (i.ge.-Nup/2+1.and.i.le.Nup/2) then

ekup=-2.d0*t*dcos(k)+U*dendn
efup=efup+ekup

endif
if (i.ge.-Ndn/2+1.and.i.le.Ndn/2) then

ekdn=-2.d0*t*dcos(k)+U*denup
efdn=efdn+ekdn

endif
200 continue
eftot=(efup+efdn)/dfloat(N)-U*denup*dendn

write (36,990) Nup,Ndn,eftot
990 format(2i6,f16.6)

1000 continue

end

B. Results for ρ = 1
2

Here are results for one quarter filling, that is, a density ρ = ρ↑+ρ↓ =
1
2
electrons per site.

(This is one quarter of the maximal density of two electrons per site.) The magnetization
m is defined such that m = (ρ↑ − ρ↓)/(ρ↑ + ρ↓).
You see that at U/t = 2 the optimal energy is paramagnetic: the energy E is minimized

at m = 0. This is still the case at U/t = 4 (see next page), but the energy of the spin
polarized solutions (m nonzero) are getting much closer to m = 0. (Note the energy scale.)
When U/t = 4.2 the energies for large |m| have started to turn down and are lower than

21



FIG. 1: Energy versus magnetization of d = 1 Hubbard model at U/t = 2 and ρ = 1
2 (128 electrons

on an N = 256 site lattice).

intermediate m, though E(m = 0) is still lowest. U/t = 4.4 has just gone ferromagnetic.
Notice that the transition is first order. That is, as U/t increases we jump suddenly

from a minimum at m = 0 to a minimum at m = ±1. Another possibility would have
been a second order transition in which the minimum at m = 0 gradually shifts to larger m
and partially polarized solutions are best for a range of U/t. Without examining other MF
solutions (like antiferromagnetic ones) we cannot tell if this first order transition is ‘real’
or simply occurs because we have restricted to ferromagnetic solutions and something even
lower in energy is actually winning.

C. Consistency with Stoner Criterion

We derived the Stoner Criterion for Ferromagnetism UN(EF) > 1. For the d=1 Hubbard
model we can compute,

N(E) = 2
∑

k

δ(E − εk) = 2

∫

dk

2π
δ(E − εk)

with εk = −2tcos(k). A simple calculation gives

N(E) =
1

π
√
4t2 − E2

. (1)

(You also did this in Exercise 30.) This is the density of states for a single spin species,
which is what was used in the Stoner criterion.
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FIG. 2: Same as Fig. 1 except U/t = 4.

FIG. 3: Same as Fig. 1 except U/t = 4.2.

We also need the relation between the density ρ and the Fermi energy EF:

ρ = 2

∫ EF

−2t

dE N(E). (2)

I put in the factor of two for spin here, so that when I plug in ρ I use the total density
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FIG. 4: Same as Fig. 1 except U/t = 4.4.

FIG. 5: Same as Fig. 1 except U/t = 6.

(including both spin species). This yields,

ρ =
2

π
cos−1(

−E

2t
). (3)

You can check this latter relation obeys the expected limits: ρ = 0 when EF = −2t, ρ = 1
when EF = 0, and ρ = 2 when EF = +2t.
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Putting these equations together, we can get the density of states at EF for a given filling:

N(ρ) =
1

2πt

1

sin(πρ/2)
(4)

For half-filling, ρ = 1 we see that N(ρ = 1) = 1
2πt
and hence Ucrit = 2πt. For quarter-filling,

ρ = 1
2
we see that N(ρ = 1) = 1√

2πt
and hence Ucrit =

√
2πt = 4.44t. This is in pretty good

agreement with Figures 1–5 which showed us that Ucrit was around 4.4t. I suspect that the
slight disagreement (Figure 4 suggests Ucrit a bit less than 4.4t while Stoner gives Ucrit a bit
more than 4.4t) is due to the fact that Figures 1-5 were run on N = 256 site lattices. That
is, I believe the small difference is likely a finite size effect.

Exercise 56: Write a code to do mean field theory for the d = 1 Hubbard model as described
above. Compute the critical U above which the ferromagnetic state is lower in energy than
the paramagnetic one for Ntot = 3N/4.

Exercise 57: Verify that the critical U you obtained for ferromagnetism precisely agrees with
the Stoner criterion. You will need to use the value for the density of state obtained in
Exercise 30.

There is another way to write the code, which you might find easier. Work in the grand-
canonical ensemble. That is, provide a chemical potential µ and then compute N↓ and N↑
by filling those levels which are below µ. The density then comes out of the choice of µ,
and, indeed, you will need to tune µ to get the density you desire. (This process is a bit
annoying.)
One advantage of this method is that one can let the code find the lowest energy config-

uration, instead of searching through all the possible choices of magnetization. This is done
in the usual way: Start at some densities n↑, n↓, compute E(n↑, n↓), and then alter n↑, n↓, to
reduce E (using your favorite gradient descent algorithm or whatever). Continue iterating
until you reach the minimum.
Another reason this second, ‘grand canonical’, approach is more convenient is that it

is easy to do things at finite temperature. One simply replaces the process where one
accumulates the energies of all levels εσ(k) < µ with accumulating εσ(k) times the Fermi
function 1/[1 + eβ(εσ(k)−µ)]. (Likewise, one puts this Fermi function in the computation of
the density). Another reason the grand canonical approach is sometimes preferable is that
it also generalizes better to states where the lowest energy is more complex, ‘striped phases’
etc, where the density of electrons is allowed to depend in a completely general way on the
lattice site and spin species. In that situation, though, there is usually no longer an analytic
form for the energy levels and one has to diagonalize a matrix to get them.

Exercise 58: Write your own code to do mean field theory for the d = 1 Hubbard model in
the grand canonical ensemble as described above. Again compute the critical U above which
the ferromagnetic state is lower in energy than the paramagnetic one for Ntot = 3N/4.

Before concluding with the discussion of mean field theory, it should be emphasized that
this mean field approach, while very useful in yielding insight into the possible phases of the
system, is a completely uncontrolled approximation. Mean field theory overestimates the
tendency for ordered phases, and can (and does) predict magnetic order where none occurs.
Even if a particular phase transition is correctly predicted by mean field theory, the details
of the transition (critical temperature, critical exponents, etc) are usually incorrect.
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XIV. MEAN FIELD THEORY: ANTIFERROMAGNETISM

The basic idea to look for antiferromagnetism in the Hubbard model within mean field
theory is the same as for ferromagnetism. The thing that is just slightly more difficult is to
figure out the energy levels.
First, let’s define precisely what an antiferromagnetic configuration is. Recall that a

paramagnetic configuration has the same exact density nlσ = n regardless of site l or spin σ,
and that a ferromagnetic configuration allows the density to depend on σ but not l: nl↑ = n↑,
and nl↓ = n↓ (see above).
An antiferromagnetic configuration allows a simple spatial dependence in which the den-

sities alternate: nl↑ = n+ (−1)lm, nl↓ = n− (−1)lm. That is, the even sites have a surplus
of up spin electron density: neven ↑ = n+m, neven ↓ = n−m. The odd sites have a surplus of
down spin electron density: nodd ↑ = n−m, nodd ↓ = n +m. Note that the total number of
up and down electrons in the whole system is the same, nN , and that each site has the same
density 2n, once the densities of the individual spin species are summed. More generally
one might have some sort of mixed ferromagnetic and antiferromagnetic configuration.
The form of the Hamiltonian in mean field theory is, H =

∑

j,l c
†
jσMσ(j, l)clσ, where

Mσ(j, l) has −t just above and below the main diagonal, with M↑(l, l) = U(n− (−1)lm), or
M↓(l, l) = U(n + (−1)lm) along the diagonal. The eigenvalues for this sort of tridiagonal
matrix when the diagonal is constant (m = 0). When m is nonzero, the eigenvectors of
momentum k and k + π are mixed (see below for further discussion) and the eigenvalues

become: E(k) = ±
√

(−2 t cosk)2 + (Um)2 +Un. Here k is now defined in a ‘reduced zone’,
k = 2π/N{−N/4 + 1,−N/4 + 2, . . .,+N/4}, so that there are still N eigenvalues as there
should be for this N dimensional matrix (two eigenvalues for each k, but only half as many
k. The eigenvalues are the same for σ =↑ and σ =↑.) You might want to check that these
eigenvalues reduce to the old ones when m = 0. Can you also check the eigenvalues make
sense when t = 0? (Check that all the counting (degeneracies) are correct!)
The process for computing the energy of an antiferromagnetis configuration is the same

as the steps (1–5) above, with the replacement of the ferromagnetic eigenvalues by the
antiferromagnetic ones. Since we are assuming the total up and down densities over the
whole lattice are identical, one no longer loops over different N↑. However, one does have to
loop over different m. More precisely, one fixes n = Ntot/2 and then tries m = 1/N, 2/N . . .,.
One reason this problem is worth doing is because of its formal connections to so many

other problems in solid state physics. The most obvious is the opening of a gap in an energy
band by a periodic potential V (G) with wavevector G (e.g. see Ashcroft and Mermin). In
our problem we can think of the up spin electrons as moving in a periodic potential which
has period π resulting from the oscillating down spin density (and vice-versa). A gap is
opened at k = ±π/2. There is also a connection to simple phonon problems where one
makes the masses or spring constants vary: m1,m2,m1,m2, . . . or k1, k2, k1, k2, . . .. Again,
the single phonon dispersion curve for uniform masses and springs breaks into two branches,
optic and acoustic. Some of you are presently doing this problem in Physics 240B. There
are many other examples.

A. The Code

implicit none
integer i,N,Ntot,istag
real*8 t,U,tpin,k,ek,mstag
real*8 rho,Umstag,Urho
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real*8 eaf,eaftot,lambdaminus

write (6,*) ’N,Ntot,t,U’
read (5,*) N,Ntot,t,U
write (36,*) Ntot/2+1

tpin=8.d0*datan(1.d0)/dfloat(N)
rho=dfloat(Ntot)/dfloat(N)
Urho=U*rho/2.d0

do 1000 istag=0,Ntot,2

mstag=dfloat(istag)/dfloat(N)
Umstag=U*mstag/2.d0

eaftot=0.d0
do 200 i=-Ntot/4+1,Ntot/4

k=tpin*dfloat(i)
ek = -2.d0*t*dcos(k)
lambdaminus=-dsqrt(ek*ek+Umstag*Umstag)
lambdaminus=lambdaminus+Urho
eaftot=eaftot+lambdaminus

200 continue
eaftot=2.d0*eaftot/dfloat(N)-U*(rho*rho-mstag*mstag)/4.d0

write (36,990) istag,eaftot
990 format(i6,f16.6)

1000 continue

end

B. Results for n = 1
2

Here are results for one quarter filling, that is, a density n = n↑ + n↓ =
1
2
electrons per

site. (This is one quarter of the maximal density of two electrons per site.) The staggered
magnetization ms is defined such that the up and down spin densities are n↑ = n+(−1)ims

and n↓ = n− (−1)ims.
For U = 2 the paramagnetic solution ms=0 has lowest energy. We know too from the

preceding note that m = 0 is the lowest of the ferromagnetic energies. Notice as a check on
the codes that one can compare with Figure 1 and see that E(ms = 0) = E(m = 0).
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FIG. 6: Energy versus staggered magnetization of d = 1 Hubbard model at U/t = 2 and ρ = 1
2

(128 electrons on an N = 256 site lattice).

As before, we now start cranking up U . Figures 2 and 3 show the energy for U = 4 and
U = 8 respectively. We see at U = 8 that a nonzero ms is better than zero ms. However,
the state is not actually antiferromagnetic because (Figure 4) the ferromagnetic energy is
yet lower. (Again, check the fact that E(ms = 0) = E(m = 0). Really I should plot the
ferromagnetic and antiferromagnetic data, Figures 3 and 4, on the same graph to make
comparisons nicer.)
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FIG. 7: Energy versus staggered magnetization of d = 1 Hubbard model at U/t = 4 and ρ = 1
2

(128 electrons on an N = 256 site lattice).

FIG. 8: Energy versus staggered magnetization of d = 1 Hubbard model at U/t = 8 and ρ = 1
2

(128 electrons on an N = 256 site lattice).

C. Results for n = 1

The preceding results suggest that at quarter filling, ρ = 1
2
, the d = 1 Hubbard model

is more prone to ferromagnetism than antiferromagnetism. Let’s look at half-filling, ρ = 1,
where antiferromagnetism tends to be most stable. Sure enough, Figures 5 and 6 show the

29



FIG. 9: Energy versus magnetization of d = 1 Hubbard model at U/t = 8 and ρ = 1
2 (128 electrons

on an N = 256 site lattice).

FIG. 10: Energy versus staggered magnetization of d = 1 Hubbard model at U/t = 4 and ρ = 1

(256 electrons on an N = 256 site lattice).

antiferromagnetism is optimal (for U = 4). In fact, here, the best ms is the biggest it can
be.
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FIG. 11: Energy versus magnetization of d = 1 Hubbard model at U/t = 4 and ρ = 1 (256 electrons

on an N = 256 site lattice).

D. Phase boundary

Our ultimate objective could be to analyze a bunch of energy curves, both ferro- and
antiferromagnetic, for different densities ρ and couplings U and figure out the whole phase
diagram in the ρ − U plane. As a first step in this direction, Figure 7 shows the value
of the staggered magnetization which minimizes the energy, as a function of density for
different values of U . For small U = 2, the energy is minimized in the paramagnetic
phase ms = 0 until close to half filling (ρ = 1). As U increases, so does the regime of
antiferromagnetism. For U = 16 the optimal staggered magnetization becomes nonzero
around ρ = 0.24. So looking at the five points where ms becomes nonzero begins to give
us a sense of the antiferromagnetic phase boundary. We have to do similar analysis for the
ferromagnetic case (and compare energies) to complete the picture.

XV. PARTICLE-HOLE SYMMETRY

The Hubbard Hamiltonian has a fascinating ‘particle-hole’ symmetry which allows us to
relate its properties for different values of the parameters. Particle-Hole symmetry also plays
an important role in quantum monte carlo simulations. Consider the introduction of new
operators which exchange the role of creation and destruction:

d†iσ = (−1)iciσ (5)

The meaning of the (−1)i will be explained further below.

Exercise 59: Verify that the number operator for the d particles equals one minus the number
operator for c particles: d†iσdiσ = 1 − c†iσciσ. What happens to the interaction term in the
Hubbard model U(n↑ − 1

2
)(n↓ − 1

2
) under the particle-hole transformation?
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FIG. 12: Staggered magnetization ms which minimizes the energy, as a function of density ρ for

the d = 1 Hubbard model on a N = 256 site lattice. Curves are (left to right) U = 16, 12, 8, 4, 2.

Before seeing what happens to the kinetic energy term under a particle-hole transforma-
tion, we introduce the idea of a bipartite lattice. A bipartitie lattice is one which can be
divided into two sublattices A and B in such a way that a site in A has neighbors which are
all members of B and vice-versa. The (−1)i factor in the particle-hole transformation takes
the value −1 on one sublattice and +1 on the other.

Exercise 60: Is a one dimensional chain a bipartite lattice? How about a two-dimensional
square lattice?

Exercise 61: Is the triangular lattice bipartite? What about the honeycomb lattice?

The following Exercise determines what happens to the kinetic energy term when the
particle-hole transformation is performed.

Exercise 62: Verify that the kinetic energy is unchanged under a particle-hole transforma-
tion. That is, it takes exactly the same form in terms of the d operators as it did in terms
of the c operators. Where does the bipartite nature of the lattice come enter? What role do
the (−1)i factors play?

What have we learned? Exercises 58 and 61 tell us that the Hubbard model, when the
interaction term is written in the particle-hole symmetric form, is invariant under particle-
hole transformations when µ = 0. The condition µ = 0 is necessary since the number
operators which µ multiplies are not invariant but go into one minus themselves. Actually,
a more precise statement is that the Hubbard model with a given µ maps into the Hubbard
model with the sign of the chemical potential reversed, that is, with µ replaced by −µ. In
fact, this implies that the whole phase diagram of the Hubbard model on a bipartite lattice
is symmetric about half-filling, as the following Exercises suggest.
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Exercise 63: Show that the density of the Hubbard model on a bipartite lattice obeys the
relation ρ(µ) = 2 − ρ(−µ) by starting with ρ = 〈n↑ + n↓〉 and making a particle-hole
transformation.

Exercise 64: Show that the local moment of the Hubbard model on a bipartite lattice obeys
the relation 〈m2〉(µ) = 〈m2〉(−µ).

Exercise 65: Look back at you pictures of the density of states N(E) obtained in Exercises
27-30 and explain their behavior when reflected about E = 0 in terms of particle-hole
symmetry.

XVI. RELATION BETWEEN THE ATTRACTIVE AND REPULSIVE HUB-

BARD MODELS

It is also interesting to consider what happens when a particle-hole transformation is
performed only on one of the spin species.

Exercise 66:

Show that if we perform the transformation,

di↑ = ci↑

di↓ = (−1)ic†i↓
the sign of the interaction term reverses, while the kinetic energy remains unchanges.

The Hubbard model with −U is called the attractive Hubbard model because a negative
value of U represents an attraction between spin up and psin down electrons on the same
site. By considering various operators one can show that magnetic order in the +U Hubbard
model is related to superconducting and charge order in the −U Hubbard model, so that
an understanding of the phases of one model immediately implies considerable information
about the other.

Exercise 67: Show that under a particle-hole transformation of just the down spin species,
the following operator mappings occur. (Ignore constants.)

mz,i = ni↑ − ni↓ ↔ ni = ni↑ + ni↓

m+,i = c†i↑ci↓ ↔ c†i↑c
†
i↓

m−,i = c†i↓ci↑ ↔ ci↓ci↑

The physical content of these results is that spin correlations along the z axis are inter-
changed with charge correlations, and spin correlations along the x and y axes (which are
compinations of m+ and m−) are interchanged with pairing correlations.

XVII. WORLD MONTE CARLO IN ONE DIMENSION

A discussion of the path integral formulation of quantum mechanics, starting with the har-
monic oscillator and then moving to quantum spins, bosons, and fermions, with an emphasis
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on Quantum Monte Carlo, can be found at: http://leopard.ucdavis.edu/rts/resproj6.html
by hitting the ‘World-Line Quantum Monte Carlo” link (number 88).
A shorter discussion which starts immediately with the Heisenberg model can be found

at: http://leopard.ucdavis.edu/rts/boulder.html by hitting the ‘Lecture II (pdf file) link.

XVIII. DETERMINANT QUANTUM MONTE CARLO

A discussion of the determinant Quantum Monte Carlo method can be found at
http://leopard.ucdavis.edu/rts/boulder.html by hitting the ‘Lecture III (pdf file) link.

XIX. THE HUBBARD MODEL IN INFINITE DIMENSION- DYNAMICAL

MEAN FIELD THEORY

One of the reasons for the continued interest in the Hubbard model is because of a
recently developed approach known as ‘dynamical mean field theory’ (DMFT). This new
technique has allowed for very interesting solutions of the Hubbard model itself, and also,
more importantly, has provided a framework for the inclusion of Hubbard-type interactions
into density functional theory. A ‘popular’ introduction to DMFT is available in: while a
much more complete technical review is in: “Strongly Correlated Materials: Insights From
Dynamical Mean-Field Theory,” Physics Today, March, 2004. A. Georges, G. Kotliar, W.
Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

XX. CONCLUSIONS

In these notes we have tried to provide an introduction to the Hubbard Hamiltonian and
some of its elementary physics. We have seen how to write the model down and understand
its behavior in the limit of no interactions, no kinetic energy, small clusters, and mean field
theory. We have simply pointed to more sophisticated numerical methods and not mentioned
at all the more complex analytic approaches, of which there are many indeed.
We have not mentioned at least one key piece of physics of the Hubbard model. the idea

of a ‘Kondo resonance’. It turns out that as one progresses from weak to strong coupling,
the spectral function of the Hubbard model does not smoothly evolve from a single blob
to two upper and lower Hubbard bands. Instead, sometime in the course of changing the
interaction strength a three peak structure is in evidence: The beginning of the formation
of upper and lower Hubbard bands, but also a sharp peak at the Fermi energy. Actually, it
was originally thought that such peaks only arise in variants of the Hubbard model which
contain both localized and delocalized electrons. It is only relatively recently that it was
realized this sharp peak occurs in the Hubbard model as well. This very important idea is
at the heart of much of the current research into the Hubbard model and its experimental
realizations.
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