
COMPUTATIONAL QUANTUM MAGNETISM

Boulder 2003 Summer School

Lecture Three- Determinant Quantum Monte Carlo

A. Introduction

In the preceding lecture, we emphasized that the world-line QMC algorithm, which is very

effective for quantum spin and boson systems (in the absence of frustration) fails for fermions

in more than one dimension because it is impossible to make the matrix elements, and hence

the weight for the world-line configurations, positive. Fortunately, there is an alternative,

the determinant QMC method. In general, this approach also has a sign problem, but

there are certain important special cases, such as the half-filled Hubbard model, where the

sign problem does not occur. Even when the sign problem arises, it becomes a problem at

relatively low temperature, and one can often extract interesting physics before the method

breaks down.

The determinant QMC method has certain characteristic features. Unlike monte carlo

methods which have a local action and whose update time per degree of freedom is inde-

pendent of lattice size, the fermion action is non-local. Updating one of the field variables

takes a cpu time which grows as the square of the lattice size N (number of electrons).

Hence to update all the field variables is a process which scales as the cube of N . Current

simulations are of several hundred electrons an order of magnitude larger than possible with

exact diagonalization. Because the fermion Green’s function is the central quantity in the

method, determinant QMC also allows detailed contact with analytic many body methods.

While the determinant QMC method has not seen the refinements that world-line QMC

has undergone in the last several years, there is one very important development, which is its

application to dynamical mean field theory (DMFT). DMFT is an approach to interacting

electron systems which allows the electron self-energy Σ to fluctuate in imaginary time (that

is, Σ retains its full frequency dependence), while ignoring spatial fluctuations (momentum

dependence). While it initially was applied to model Hamiltonians, DMFT is increasingly

being integrated into electronic structure calculations within the local density approximation

(LDA). The use of determinant QMC in the context of “LDA+DMFT” is clearly one of the

most important frontier areas of QMC at the moment.

Finally, it is also worth noting that determinant QMC is the general methodology behind

Lattice Gauge Theory, although there are, of course, significant differences in the details.
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B. Multidimensional Gauusian Integration

The equations involved in determinant QMC bear many similarities with multidimen-

sional Gaussian integrals. Reviewing these identities will help provide an intuitive feel for

the formulae of determinant QMC, within a familiar context.

The generalization of the familiar one dimensional Gaussian integral,

∫ +∞

−∞
dx e−ax2 =

√
π

a
, (1)

to many dimensions is,

Z =
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN e−~xA~xT

=
πn/2

√
detA

. (2)

Here ~x is an N dimensional vector of real numbers and A is a real, symmetric, N dimensional

matrix. I have used the notation Z for the integral to emphasize that it would be the partition

function for a set of classical variables whose action is given by the quadratic form ~xA~x T .

We also know how to do these integrals when the integrand includes factors of xi.

〈xixj〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN xixj e−~xA~xT

=
1

2
[A−1]ij (3)

Again, the notation 〈xixj〉 emphasizes a possible statistical mechanical interpretation of the
ratio of integrals.

Further factors of xi in the integrand generate expressions which are similar in form to

‘Wick’s Theorem’, which tells us that contractions of products of many fermion operators

can be expressed as sums of products of contractions taken two operators at a time, in all

possible permutations.

〈xixjxkxl〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxNxixjxkxle

−~xA~xT

=
1

4
([A−1]ij[A

−1]kl + [A
−1]ik[A

−1]jl + [A
−1]il[A

−1]jk) (4)

While it is possible to do these integrals with arbitrary polynomials as part of the inte-

grand, they cannot be done when a quartic term appears in the exponential. We shall see

shortly the analogies of these various statements for traces over fermion Hamiltonians.

C. Basic Formalism of Determinant QMC

In solving the Hubbard model we want to evaluate expressions like

〈A〉 = Z−1Tr [Ae−βH ]

Z = Tr e−βH (5)

As we emphasized in lecture I, the “Tr” is a trace over the 4N dimensional Hilbert space,

where N is the number of sites: The exact diagonalization method explicitly contructs the

matrix for H in an occupation number basis.

2



In analogy with multidimensional Gaussian integration, we can do such traces if they are

over quadratic forms of fermion operators. Suppose

H = ( c†1σ c†2σ . . )











h11 h12 . .
h21 h22 . .
. . . .
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c1σ
c2σ
.
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. (6)

Here h is an NxN matrix. The identity is,

Z = Tr e−βH = det[I + e−βh]. (7)

Note that while the original “Tr” is over a quantum mechanical 4N dimensional Hilbert space,

the “det” is a usual determinant of NxN matrices. “I” is the N dimensional identity matrix

and “h” is the matrix of numbers entering the definition of H. It is worth emphasizing

that because we are taking the trace over the full 4N dimensional Hilbert space, we are

including states of all occupation numbers. The determinant QMC method, as formulated

here, works in the grand canonical ensemble. Particle density is controlled by changing the

chemical potential. This contrasts with our formulation of the world line method which

works in the canonical ensemble (fixed particle number).

It is trivial to check that Eq. 7 holds for a single fermion degree of freedom, with Hamil-

tonian H = εc†c. There are two states in the Hilbert space and

Z = 〈0|e−βεc†c|0〉+ 〈1|e−βεc†c|1〉 = 1 + e−βε. (8)

More generally (e.g. for more than one fermion degree of freedom) Eq. 7 can be verified by

going to the basis where h is diagonal. However, the equations are best derived by employing

the techniques of Grassman integration.

There is a more general identity. If one has a set of quadratic forms l = 1, 2, . . . L

H(l) = ( c†1σ c†2σ . . )
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. . . .
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, (9)

then,

Z = Tr [e−∆τH(1)e−∆τH(2) . . .e−∆τH(L)] = det[ I + e−∆τh(1)e−∆τh(2) . . .e−∆τh(L)]. (10)

Here I have changed the prefactor in the exponential from β to ∆τ for reasons which will

soon be clear. It is also true that,

Gij = 〈ciσc†jσ〉 = Z−1Tr [c iσc
†
jσ e−∆τH(1)e−∆τH(2) . . .e−∆τH(L) ]

= [ I + e−∆τh(1)e−∆τh(2) . . .e−∆τh(L) ]−1ij . (11)

The “fermions Greens function” is just an appropriate matrix element of the inverse of the

NxN matrix whose determinant gives the partition function. These formulae also are best

verified by the techniques of Grassmann integration.
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The above formulae describe how to perform traces over quadratic forms of fermion

degrees of freedom. Unfortunately, the Hubbard Hamiltonian has an interaction term

Uni↑ni↓ = Uc†i↑ci↑c
†
i↓ci↓ which is quartic in the fermion operators. To handle such terms,

we employ the (discrete) Hubbard–Stratonovich transformation,

e−U∆τ(n↑−
1

2
)(n↓−

1

2
) =

1

2
e−

U∆τ
4

∑

S

eλS(n↑−n↓) (12)

Here coshλ = eU∆τ/2, and S is an Ising variable which can take on the two values S = ±1.
This identity can be verified by explicitly enumerating the 4 possible choices for n↑, n↓.

Now we divide β = L∆τ and employ the Trotter decomposition. As in the discussion of

world line QMC in lecture II, this allows us to isolate different pieces of the Hamiltonian.

But rather than introducing complete sets of states, our approach here is to employ the

Hubbard-Stratonovich transformation. We write H = K + V where K contains all the

one–body pieces and V the on–site Hubbard interaction. Then,

Z = Tr e−βH = Tr [ e−∆τK e−∆τV e−∆τK e−∆τV . . .]. (13)

The e−∆τK are quadratic in the fermion operators. For each factor of the L terms e−∆τV

above, we introduce N Hubbard–Stratonovich fields, one for each of the spatial sites where

we have an on–site interaction to decouple. The Hubbard–Stratonovich field S(i, l) therefore

has two indices, space i and imaginary–time l. Now the e−∆τV (l) are also quadratic in the

fermion operators. We put an argument l on V to emphasize that while the K are all

identical, the V (l) contain different Hubbard–Stratonovich fields on the different imaginary

time slices.

Applying the preceding identities allows the analytic evaluation of the trace,

Z =
∑

S(il)

detM↑ detM↓. (14)

We get a determinant for each of the two spin species. The quantum partition function has

now been expressed to a classical monte carlo problem: We need to sum over the possible

configurations of the real, classical, variables S(i, l) with the “Boltzmann weight” which is

the product of the two fermion determinants. Note that as in world-line QMC, the classical

variable to be summed over has an additional index l labeling imaginary time.

We will write down the explicit forms of the matrices for the one–dimensional Hubbard

model.

Mσ = I + e−ke−vσ(1)e−ke−vσ(2) . . .e−ke−vσ(L). (15)

Here

k = −∆τ











µ t 0 0 . .
t µ t 0 . .
0 t µ t . .
0 0 t µ . .











(16)
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and

vσ(l) = λσ











S(1, l) 0 0 0 . .
0 S(2, l) 0 0 . .
0 0 S(3, l) 0 . .
0 0 0 S(4, l) . .











(17)

Note that the matrices vσ(l) for different spin species σ differ only in the sign of the coupling

to the Hubbard–Stratonovich field.

In higher dimensions, k picks up additional off–diagonal “bands”, but the vσ(l) remain

diagonal.

D. Summary of Determinant QMC Algorithm

The most primitive determinant QMC code then proceeds as follows:

(1.) Initialize all the Hubbard–Stronovich variables (for example, set them up randomly).

(2.) Compute the matrices Mσ and their determinants.

(3.) Change one or more of the Hubbard–Stratonovich fields, and compute the new matrices

M ′
σ and their determinants.

(4.) Throw a random number 0 < r < 1 and “accept” the new configuration with probability

min(1,detM ′/detM), the usual Metropolis algorithm.

(5.) Repeat (1–4). Measurements of the Greens function G are obtained by accumulating

M−1
ij . Other observables like magnetic susceptibility by appropriate products of matrix

elements of M−1.

E. Subtleties and “Tricks of the Trade”

While the above formulae allow you to write a “bare–bones” determinant QMC algorithm,

there are a number of refinements which are essential for a “real working code”.

(1.) The algorithm, as stated, scales in CPU time as N 4L. The reason is that re–evaluating

the determinant ofM ′ takes N 3 operations, and we must do that NL times to sweep through

all the Hubbard–Stratonovich variables (if, as is typically done, we change just one at a time).

This scaling can be reduced to N 3L. (In what follows I will drop the spin indices.) The idea

is to write M ′ =M + dM and the ratio of determinants as,

detM ′/detM = det(M−1M ′) = det(M−1 (M + dM)) = det(I +GdM), (18)

with the definition G =M−1. It turns out that dM is very simple because when a Hubbard–

Stratonovich field is flipped, a single diagonal entry in v(l) changes. Because dM is sparse,

the evaluation of det(I + GdM) takes a cpu time independent of N and L! The update

decision is no more costly than for a local weight as in a typical classical monte carlo.

However, we need to know G = M−1 for this calculation, and once the Hubbard-

Stratonovich field change is made, one needs to update G. This updating G does not

take N 3 iterations, as one might expect of a matrix inversion, but can be done in only
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N2 operations, again as a result of the simplicity of the change dM . The relevant identity

which relates the new G′ = (M + dM)−1 to the old G = M−1 is an application of the

“Sherman–Morrison” formula given, for example, in Press’s ‘Numerical Recipes’. In short,

steps (3–4) above are replaced by: (3’–4’.) Change one of the Hubbard–Stratonovich fields,

Throw a random number 0 < r < 1 and “accept” the new configuration with probability

min(1,det(I+GdM)). Recompute G if move accepted. There is a savings of one power of

the lattice size in computation time over the primitive approach.

(2.) The matrix G needed in this refinement of the algorithm is precisely the usual equal

time fermion Greens function (Eq. 11), familiar from many-body physics, which determines

all the interesting physics of the Hamiltonian. Thus measurements are “free”– the matrix

inverse used in the updates is the quantity needed for construction of all observables.

(3.) More complicated two–body measurements are made using “Wick’s theorem”. For

example to measure the transverse spin spin correlation 〈c†i↓ci↑c†j↑cj↓〉 one accumulates the
product of matrix elements G↑ijG↓ji. This is similar to expressions for higher order expec-

tation values in Gaussian integration.

(4.) It is also possible to measure correlation functions with non–zero imaginary time sepa-

ration, but this requires considerably more work. Analytic continuation of such correlations

is required to get the dynamical response. That is quite difficult.

(5.) The big product of matrices required in constructing M is numerically unstable at low

temperatures and strong couplings. That is, the product has a very high ratio of largest

to smallest eigenvalue. Special “stabilization” is required to do the matrix manipulations.

While these add to the complexity of the code, they however have no content in the sense

that all the above equations are valid, it is just a question of how best to multiply matrices

on a machine of finite precision.

(6.) The determinants of the matrices can go negative. This is called the “fermion sign

problem.” The sign problem does not occur for certain special cases. For example, if U is

negative (the “attractive” Hubbard model), the individual determinants can go negative,

but the matrices are always equal and hence the determinant appears as a perfect square.

This is a consequence of the fact that the appropriate Hubbard–Stratonovich transformation

couples S to the charge n↑ + n↓ as opposed to the spin as given in Eq. 12 for the repulsive

model. If U is positive but the chemical potential µ = U/2 (“half–filling”) one is also okay.

The matrices are not identical in this case, but the determinants are nevertheless related by

a positive factor, that is, they again have the same sign, so their product is always positive.

Some types of randomness are also acceptable. It is okay for the hoppings t and interactions

U to depend on the link or site. These statements are demonstrated by various particle–hole

transformations on the Hamiltonian.

(7.) Alternate Hubbard–Stratonovich transformations are possible. One can couple more

symmetrically to the spin, that is not single out the z component Or, one can couple to

pair creation operators. So far, all such alternatives give a worse sign problem than the

transformation Eq. 12.
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(8.) Very similar “ground state” determinant simulations exist which work at T = 0 and in

the canonical ensemble.

F. What QMC Simulations Can Do

The state of the art of QMC simulations, in the absence of a sign problem, are studies of

several hundred electrons down to temperatures of βt = 10 − 20. In terms of temperature
and bandwidth, this means T of roughly 1/100 of the bandwidthW = 8t of the 2-d Hubbard

model. This is plenty cold enough to see well developed magnetic correlations. For typical

parameters, t = 1, U = 4 one chooses ∆τ = 1/8 so these beta values correspond to roughly

L = 100, and the simulation involves approximately 104 Hubbard–Stratonovich variables.

In cases where one has a sign problem, βt is limited to 4–5. This is, unfortunately,

not low enough in temperature to make conclusive statements about certain important

problems, perhaps most prominently the question of the existence of long range d−wave
superconducting correlations in the Hubbard model away from half-filling.

G. Some Results

One of the things that we looked at with exact diagonalization in lecture I was the

development of the magnetic moment 〈m2
z〉 at half-filling as the temperature decreased and

doubly occupied and empty sites were frozen out. This quantity is shown in Fig. 1 on a 6x6

lattice for different interaction strengths U . We see the local moment begin to develop from

its uncorrelated value 〈m2
z〉 = 1

2
at a temperature set by U , and then saturate at low T . The

local moment does not reach 〈m2
z〉 = 1 at T = 0 because significant quantum fluctuations

allow doubly occupied and empty sites to occur even in the ground state. However, as

U increases, these fluctuations are suppressed and the moment becomes better and better

formed. 〈m2
z〉 also makes a further small adjustment at low T , which is due to the onset of

long range magnetic order.

Another quantity we examined in lecture I was the specific heat of the Heisenberg model.

We also discussed the mapping between the Hubbard and Heisenberg models at large U .

This connection is re-emphasized in Fig. 2 which shows that the low temperature peak in

the specific heat of the Hubbard model can be mapped onto that of the Heisenberg model

with J = 4t2/U .

The near-neighbor spin correlation are shown in Fig. 3. The magnetic structure factor

S(π, π) = 1
N

∑

ij〈Sz,iSz,j〉 sums these correlations over the whole lattice. It is found that
S(π, π) grows linearly with N at low T , indicating that the correlations extend over the

whole lattice.

Finally, in Fig. 4 we show the density of states at ω = 0 for the half-filled Hubbard model

at different values of U . The suppression of N(ω = 0) at low T and large U is a signature

of the presence of an insulating gap caused by the on-site repulsion.
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FIG. 1: The local moment 〈m2z〉 as a function of temperature for different interaction strengths U

and lattice size 6x6. The lattice is half-filled.
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FIG. 2: The specific heat of the Hubbard model for U = 10t. There is a high temperature peak

which is fit well by considering a single site Hubbard model (t = 0) and a low temperature peak

which agrees well with the Heisenberg model with J = 4t2/U = 0.4.

H. Conclusions

Determinant QMC is the method of choice for simulating interacting electron Hamilto-

nians in more than one dimension. One can easily study problems with several hundred

particles, an order of magnitude greater than with exact diagonalization, and often large
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FIG. 4: The density of states at N(ω = 0). As T is lowered, a Mott-Hubbard gap opens up. The

half-filled Hubbard model is insulating.

enough to make compelling finite size scaling analysis. The sign problem is much less serious

than in world-line QMC, and, for the repulsive Hubbard model, one can go to temperatures

on the order of at least W/30 where W is the bandwidth. For special cases like the attrac-

tive Hubbard model or the repulsive model at half-filling, there is no sign problem, and the

ground state properties can be obtained.

Algorithm development in determinant QMC currently focusses on applications to
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DMFT, where the Hubbard-Stratonovich field is allowed to fluctuate only in imaginary

time. A number of questions are being actively explored in this field: How does one incor-

porate more complex (e.g. Hund’s rules) interactions into simulation which include multiple

orbitals? Can one re-introduce some degree of spatial fluctuations?
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