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1. Introduction

With the explosive development of large-scale computers over the past decade,
there has been a parallel increase of interest in simulating models of interacting
electrons. The desire is not only to “benchmark” analytic approaches to prob-
lems — which, except for a few special cases, are perturbation methods based on
extreme parameter values and whose accuracy and radii of convergence are
unknown — but also to develop a new predictive approach, valid on its own, that
is capable of treating intermediate regions of parameter space where existing
analytic approaches fail. Indeed, many interesting and novel materials, such as
the heavy-fermion and high-temperature superconducting materials, seem to fall
in these regimes.

Simulation techniques are still being developed. In many cases, where results
are reported, they are as much a demonstration of an algorithm as they are an
exploration of new physics. Difficulties in performing the simulations include
excessive computation time, probabilities that become negative, fermion
wavefunctions that turn bosonic, and numerical instabilities at low temper-
atures. Progress, however, is being made, and part of our objective is to describe
some rtecent progress in stabilizing simulations at low and zero temperatures
(Loh Ir et al. 1989).

In order to eliminate all but the essential electronic degrees of freedom, we
work in a limited basis of single-electron orbitals, giving the Hamiltonian

H=— Z Z Tij(c;'facja + C;a-cia) + z Vijninj’ (11)
ij o ij
where the Tj; are the hopping integrals and c;, is the annihilation operator
for an electron of spin ¢ = 7 or | in orbital i. This Hamiltonian models
the kinetic energy of the particles through the inter-orbital hoppings as
— T;;cl ¢;,. The Coulomb interaction is modelled as a functional };; V;;mn; of
the charge density n; = CZT Cit + c;‘lcil, where the Vj; include the effects of
screening. This Hamiltonian is a generic form that includes such condensed-
matter physics standards as the Hubbard and extended-Hubbard Hamiltonians
and the Anderson Hamiltonian. There is great interest in studying approximate
models at zero and finite temperatures to see if they contain features that
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Stable simulations of models of interacting electrons 181

explain antiferromagnetism, superconductivity, or other low-temperature phase
transitions observed in nature.

In a path-integral representation of the problem, we review how one intro-
duces auxiliary, Hubbard-Stratonovich fields (Hubbard 1959) to eliminate the
self-interactions of the electrons. These auxiliary fields mediate the screened
interaction ¥};, somewhat like photons mediating the standard electromagnetic
interaction. Once the direct interactions among the electrons have been elimina-
ted, the resulting “free-fermion” problem is readily solved, albeit only formally,
in terms of determinants of single-electron wavefunctions. Finally, we perform
“importance sampling” — with Monte Carlo, Langevin, or molecular-dynamics
techniques — over the auxiliary bosonic fields.

One difficulty in thermodynamic studies of many-electron systems is that
the lowest-energy states are assigned exponentially large weights in the low-
temperature limit. Due to the Pauli exclusion of electrons, however, these states
are not macroscopically occupied. Instead, low-energy states are filled up to
some “Fermi energy”, which controls the physics of the system. Numerically,
information about states around this “Fermi energy”, which is exponentially
suppressed relative to the bottom of the “band”, must be extracted as small
differences of large numbers — a hopelessly noisy procedure for finite-precision
computers. Fortunately, recent algorithmic developments allow the explicit
separation of exponentially divergent numerical scales associated with different
energies, stabilizing numerical simulation at a small computational cost (Loh Jr
et al. 1989).

In this chapter, we will discuss finite-temperature and zero-temperature
formalisms for simulating systems of fermions that are coupled only with
bosonic degrees of freedom — either physical electron—phonon interactions or
couplings to a fictitious field that eliminates direct electronic correlations. In
section 2, we establish the theoretical framework for performing fermionic
simulations by presenting the transformations which replace electronic correla-
tions with intermediate bosonic fields, by characterizing path integrals of
coupled electron—boson wavefunctions, and by discussing the importance sam-
pling of bosonic fields. In this section, we also depart from common practice in
that we devote considerable attention to developing a specific insight into what
goes on in these simulations, where intuition is often a poor guide. This
discussion is presented to motivate the generally tedious mathematics that
underlies the algorithms and to help the reader in further algorithmic develop-
ment. In section 3, we formulate algorithms in mathematical terms, giving the
details necessary to carry out a calculation.

Unfortunately, the diverse numerical scales present in the simulations make
calculations unstable at low temperatures on any computer of finite precision. In
section 4, we discuss techniques for decoupling these scales and stabilizing
simulations. In section 5, we present results for sampling models with strong
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electronic correlations. Finally, in section 6, we discuss and give suggestions for
future areas of development.

2. Theoretical framework

In this section, we present the theoretical framework for simulating systems of
coupled electrons and bosons. The Trotter approximation (Trotter 1959, Suzuki
1976) is used to discretize quantum path integrals. Intermediate bosonic fields
replace direct electronic interactions according to the Hubbard-Stratonovich
transformation (Hubbard 1959). We try to give the reader a feeling for the
characteristics of the bosonic and fermionic degrees of freedom. Within the
approach we describe, only the fermionic degrees of freedom are summed “out”
in a formally exact manner. Thus, we discuss importance-sampling strategies for
the bosonic fields.

2.1. Path integrals in imaginary time

Feynman formulated quantum mechanics as an integral over all paths of
a physical system through phase space (Feynman and Hibbs 1965). For real-
time dynamics, any particular path contributes to the integral with a phase that
depends exponentially on the integrated action along the path. Hence, two very
similar paths can interfere destructively and provide no net contribution to the
path integral. On the other hand, near a path of stationary phase, paths have
similar phases and can add up constructively. In the. classical limit # — 0, only
the stationary-phase path is important, and so in this limit Feynman’s path-
integral formulation of quantum mechanics reduces to the principle of least
action.

Statistical mechanics, however, entails the study of path integrals in imagi-
nary time (Feynman and Hibbs 1965), in which contributions vary exponentially
in magnitude, but not in phase. Therefore, path integrals are dominated by paths
of large magnitude, which can be identified by importance-sampling techniques
(Creutz and Freedman 1981). For quantum simulations, then, one generally
studies the operator exp( — fH) by writing each matrix element as a path
integral

Lle Py = > <¢L|3_A1HW1><1//1|e_ArH|l//2> T
L2029 RNl Y

x (Wn-1le” 4 e (2.1)

in imaginary time f§ = it/h, where the path integral has been discretized in small
“time” steps At = f/N,. In contrast, the real-time dynamics of quantum systems
is characterized by many interfering paths which resist similar importance-
sampling treatments.
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For finite-temperature statistical mechanics, the partition function is

Z=Tre M=% (yle ™My, (2.2)
19>
where 8 = 1/kgT is the reciprocal temperature; i.e. the integral is over all paths
that are periodic in imaginary time, with [¥> = | > = [y,
In the zero-temperature limit, § = 1/kgT diverges and the boundary condi-
tion in imaginary time becomes unimportant. Thus, we may fix the endpoints of
the paths and study

Z = {Yrle™ My, (2.3)

which projects the ground state out of [y > and |y ) for very large f.
We will develop finite- and zero-temperature formalisms for simulations
based on eqs. (2.2) and (2.3), respectively.

2.2. The Trotter approximation

Aside from the physical intuition and elegant formalism that accompany path
integrals (Feynman and Hibbs 1965), eq. (2.1) has the important computational
advantage that it is possible to approximate the matrix elements of exp( — At H)
for At — 0 even though the matrix elements of exp( — fH) are, in practice,
impossible to evaluate. Typically, one breaks the Hamiltonian H into any
number of pieces H = H, + H, + - - + H,, which possibly do not commute,
and writes the Trotter approximation (Trotter 1959, Suzuki 1976)

g drthe At L om0t | (A7), (2.4)

e—ArH —
for each factor in eq. (2.1). In the limit At — 0, the approximation for the path
integral becomes exact. Since numerical calculations are performed for nonzero
At, results must be extrapolated to At = 0.

2.3. The Hubbard-Stratonovich transformation

The Trotter approximation may be used to separate out direct electronic
interactions. These interactions may then be replaced by couplings to bosonic
fields using the Hubbard-Stratonovich transformation (Hubbard 1959). As an
example, we consider the Hamiltonian

H=Hy+ Ul —3)(n, — ), (2.5)

where n, is the number of electrons of spin 6 = 1 or | in some impurity
orbital. Hubbard (1959) originally used time-ordering conventions to handle
the path integral. With eq. (2.4), the action in the path integral can be
simplified. = Through  the  Trotter  approximation, exp(— AtH)
~ exp( — AtHo)exp( — At U(n; — $)(n; — %)), the impurity-orbital repulsion
is separated from the factor exp( — At H,) at each time interval in eq. (2.1). This
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can be written as the Gaussian integral
exp(— At U(ny — 3)n, —3))
= exp(— AtU((n — 37 + (1, — $*)/Dexp(AtU(ny —n,)?/2)
= exp( — At U/4exp(AtU(n; — n,)?/2)

=exp(— At U/4) \/1% J_m dxexp( — x?3/2 + /At U x{n; — n})). (2.6

By casting the exponent in the form of a perfect square and introducing the
auxiliary field x, one can rewrite U(n; — $)(n, —4) = U(cle; — Dcle;, — 3),
which is quartic in fermion creation and annihilation operators, in a form which
is only quadratic in these operators. The repulsive Coulomb interaction has
been replaced by an intermediate bosonic field x, which couples to the net spin
n, — n, in the impurity orbital. Physically, the effect of a positive value of U is to
create a spin moment in this orbital.

We have engineered the transformation so that the auxiliary field is always
real. Had we not done so, insurmountable computational difficulties would have
arisen since, as we will see, we would like to have real exponentials. Had U been
negative, we would have written

exp( —AtU(n; — D)(n, — 3)) = exp( — A U/4)

\/]2? Jf: dx exp(( — x?/2)

+ /AU x(n, +n, — 1)), 2.7)

coupling the field to a charge degree of freedom. Physically, the effect of
a negative value of U is to create charge fluctuations in the impurity orbital.

Since it must be effected at each value of the imaginary time, the Hubbard-
Stratonovich transformation produces a functional integral over some field
x(1). By restricting fluctuations in this field, one may derive the Hartree—Fock
and random-phase approximations RPA (Evenson et al. 1970, Hamann 1970,
Hassing and Esterling 1973). By treating the fields numerically, one may sum
over all fluctuations of the fields and so systematically improve these approx-
imations to any desired accuracy.

All interactions in condensed-matter physics can, in principle, be derived by
eliminating the bosonic fields that appear in the electromagnetic field equations.
We are not interested in solving all of condensed-matter physics ab initio,
however, but only a very approximate model that is nonrelativistic, tight-
binding, screened, etc. The auxiliary, Hubbard-Stratonovich variables are the
bosonic fields that, when eliminated, produce the reduced interaction. These
fields have several characteristics. First, like the electromagnetic photon, the
field introduced in eq. (2.6) is massless and so provides an instantaneous interac-
tion. Second, the field is entirely localized at the site and so results only in an



Stable simulations of models of interacting electrons 185

on-site repulsion. Extended Coulomb interactions can be modelled either by
bosonic fields that are localized on bonds between the orbitals or by coupling
fields on different sites. (See Appendix I.) Third, the field could be discrete. This
observation, due to Hirsch (1985), is motivated by the fact that the fermion
occupation is also discrete: the occupation numbers n; and n; of up and down
electrons can only be 0 or 1. Again, working only with real auxiliary fields, we
use one of two different transformations,

e AtU(ny — 1/2)(n) — 1/2) _ %_ e( — At|U|/4) Z eocx(n, - ”1), U > O,
X

2.8)
:%e(—Ar\U|/4)Zeax(nT+n171), U <0’
X

depending on the sign of U. In both cases, cosha = exp(Az|U|/2) and the
bosonic field is discrete: x = + 1. We remark again that for an on-site repulsion,
the auxiliary field couples to the spin degree of freedom, while for an on-site
attraction it couples to the charge. Simulations using discrete transformations
produce results with error bars about half of those for the continuous transfor-
mation (Hirsch 1985, Buendia 1986) presumably due to the decreased phase
space. In Appendix II, we will see that the discrete and continuous transforma-
tions are equivalent in the limit At — 0.

Once the auxiliary fields have been introduced, the sums (2.2) and (2.3)
become nested sums

ZZZ} Y exp(—8)=Y plx] (2.9)
{x} fermionic {x}

over bosonic {x} and fermionic degrees of freedom, where S is some fermion—
boson action that we will write out explicitly for some cases later. For a fixed
configuration of bosonic field variables x, we will sum over the fermions exactly
to calculate the weight p[x] of that configuration. Then, we will sum over the
x(t) stochastically using importance sampling.

2.4. Boson world lines

To develop a physical intuition for the configurations generated in the simula-
tions, we now discuss world line pictures, the imaginary-time evolutions of
bosons and fermions. For a bosonic field, the world line is the value of the field
as a function x(t) of time. These fields may be auxiliary, massless Hubbard-
Stratonovich variables or they could be massive, physical phonons. For
fermions, the world lines are the positions of the fermions in real space, again,
as functions of time.

While the world line of a quantum particle may be continuous in imaginary
time, it is never differentiable. There are always components of very high
frequency, which cannot be represented by a finite number of degrees of freedom
on a computer. On the other hand, these high-frequency components contribute
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negligibly to most physical observables, such as the potential energy or the
average displacement of the particle; hence, cutting off the very high frequency
components causes no practical limitations in calculations (Loh Jr 1988). Spe-
cifically, the error caused by discretizing the path integral in finite imaginary-
time units At is due principally to the Trotter approximation (2.4) and not to the
elimination of the high frequencies.

Let us now examine the effects of the mass of a quantum particle on the
world lines of the particle. Consider massive Einstein phonons in the Holstein

Hamiltonian
2 2
Di kx;
H= LA A N 2.10
H, + Ei <2m+ > >+ Ei Xn;, ( )

where H,, is the purely electronic part of the Hamiltonian and x; and p; are the
positions and momenta of the site phonons which couple to the electronic
charge density n;. The energy expended in lattice distortion is modelled with the
harmonic term kY x7?/2. In this model, an electron distorts the ionic lattice
through its coupling A to the phonons. In certain parameter regimes, it is
energetically favorable for a second electron to remain close to this first electron
rather than to distort another portion of the crystal structure. Thus, the
phonons induce an effective attraction between electrons, much as the massless
Hubbard-Stratonovich fields mediate an attraction in eq. (2.7). Due to their
finite mass, the physical phonons do not react instantaneously to electronic
motions and so provide a retarded attraction.

For the massive phonons, the mass m governs the time variation of the
phonon world lines through the velocity term

xi(1) — x;(t — A1)
At

xi(1) =
in the discretized action

]

S=Y At (Hel + Y k(1) + 3hexi(0?) + 23 xi(r)ni(r>>. 211)
T=At1 i i

In the limit At — 0, then, the world line x(t) must be continuous.

In contrast, eq. (2.7) has only distortion ( — x?/2) and fermion-boson
(/AT U x(n — 1)) terms. Since there is no kinetic-energy term, field variables on
adjacent time slices, T and t — Az, are not directly coupled: in contrast to
physical, massive bosons, the world lines of the Hubbard--Stratonovich fields are
not even continuous, let alone differentiable! Indeed, if we had employed
Hirsch’s discretized transformation (2.8), then x(z) = + 1 and the lines could not
be continuous.

World lines, generated by purely bosonic actions, are shown in fig. 1. The
world lines are piecewise constant for the duration At = 0.04 of a time slice, but
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Fig. 1. Sample bosonic world lines: (a) massive field, (b) massless, continuous field, and (c) massless,

discrete x = + 1 field. The massless ficlds have large fluctuations, which average out to produce

a low-frequency average order \/E Since the coupling to massless fields is larger, however, the net
effect of bosonic fields is always of the same order.

then jump to new constant values. Thus, each line is described by a sequence of
values X; = x(IAt) for I =1,2,..., N,. The world lines are generated by the
weights

rlx] ~exp< — ArZ(%(%)Z +12<X12>>,

!
with m = k = 1 for the massive boson in fig. 1a;

XZ
plx] ~ eXp< — Z%)
1
for the massless, continuous field in fig. 1b; and

pLx] ~ exp( — YO, — 1)+ 3(X, + 1))>
1
for the massless, discrete field in fig. lc.
Figure 1a shows the world line for a massive boson. Given that it is required
to be piecewise constant, the line is reasonably “continuous”: x(t) is highly
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correlated between successive time slices. Nevertheless, it is not “differentiable”
(in the limit At — 0). The field variable is typically of order 1. Hence, electron—
boson and purely electronic contributions enter the action to the same order
in At.

This balance between electron-boson and purely electronic contributions is
somewhat more subtle for massless bosons. Consider a massless field x(r) that
mediates the single-orbital interactions as in eq. (2.5). Possible world lines for
x(t) are sketched in figs. 1b, ¢ for continuous fields [egs. (2.6) or (2.7)] an
discrete fields x = + 1[eq. (2.8)], respectively. Now, successive values x(t — A1)
and x(t} of the field variable are completely uncorrelated. Over some finite time
7, the electron feels N, = t/At random fields with a mean field of order

1/./N, ~ /At. Thus, for massless bosons the effective field on the electron is

reduced by a factor \/E due to random fluctuations. The dotted lines in
figs. 1b, ¢ show the reduced, effective field after the high-frequency oscillations
have been eliminated by averaging over a short imaginary time. On the other
hand, the effective coupling of the electrons to this reduced field is much
stronger. While the electron—boson contribution to the action goes as ¥ Az x for
the massive boson, it goes as Y ./At|U|x in eqgs. (2.6) and (2.7) and as
Yoax ~Y . /AT|U|x, as At -0, in eq. (2.8). Hence, the effective coupling in-
creases by a factor \/XT to compensate for the reduction in the effective,
time-averaged field. In short, the electron—boson contribution enters the action
to the same order as the purely electronic contribution. For massive bosons,
however, x(z) guides the electrons smoothly, while for massless bosons the field
achieves the same effect by jerking the electrons wildly.

(As we shall see, round-off errors in the numerical calculations pose severe
difficulties for simulations. One effect of the wild fluctuations in massless fields is
to accentuate these numerical instabilities since the fields require larger-scale

computations to effect smaller-scale (\/A—r) averages.)

The electronic degrees of freedom, then, are determined to equal order in At
both by purely electronic contributions and by the coupling to bosonic fields.
We have shown this for massless and massive fields that were generated by
purely bosonic actions. In Appendix I1, we will see that the result remains the
same even when the bosonic fields are generated by the full electron—boson
action. While it appears that we have relied on a different electron-boson
coupling for the massless- and massive-field cases, the redefinition of the cou-
pling is, in fact, quite natural. If we had simply followed the conventions of the
massive fields and let the mass go to zero, the electron—boson coupling and the
time-averaged field would have been of order 1. Fluctuations in the field,

however, would have grown to order 1/,/At. We choose, instead, to keep the
field values of unit order. Thus, for massless bosons, we must rescale the field

and the coupling and the time-averaged field drops to order \/At.
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2.5. The single-electron propagator

For any particular configuration of field variables, the single-electron, imagin-
ary-time propagator B(t,, ;) for 7, = 7, is given by the matrix elements

Bij(t2,11) = <0|c,-<,7 exp( — J S{1) dr>>CJT|0>, (2.12)
where J is the time-ordering operator, S the imaginary-time electron-boson
action containing the dependence on the x(t), and |0) is the vacuum state. This
propagator obeys the identities

B(ts, 7,)B(13, 71) = B(13,7,), B(r,7)=1. (2.13)

Since the up and down electrons can couple differently to the bosonic fields,
we will compute the single-particle propagator (2.12) separately for each elec-
tronic spin 1 and |. In a homogeneous bosonic field, B?(z,, 7,) causes the
wavefunction of an electron with spin o, injected at a specific site at imaginary
time 7., to diffuse evenly throughout the spatial lattice and grow or decrease in
magnitude. From egs. (2.12) and (2.13), the solution of the equations of motion is

ci(t2) = Z Bjj(z2, T1)Cj(T1),

T _ s _ (2.14)
ci(tz) = Z C; (T1)Bﬁ (12, 71)-

Notice that c;(t) and ¢](7) are not Hermitian conjugates since we are working in
imaginary time.

2.6. The many-electron propagator

Up to this point, we have neglected the statistics of the identical fermions. While
the spin ¢ of a fermion distinguishes it from a fermion of opposite spin — g, all
fermions of the same spin are indistinguishable. Indistinguishable fermions obey
Fermi—Dirac statistics, i.e. the wavefunction changes sign under the exchange of
any two identical fermions. An important consequence of this is the Pauli
exclusion principle for identical fermions in the same state. When the
Fermi-Dirac nature of the particles becomes important — at low temperatures
and high densities — it is the delicate, nearly perfect cancellation of opposite-sign
contributions to the partition function that gives rise to the distinctly fermionic
phenomena that we hope to measure. Thus, while we can use importance
sampling for the bosonic fields, summing stochastically over fermion configura-
tions would be an ineffective means of capturing fermionic character. Our
strategy will be to use importance sampling to sum over configurations of the
bosons, but to sum, even if only formally, over all fermionic paths exactly. This,
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we will see, does not eliminate the cancellation or “sign” problem completely,
but it does make many calculations possible.

Of course, these is nothing “fermionic” about the single-particle propagator
(2.12), since statistics is meaningless for a single particle. So we now consider the
imaginary-time propagator for N, identical fermions, each of which has spin
o and couples identically to the external, time-varying field, but all of which are
independent of each other except for their statistics. The advantage of having
independent fermions is that many-fermion propagators are easily expressed in
terms of single-particle propagators as (see Appendix I1I)

Oleg, e, ey <7 exp < —J S(1) dr))c}N el 10y

Biljl(fzafl) BiljZ(TZaTI) Bilea(TZ’Tl)
B (15,1 B; i (15,1 o By (2,7

— det 2},('2 1) 212('2 1) ‘ J a(' 2 1) (215)
BiNnjl(Tb Ty) BiNajz(TZ: Ty) e BiNajNU(TZ’ 1)

The determinant automatically incorporates the odd parity of particle exchange
into the calculation. We remark that while the number N!/N, /(N — N,)! of
many-body states grows exponentially with the number N of possible single-
particle states, the factorization of the problem into single-particle propagators
reduces the calculation to a manipulation of N x N matrices and makes the
calculation scale as N* at worst*. Thus, the effort of introducing auxiliary fields
to eliminate direct electron—electron interactions has already brought us some
advantages.

To summarize, since the evolving particles are “independent”, the many-
particle propagator should simply be a product of single-particle propagators.
Having injected N, identical particles at time 7, into orbitals ji, j,, . . . , j,, We
do not, however, know which of these particles arrive at the various orbitals
i1,i3, ...,y attime 7,. The determinant (2.15) is a sum over all such arrivals
with the appropriate minus signs inserted to account for an even or odd number
of permutations of the identical fermions.

2.7. The sign problem

We now imagine that we inject two particles at 7, at sites j; and j,, as in fig. 2. In
the figure, the space axis is vertical and one assumes periodic boundary condi-
tions. The imaginary-time axis runs from right to left. We assume the sign of the
electron-boson coupling to be such that shaded regions of space are unfavorable
for electron propagation. In the figure, the bosonic field variables happen to

*“Conjugate-gradient” methods, which we will not discuss here, scale nominally as N since they
iterate with sparse representations of N x N matrices. Unfortunately, such methods require a diver-
gent number of iterations at low temperatures, making them impractical.
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Fig. 2. Bosonic field configurations of different “sign”. The electron-boson coupling is chosen such
that shaded regions of space-time are unfavorable for electron propagation. In (a), well-defined
channels lead electrons at j; and j, back to themselves. In (b), the channels force an exchange of the
electrons. The fields in (b), therefore, would appear in a simulation with opposite signs relative to (a).

provide well-defined channels for the electrons. In fig. 2a, these channels guide
the electrons from j; and j, back to themselves. Hence, the configuration of field
variables represented in fig. 2a contributes to the partition function with a posit-
ive weight. In contrast, the auxiliary variables represented in fig. 2b force an
exchange of the electrons and their contribution appears in the partition
function with a negative weight. These pictures correspond to high temperatures
(short imaginary times and few chances for exchanges), low particle densities,
and massive bosons (slowly varying fields in time). In practice, particularly for
massless bosonic fields, which mediate instantaneous interactions, the fields are
very noisy and hence do not provide well-defined channels. Thus, in the limit of
low temperature, high fermion densities, and massless fields, there are many
exchanges and it is difficult to characterize the sign of the determinant. The
picture becomes one of fermions tunnelling through an amorphous medium.
Nevertheless, it is clear that the space-time structure of the x-fields can lead to
determinants (2.15) of opposite signs.

This is unfortunate because we rely on importance sampling to make
measurements in the hopelessly large phase space of field variables x, and
importance sampling is incapable of keeping track of delicate cancellations of
contributions with opposite signs. To a large extent, the fermionic nature of the
particles has already been accounted for by the exact evaluation of determi-
nants. Thus, “determinantal” simulations have had a number of successes while
“world-line” methods*, which sum stochastically over assignments between

* “World-line” methods (Hirsch et al. 1981, 1982) work for fermions in one dimension, which are
isomorphic via the Jordan-Wigner transformation to quantum spin chains. Above one dimension,
these methods are useful for fermions only at high temperatures and low densities, when the short
imaginary time § = 1/k, T and large interparticle spacing make fermion exchange improbable — in
short, when the fermionic nature of the particles is unimportant.

SPACE
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identical particles, work only for systems with no essential fermionic character-
istics. Nevertheless, as we will see, even “determinantal” methods will fail due to
sign difficulties.

2.8. “Nodal” surfaces

The net weight with which a particular set of bosonic fields enters the partition
function (2.9) takes the form of a determinant. This determinant, as we have
seen, may be either a positive or a negative functional of the field variables {x},
particularly at low temperatures, for which a sufficiently long imaginary time is
available for particles to exchange many times. Clearly, in the phase space of the
{x}, the determinant has nodal surfaces that separate these positive and negative
regions and on which a configuration of field variables would have vanishing
weights. We may think of this vanishing weight as being due to an infinite
“potential energy” for the configuration.

Further, for a simulation to produce unbiased averages, it must be ergodic, i.e.
it must be able to sample all of configuration space and not just one subspace
bounded by potential barriers. Such a sampling is difficult to achieve with
a gradual evolution of the field variables in the presence of “nodal” surfaces. On
the other hand, a large change in even a single field variable may cause a nodal
crossing if the discretization parameter At is sufficiently large.

2.9. Importance sampling: single classical particle

Importance sampling is the technique of generating states of a physical system
stochastically with the same probability distribution as in thermal equilibrium.
While many samples are generated to reduce the statistical fluctuations in this
stochastic process, the number of samples needed to make reasonably good
measurements on the physical system is many orders of magnitude smaller than
the size of phase space, which is prohibitively large. Typically, importance
sampling takes the form of a Markov chain, a trajectory through phase space in
which each new sample is closely related to the previous one.

We begin by discussing importance sampling in the context of a very simple
example: a single classical particle in a potential well at finite temperature. In
thermodynamic equilibrium, the probability of the particle being at position x is
exp( — BV (x)), where V(x) is the external potential and f = 1/kgT is, once
again, the reciprocal temperature. Of course, for this classical model, the action
is diagonal in any basis and we no longer have an imaginary-time dimension.
While the partition-function integral is best evaluated with numerical
quadratures, such methods are impractical in evaluating the high-dimensional
integrals that occur in many-body problems. Hence, we will discuss strategies
for impotance sampling that are appropriate for many-body problems.
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The Monte Carlo method is perhaps the most popular approach for sampling
phase space.* In this method one proposes a change in the system configuration
and then accepts or rejects the change in accordance with “detailed balance”.
For example, in the Metropolis algorithm (Metropolis et al. 1953), given a
particle at position x, one proposes a new position x’' = x + 3x, with 8x
chosen at random from some symmetric distribution, and accepts the point with
probability

P(x—>x)=1 if e PVE) 5 gV,

= e BVEITV@)  jf a=BVE) L o BV () (2.16)
Another popular choice for the transition probability is (Binder 1987)
e AV
P(x > x) = (2.17)

e BV® L o BV

which would arise if we had frozen the system so that the particle could only
move between position x and the randomly chosen position x” and then put the
system in contact with a heat bath. These two algorithms maintain detailed
balance

P(x = x)e PY® = P(x' - x)e P&, (2.18)

ensuring that the equilibrium distribution exp( — SV(x)) of x remains fixed. In
simulation time, the classical particle would appear to jump around in phase
space under these rules.

An alternative approach would be to let the particle evolve by simulating its
dynamics. We have not specified the dynamics of the particle, since originally
we were interested only in its equilibrium properties. Nevertheless, we may
introduce a fictitious dynamics that does not affect the particle’s equilibrium
properties. For example, the addition of a kinetic energy p?/2m leaves the
partition function

Z= defdpeﬁ@z/z'"*””m fdxeﬂ”x) (2.19)

unchanged to within some arbitrary multiplicative factor. If we choose some
momentum p from the Gaussian distribution exp( — p?/2m), we may then let
the particle evolve according to the equations of motion:

p oV(x)

X = - p= ax (2.20)

In molecular dynamics, these equations are commonly integrated using the
leap-frog algorithm, which is fast, stable, and easy to implement (Verlet 1968). In

* For more details on classical Monte Carlo methods, including both the Metropolis and heat
bath algorithms, see, e.g. Binder (1987).
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molecular dynamics, the classical particle would trace long, smooth trajectories
through phase space. A many-body system would appear to undergo a com-
plicated, “breathing” motion. To sample the thermodynamic ensemble, we must
thermalize p periodically, i.e. we must pick p afresh. If we choose p from the
Gaussian distribution at each time-evolution step, we are using the Langevin
method, which leads to a Brownian motion in the degrees of freedom.

One drawback of using a continuous evolution of the {x}, such as in a
molecular-dynamics or Langevin method, is that it is difficult to tunnel through
the potential barriers of the nodal surfaces of the determinantal functional. In
contrast, Monte Carlo updating may “step” across such a potential barrier with
the update of even only one field variable if At is not too small.

Finally, a combination of Monte Carlo, molecular-dynamics, or Langevin
methods may be used to perform the importance sampling. Indeed, a popular
“hybrid” combination is to let the system evolve according to some fictitious
dynamics using molecular dynamics (updating the momenta in the system
occasionally and so including occasional Langevin steps), but then to correct for
step-size errors in the numerical integration by accepting or rejecting the
evolved system according to the Metropolis rule (Scalettar et al. 1987)

2.10. The Green’s function
The matrix elements of the Green’s function G are
G(T, 1) = Cin(T) (D). (2.21)

Here, the angular brackets denote averages over all electron paths for a particu-
lar configuration of the bosonic fields x. This average, of course, is taken with
respect to whichever imaginary-time boundary condition [eq. (2.3) or eq. (2.2)]
is appropriate and must be calculated separately for ¢ = 1 and ¢ = |. While
the Green’s function is customarily defined with a time-ordering operator inside
the brackets to serve field-theoretic purposes, this convention is not needed and
will not be used in our numerical development.

The Green’s function is the central object in numerical simulations, playing at
least two essential roles. The first is in the importance sampling of the bosonic
fields. For example, one may propose and then (using Metropolis or heat bath
algorithms) accept or reject a change in a single field variable x;(7) at site i and
imaginary time . In the spirit of perturbation theory, we could estimate the
changes in the electron—-boson contribution to the action, under the assumption
that the electronic degrees of freedom remain fixed under this change in a single
field variable. Then, since x;(t) couples only to n;;(r) and n;(z), the only
information we need about the electrons are the G¥(z, 1) = 1 — {m,(1) ), for
both spin-up and for spin-down electrons. Indeed, Blankenbecler, Scalapino,
and Sugar (Scalapino and Sugar 1981, Blankenbecler et al. 1981a, b) have shown
that the G} (z, ) are all that one needs to evaluate changes in the electron-boson
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contribution to the action exactly. Similarly, the Gg(z, 7) provide all the informa-
tion needed to perform Langevin or molecular-dynamics sampling, since the
forces on the bosonic field variables depend only on local electronic densities.
The second important role that the Green’s function plays in simulations is in
measurements of the electronic degrees of freedom. If 4 is a measurement
operator that contains electron creation and annihilation operators, then

Ay = X A, )
where the primed sum is over N, bosonic field variables sampled in proportion
to their probabilities in thermal equilibrium, and {4 >, is the expectation value
of A for a fixed set of fields x. Since (A4, is an average for fermions which
interact only with fixed bosons and not with each other, we may apply Wick’s
theorem (Fetter and Walecka 1971) to express it as a sum over products of
contractions of fermion operators. Each such contraction, of course, is a specific
element of the G°.

One final note on these Green’s functions is that their matrix elements need
not fall in the numerical ranges we would normally expect. For example,
Gi(t, 1) = 1 — {n,(1) >, and so should fall in the range 0 < G%(t, 1) < 1. For
fermions evolving in imaginary time through time-varying fields, however, this is
no longer the case. Indeed, near the nodal surfaces discussed earlier, the elements
of G” diverge.

3. Mathematical formulation

In this section, we develop the simulation algorithms in detail, focussing on
a particular example to make the discussion more transparent. We work with
the two-dimensional Hubbard model, eliminating the interactions between the
fermions using the discrete Hubbard-Stratonovich transformation (Hirsch
1985). Importance sampling is then performed using single-site-update Monte
Carlo. After each change is accepted, the Green’s function is updated by the
procedure suggested by Blankenbecler, Scalapino, and Sugar (BSS) (Scalapino
and Sugar 1981, Blankenbecler et al. 1981a,b). The two-dimensional Hubbard
Hamiltonian is a convenient example. Other Hamiltonians may be treated by
steps similar to those outlined here.

3.1. Matrix representation of single-particle propagators
The Hamiltonian we consider is
H=H,+Hy+H,
=—3 Tij(clxcja + C;acia) +UY (g =3, —H—n Z n;, (3.1)

ij, g i
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where the T;; are the hopping integrals, U > O is the strength of the on-site
Hubbard repulsion, and u is the chemical potential, chosen to be zero at half
filling. Sums over i are taken over sites on a periodic, square lattice, and we will
consider nonzero hopping T;; only between nearest-neighbor sites i and j. We
will use N for the number of sites on the lattice and work in the real-space basis
of sites i.

Using the Trotter approximation, we break each of the N, factors
exp( — AtH) in eq. (2.1) into two additional factors

efArH ~ e—AT(Hu“FH“)e—A‘CH[, (32)
which are diagonal and off-diagonal, respectively, in a site-occupation represen-
tation. Since the terms which make up H, and H, are diagonal, they commute
among themselves and their exponentials can be factored into

e~ AtHy+ H,) _ H e = AUl — 1/2)(m, = 1/2) l—[ eham

i i

without approximation. We reduce the exponential of the quartic terms
— AtU(n;; — 3)(n;;, — 3) by invoking Hirsch’s discrete Hubbard-Stratonovich
transformation (2.8).

The up and down fermions couple to the external fields differently. Hence, we
compute two single-particle propagators B! and B!, For a given configuration
of field variables,

B°(t,, 1) = B%(1,, 1, — At)B%(1, — A1, 7, — 2A7) - - - B?(1; + A7, 174),
where
B°(z, T — A1) = A°(t)exp(Atu) exp(ATT) (3.3)

gives eq. (3.2) in our single-particle, real-space basis. The particles diffuse in real
space for a small imaginary time At according to exp(AtT), their propagators
are amplified or attenuated through the scalar factor exp(Atpu), and finally are
scattered by the external potentials described by

ea'zx.x 1{7) 0

ea'axz(t)

A’(r) = ) )
O eaaxN(t)

where the exponents gax = + ax flip signs depending on whether 6 = 7 or |,
and where cosh(x) = exp(At U/2) as in eq. (2.8). Since we couple the external
fields only to local fermionic degrees of freedom, A° is diagonal. The o-depend-
ence of the A reflects the fact that the two types of fermions, s = 1 or |, couple
to the auxiliary fields differently. Indeed, it is only because of the A’ that the
propagators BT and B* are different.
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3.2. Checkerboard breakup

Generally, we will choose to break the kinetic-energy matrix exp(AtT) in
eq. (3.3) further. While the computational cost of diagonalizing and then ex-
ponentiating T is relatively small, the resulting matrix is dense, making the
number of operations needed to perform a matrix multiplication scale as N 3
Alternatively, for uniform hopping integrals, one may utilize fast-fourier trans-
forms (FFT) and apply the kinetic-energy factors exp(AtrT) in momentum
space, in which T is diagonal. This approach, unfortunately, does not allow for
nonuniform hoppings, and efficient use of the FFT restricts the linear size of the
system one studies to powers of 2.

A sparse and extremely convenient approximate form for exp(AtT) results
from a further application of the Trotter approximation to the kinetic energy. In
the single-particle, real-space basis, the exponential of the hopping part of the
Hamiltonian may be written as

exp(AtT) = exp <Ar Y T‘ij)> ~ [ exp(At T4). (3.4)
P ap

The sparse matrices T, with only T/’ = T\’ = T;; nonzero, are easily ex-

ponentiated, giving

0 0o - 0 0
0 0 T; 0
exp(ATT) = exp At : :

0 T; 0 0

0 0 0 0
1 .- 0 0 e 0
0 - cosh(AtT;) - sinh(AtTy;) - O
0 - sinh(AtTy) - cosh(AtTy) - O
0 - 0 0 |

Each exp(At T%) is also sparse, with only the ii, ij, ji, and jj elements differing
from those of the unit matrix. If we replace the multiplication of the dense matrix
by the series (3.4) of sparse-matrix multiplications, the number of operations for
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multiplication onto an N x N matrix is reduced from N3 to N x N,, where the
number of bonds N, grows linearly with the number of sites for local hoppings.
For the square lattice, for example, N, = 2N. For historical reasons, eq. (3.4) is
referred to as the checkerboard breakup.*

Not only is the checkerboard breakup of the kinetic energy reasonably fast, it
is extremely versatile and convenient. No diagonalization or FFT is required
and changes in the hopping integrals — as when one incorporates a fixed lattice
distortion — may be effected immediately. Further, evaluation of the inverse
exp( — At T) requires no extra work: one has only to reverse the sign of the
off-diagonal elements. In subsequent discussions, we may write exp(At T) even
when we use the checkerboard, approximate form.

3.3. Bosonic-configuration weights

Within the zero-temperature framework suggested by eq. (2.3), let us write |y >
and |y as products of single-particle states. Then, using eq. (2.15), the field
weights in eq. (2.9) become

plx]1= ] det(PEB(B,0)PR), 3.5)

c=1.1

where the introduction of the auxiliary fields x has decoupled the system into
separate ¢ = 1, | problems. The field-variable dependence of the right-hand
side of eq. (3.5) enters through the single-particle propagator B.

In eq. (3.5), we have written | > and |y ) as products of up- and down-
electron single-particle states in order to use eq. (2.15). The rows (columns) of the
rectangular N, x N (N x N,) matrices P{ (Pg) give the single-particle states of
[WL> (JYg>) of spin ¢ =1, in our N-state basis. For example, let

lr)> = [k Yk and let
lYR> = (Piycly + Pyyche + - + PN1C;JJ)
(PIZCIO' + Pyl 4+ + Pyachs)

(Pin,clo + Pan,cho + - + Pyn,cko) 10D,

where |0) is the vacuum state. Then

Py Py o Py,
P,. P,, ... P
o
Py, Py; -+ Pyw,

* The Trotter formula first became popular in numerical simulations for one-dimensional chains.
There, the alternation of even and odd bonds laid out a checkerboard in space—time. See, e.g. Barma
and Shastry (1978).
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Typically, we will choose |y ) = |¥g), so that the P{ are the Hermitian
conjugates of the P§. The numbers N, and N, of up- and down-spin electrons
need not be equal. These numbers are fixed over the course of any one
simulation however, so that the zero-temperature algorithm is carried out in the
canonical ensemble.

For the finite-temperature partition function (2.2), we are no longer interested
in matrix elements of exp( — fH ) between specified initial and final many-body
wavefunctions, but we would like to sum over all [y > = |y ) of all occupations
N; and N . Now,

pix]1= ][] det(1 + B?(B,0)). (3.6)
=11

We derive this result in Appendix IV. Here, we only note that if we simply had
det(B), we would have had eq. (2.15) with a packed lattice: a fermion on each
site. On the other hand, det(1) is the many-particle propagator for zero particles.
In eq. (3.6), det(1 + B) samples both of these terms and so generates the
grand-canonical partition function for a particular set of field variables, sum-
ming over all states with all occupation numbers of electrons.

3.4. Matrix representation of the Green’s function

To derive G in terms of the single-particle propagator, let us begin by examining
matrix elements of the equal-time Green’s function

G%(Ts T) - <Cia(T)C;G(T)> = Aij - <C;cr(r)cio(r)>,

where A4;; is the Kronecker delta function. The expectation <c;f,,(r)ci,,(t)> may be
evaluated by coupling the action to c}ac,-a for an instant at imaginary time t:

9-exp< — fﬁ S(t)dt) = Fexp( - Jﬁ S(t)dt>exp< — J‘I S(t)dt)
0 T 0
-7 exp( — JB S(t)dt> exp(hc},,cia)exp< — J.r S(t)dt).
T [¢]

Under this transformation of the action, the weight p[x] becomes a function
prlx] of the coupling constant h. For example, in the zero-temperature
formalism,

palx] = det(PEB?(f, 1)e*°B°(z, 0)P§) det(PL. "B~ "(B, 0)Px ),
where the only nonzero matrix element of O is O; = 1. With the definitions
L’(z) = PIB7(B, 1) 3.7
and

R?(r) = B“(z, 0)Pg, (3.8)
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the expectation becomes

0 0
<C;a'(f)cia(r)> = on Inp,[x]lp=o = Tr oh ln(LdehoR””h:o

= Tr(L’R°)"'LOR’ = (R“(L°R°) "' L%);.
The equal-time Green’s function in the zero-temperature formalism becomes
G’(r, 1) =1 — R(7)(L°(1)R*(x)) "' L°(2). (3.9

In the finite-temperature formalism, we can play the same tricks, coupling to
c} ¢;, writing the resulting field weight as a function of h, and taking a logarithmic
derivative. Now,

G’(r,7) = (1 + B%(z, 0)B°(B, 1)) . (3.10)

For unequal arguments, we transform the Green’s function using the inte-
grated equations of motion (2.14) for the fermion operators to get

G(7, 1) = B(7, 1)G(r, 1) = G(7, ")B(7, 7). (3.11)

3.5. Metropolis algorithm

As we have seen, the weight of a configuration of the bosonic field variables is
a product [eq. (3.5) or (3.6)] of two determinants. Such determinants are too
expensive to evaluate for each set {x} of field variables that we encounter in
the course of a simulation. Fortunately, importance sampling via either the
Metropolis or heat bath algorithm requires only the ratio Z = p[x']/p[x] of
weights. As we will now see, these ratios are straightforward to evaluate when
{x'} differs from {x} in the value of only one ficld variable.

The change of only one field variable, at site i and at imaginary time 7, from
x;(t) to x;j(r) affects the time evolution of the fermions through the matrix A:

o1 (1) O
Aa(‘L') N eaax;(r) ,

0 ’ eaax MT)

=1+ A% 7)A(T),

where the only nonzero matrix element of A%(, 1) is 4% 1)
= exp(oa(x;(t) — x;(1))) — 1. The accompanying change in the single-particle
propagator B is

B?(f, 0) = B?(B, 7)B°(z, 0)
- B?(B,1)(1 + A°(i, 1))B?(¢, 0).
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For the zero-temperature algorithm, we now have Z = #' %', with

_ det(L°(1)(1 + A’(i, 1))R’(1))
- det (L°(1)R°(7)) ’

%J

using the definitions (3.7) and (3.8). Dropping a number of indices to simplify the
equations, the probability-ratio factors become

_det(L(1 + A)R)
~ det(LR)

_ det(LR + LAR)
~ det(LR)

=det(1 + (LR)"'LAR). (3.12)

TRT

The last expression is the determinant of N, x N, matrices. What is remarkable
is that this determinant is equal to that of a larger, N x N, matrix:

#° = det(1 + AR(LR)"'L) = det(1 + A(1 — G?)). (3.13)
(See Appendix V.) We finally write the ratio of probabilities as

A=A R = [] det( + A°(i, )(1 — G(, 1))). (3.14)
e=1,1

For the finite-temperature algorithm, we proceed in a similar fashion:
_ det(1 + B?(f, 1)(1 + A°(i, 1))B’(1, 0))
B det(1 + B?(, 1)B°(z, 0))

_ det(1 + B°(B,0) + B“(B, 1)A’(i, 1)B?(z, 0))
B det(1 + B(8, 0))

=det(1 + (1 + B?(3,0))"*B°(8, 1)A°(i, 1)B“(z, 0))
= det(1 + A’(i, 1)B?(z, 0)(1 + B°(8,0))"'B°(B, 1))
=det(1 + A°(i, 7)(1 — G’(1, 7)}).

R

This time, the cyclic rearrangement of factors in the determinant is straight-
forward since the factors are square matrices with well-defined inverses. The
ratio of probabilities has exactly the same form [eq. (3.14)] in terms of the
Green’s function as in the zero-temperature case.

At this point, one might seem hard pressed to justify all this formalism. In fact,
however, eq. (3.14) provides us with a very fast means of evaluating the ratio
p[x']/p[x]. Since field variables couple only to local fermionic degrees of
freedom, a change in only field variable leads to correction matrices A° which
have only one nonzero matrix element. The determinants in eq. (3.14) become
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very easy to evaluate and the Metropolis ratio reduces to

R=R"% = [] (I + 456,10 — Giz, 1))). (3.15)
a=1,1

This final expression is not a product of matrix determinants, but of simple
scalars which are readily computed provided that the diagonal matrix elements
of the equal-time Green’s functions G°(t, 1) are known. If each bosonic field
were coupled to fermionic degrees of freedom on several near-neighbor sites or if
several field variables were changed, then A° would be less sparse and eq. (3.15)
would be, correspondingly, more involved.

3.6. Green’s function updating

At first glance, it appears that we have accomplished nothing. While the
updating probability # = p[x']/p[x] can be simply expressed in terms of
clements of the Green’s functions (3.9) or (3.10), the evaluation of the G°¢,
requiring inverses of matrices, is at least as difficult as calculating the determi-
nants (3.5) or (3.6) outright.

In simulations, however, we compute the inverses fairly infrequently. When-
ever we change cither an external field x;(z) or the time 7, we use the BSS
algorithm (Scalapino and Sugar 1981, Blankenbecler et al. 1981a, b) to update
the Green’s functions in the finite-temperature approach. We will describe
similar procedures for maintaining the relevant inverse for the zero-temperature
algorithm. It must be conceded that all elements of the inverse must be updated
—even if the field is changed on only one site in space—imaginary-time. Thus, the
computation is still relatively expensive — of order N2 operations per update for
the zero-temperature algorithm and of order N? operations at finite temper-
atures — and is the dominant portion of the computation. On the other hand, we
will generally avoid the more expensive procedure of calculating the inverses
from scratch, which would be of order N2 and N?® operations at zero and finite
temperature, respectively. The question is then, “If a change is made in the field
variables, how may we update the inverses in egs. (3.9) and (3.10) efficiently?” In
answering the question we will again assume the changes in the single-particle
propagators to be described in terms of the correction matrices A% as
B(r,0) - (1 + A’(i, 1))B(z, 0).

For the zero-temperature case,

(LaRa)—l —>(L”(1 + Aa)Ra)fl
— (LaRa + LaAaRa)vl
— (1 + (LdRa-)flLaAaRa)fl(LaRa)—l.

Of course, we already have (L°R“) ™!, it is inverse before updating. We compute
the other inverse, (1 + (L°R°)"1L°A°R°) !, by making use of the fact that the
A’ are sparse. General solutions are given by the Sherman—Woodbury and
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Morrison formulas (Press et al. 1988, Rice 1983). For our simple case, where the
only nonzero matrix element of A? is 4%, we assume
(1 + (LaRo-)~ 1 LaAaRa)— 1 _ (1 + x(LaRa)— 1 LUAGRG),
where x is some scalar which we must determine. Since
A°R°(L°R%)7!L°A° = A%(1 — G)A® = A%(1 — GE)A°
is simply a scalar multiple of A°, our Ansatz gives
1=(1+(L°R°)"'L°A°R")(1 + x(L°R’)" ! L°A°R?)
=1+ (14 x4+ xA5(1 — GHHL°R) " L°A°R°,
or
_ 1
144 - GYY

This, of course, is simply — 1/%#°. The updating equation is now
1
(LaRa)vl N (LaRa)— 1% (LoRa)— 1 La-AaRa(LaRa)— 1 (316)

for single-variable updating. The updating is fast because the A° are sparse.
Since the Green’s functions are N x N matrices while the (L°R°)™! are only
N, x N,, we will maintain only the (L’R®)"! in zero-temperature calculations,
computing elements of the G as they are needed. Nevertheless, one could still
write updating equations for the real-space Green’s functions. From egs. (3.9)
and (3.16),

i
G"— G’ — - G"A(1 - G°). (3.17)

The corresponding derivation for the finite-temperature algorithm is more
straightforward:

G°(t,7)=(1 + B°)!
-1+ + A%, 1)B%) !
=1+ B)"'(1+ A%z, 1)B°(1 + B)~1)!
=G°1+A(1-G)) !,
writing B?(z, 0)B?{f, 1) simply as B°. Using an Ansatz (1 + xA°(1 — G°))
again for the inverse (1 + A°(1 — G°)) !, we find x = — 1/%° and

1
"5 G- G°A°(1 — G°
G'- G~ __G"A(1 - G")

as before.
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3.7. “Wrapping” Green’s functions

Up to this point, we have described algorithms for determining the Metropolis
acceptance/rejection ratio # and for updating the Green’s functions G in the
event of one accepting a proposed field-variable change. These algorithms are
formally equivalent for the zero- and finite-temperature approaches. Our dis-
cussion, however, has always involved the equal-time Green’s functions G°(z, 1)
at a particular imaginary time . What happens when we wish to consider
Monte Carlo hits at other imaginary times?

For the zero-temperature formalism, we construct the Green’s functions out
of the products L(r) and R(z) from eqgs. (3.7) and (3.8). The inverse

(L(OR(0) ™" = (P.B(B, 7)B(r, 0)Pg) "’
= (PLB(ﬁ, O)PR)_I,

that we must compute is independent of the imaginary time ¢ at which we
perform our Metropolis updates. The way we use this inverse to evaluate
elements of the Green’s functions G(z, ) = 1 — R(t)(L()R (1)} 'L(z), however,
does depend on 7. Thus, when we move from one time to another, we must
modify L(z) and R(z). For example, for t" > 1,

L(z) = L(t)B(«, 1) !
and
R(7') = B(7, 1)R (7).

Modification of the left and right matrices L(r) and R(r) as we move from one
value of 7 to another, then, involves moving factors of B from the left side of R to
the right side of L or vice versa. This can be achieved by one of two means. In the
first option, suitable for small changes in 1, we tack on factors of B on the side by
straightforward multiplication and delete these factors from the other side by
multiplication of the corresponding inverses. From eq. (3.3) and the checker-
board breakup, we see that such muitiplications are made up of factors A and
exp(At T) that are sparse and trivial to invert.

The second option, suitable for large changes in 7, climinates a number of
these multiplications. In such a case, as one builds up L and R from P, and Pg,
one stores partial products along the way. To string additional factors of B onto
one side requires the multiplications we just discussed. Deletion of such factors
from the other side, however, is performed more trivially by recalling a pre-
viously stored partial product. For example, in fig. 3a, the partial products P,
L(f — 15),. .., L{t + 7o), and L(1), generated in the computation of L(r) are
stored, as are the by-products Pg, R(zg), R(210), . . . , R(7) of the R(t) computa-
tion. To move from 7 to a fairly distant imaginary time t + 74, we need the
factors L(t + 75) and R(z + 74). The right factor R(t + 14) = B(t + 14, 7)R(7) is
easily computed by successively multiplying by B(z + 7o, 7), a series of sparse
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L(#)=Py L(B-1m) ... L{r+1) L(r) R(r) ... R(2r) R(m) R(0)=Ppg
y v Y O Y Y
L(#)=P, LB-m) ... Lir+m) R(r+m) R(r) ... R(2n) R(ry) R(0)=Pg

Fig. 3. Computer storage scheme. As one builds up L(r) and R(z), needed for updating at time 7, one

stores the intermediate partial products P, ,. .., L(z) and Pg,. .., R(1), as in (a). When one moves

to imaginary time 1 + 1o, L(t + 7¢) is already available as a previously stored partial product.

Further, R(t + 1,) is easily computed from R(r) and may be stored in lieu of L(z), which is no longer
needed, as in (b).

matrices, with the partial product R(z), which of course is already available. The
left factor L(r + 7,) has already been stored in a previous calculation. At T + 14,
matrices are stored as in fig. 3b.

Storing partial products in this manner has the added advantage that
roundoff errors will not accumulate from the repeated adding-on of factors
and the subsequent deletion by inverse multiplication. As we will discuss,
difficulties from roundoff errors can be devastating. In practice, we sweep over
all times 7, through a combination of coarse and fine movements in imaginary
time, using both of the previous approaches.

For the finite-temperature approach, we advance to a later imaginary time
7' > 1 by writing the Green’s function as

G(,7)=(1+B(,0B(8, ) !
=1+ B(7, 1)B(r, 0)B(S, )B(r, 1) ')}
= B(7, 1)G(r, 1)B(7, 1) L. (3.18)

Of course, B(1', 1) = B(t', 7 — A1) - - » B(7 + Ar, 7). In eq. (3.18), we are simply
taking factors of B(t + Az, 1) off the right side of G (by inverse multiplication)
and “wrapping” them onto the left side. It is this picture that we describe as
“wrapping” matrices around the Green’s functions. Naturally, to go from larger
imaginary times to smaller ones, we simply wrap matrices in the opposite
direction. As before, multiplication by B matrices and inverse multiplication by
B~ ! matrices is straightforward and relatively fast, since the components of the
B’s arc cither diagonal or they are easy to approximate with the checkerboard
breakup. Of course, we may also choose to compute and store partial products
of B(f, 7) and B(r, 0) in a way similar to that in the zero-temperature case.

3.8. Measurement estimators

Physical measurements of electronic properties appear in analytical calculations
and in numerical simulations as expectation values of products of fermion
creation and annihilation operators. In this section, we discuss several practical
points as to how to measure such expectation values in simulations.
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In simulations, as in analytical calculations, Wick’s Theorem is used to
convert expectation values of products of operators into sums of products of
expectation values of all possible pair-wise contractions of creation and annihi-
lation operators. The expectation values of these contractions are elements of
the Green’s functions, which must be calculated and maintained for updating
field variables. (In the zero-temperature formalism, we maintain the inverse
(L°R?)™ !, from which elements of the Green’s functions are readily calculated.)
Thus, Wick’s Theorem expresses results of measurements in terms of the central
objects of a simulation.

As an example, consider the z-component of the antiferromagnetic structure
factor

1 o
S(m, W)ZNZ(—)PK('M — )y —n50)0, (3.19)

where N is the number of sites on the lattice, n;, is the number of electrons with
spin ¢ on site i, and ( — ) "/is +1if i and j are on the same sublattice, but — 1 if
they are not. We estimate S in eq. (3.19) by averaging measurements over N,
different samples of the bosonic field variables, where N, is sufficiently large so
that we can gather good statistics. Thus,

1 1 o
St m) = 3= 25 2=V gy >+ Sy s
" ix) ij
- <ni1njl>x - <nilan>x)9 (3.20)

where the expectation values ¢ >, are now for specific configurations of field
variables {x}. For any such configuration, the electrons are completely
decoupled from each other, which allows us to apply Wick’s Theorem. Since
the Hubbard-Stratonovich transformation block diagonalizes the problem in
electron spin, contractions {cfc_,>, between operators of different spins are
necessarily zero. Hence, the cross products

<ni()'nj fu'>x = <nia>x<nj -o'>x = (1 - GZ)(I - Gj_ja)

in eq. (3.20) decouple nicely. In contrast, products in eq. (3.20) of like-spin
factors produce more nonzero contractions:

to ot t 1 ,
<ciaciu'cjo'cjo'>x = <Ciacia>x<cjo'cja>x + <Cg‘a{'ja>x<ciac}.a‘>x

= (1 = Gy = GF) + (4;; — GH)GY, (3.21)

where 4,; is the Kronecker delta function, which we use in reordering operators
in the form required by our definition of the Green’s function. Notice that
in the case i =j, eq. (3.21) reduces to (I — G%), which we would expect for

<nianio>x = <nia>x‘
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Using Wick’s Theorem, any electronic observable is easily reduced to
averages of combinations of Green's function elements. Accordingly, the
measurement process is straightforward in principle. There are several obser-
vations and points, however, that are useful to discuss.

In stochastic simulations, long computer runs are needed to collect many
measurements and so reduce the statistical error. When the time that is needed
to generate independent statistical samples is relatively large, it is necessary to
gather as much data as possible from each sample. Thus, symmetries of the
Hamiltonian are often exploited to construct many estimators of the same
quantity. For example, to estimate the bond charge (kinetic energy)

<C;'rci+ 5(>,

we may average measurements of
(ela(D)ei 1 40(T))

over many values of lattice position i, electronic spin o, spatial neighbors 4, and,
in the case of the finite-temperature formalism which is periodic in 7, imaginary
time 7. Due to fluctuations in the bosonic field variables {x}, individual con-
figurations will not obey the symmetries of the Hamiltonian. Averages of
measurements over many configurations will.

On the other hand, there may well be features in a simulation that break
symmetry artificially. For example, in the Hubbard model, the staggered
magnetization

. C;
1
M{mn,rc) = z (_ )l(c;'rT CZ-],)O-M<C1 )s
i il

is rotationally invariant, ¢* being the Pauli spin matrices. Due to the symmetry
breaking of the Hubbard-Stratonovich transformation, however, the longitu-
dinal estimator

1
FRCI

produces much noisier estimates of the antiferromagnetic structure factor in
finite-temperature simulations (Hirsch 1987) than the rotationally equivalent
transverse estimator

1

ﬁ <(M()7C'c,1r))2 + (M(vn.n))z >

In ground-state calculations, symmetries may be broken still further by the trial
wavefunction | > (Sorella et al. 1988). Thus, the symmetrized measurement

1
3_N <(M():[.II))2 + (M(};t,n))z + ( (ZKJI))2>
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may provide very good estimates of the structure factor (3.19), while a surpris-
ingly long imaginary time § may be required to project a symmetric ground
state out of |y ). In summary, while the true quantum-mechanical wavefunction
may be the symmetric superposition of many symmetry-breaking contributions,
any one sample in a numerical simulation will not be symmetric. Hence,
symmetrized estimators often provide great improvements in performance.

While it may be advantageous to collect formally redundant measurements,
there is an added computational cost associated with computing the exira
averages. In addition, these extra measurements are correlated to some degree
so that they may give little additional information and hence may not be worth
the extra cost. In practice, then, one averages over only a limited set of
estimators. Further, while the elements of the Green’s functions are always
available during the course of a simulation, one typically chooses to employ
several updating sweeps through the space-time lattice between measurements,
since successive configurations may well be correlated.

Simulations generate extremely long streams of measurements. By “binning”
these streams — dividing the streams into bins of equal lengths and reporting bin
averages instead of individual measurements — one can both reduce the volume
of output and estimate the statistical uncertainties in the measurements. The
length of the bins must be long compared to the correlation time of the
simulation. Thus, while consecutive samples of the simulations are generally
highly correlated, averages from successive bins may be treated as being statis-
tically independent. If A; are the bin averages for a certain observable A4, then

i=Lya, (322)

is, of course, the estimate of the observable, while

o(A) ~ . o(A;) = ! ZiAL A? (3.23)

N,/Nbin— 1 Npin — 1N Nin

is the statistical uncertainty in the estimate (3.22). Here, N;, is the number of
bins.

A typical Monte Carlo run may entail 10 to 20 bins of 250 to 500 measure-
ments each, with two to five sweeps of the space-time lattice between measure-
ments. The configuration of the system is generally initialized randomly, so that
500-1000 sweeps should be performed to equilibrate the system before measure-
ments are made. Experimentation and individual standards are the final arbiters
in deciding how to set these parameters. Since different physical observables
generally have different statistical properties, run parameters will also depend
on the quantities to be measured.

The errors associated with measurements reported will be due to both the
nonzero discretization parameter At and to statistical fluctuations. Our use of

— L [3A



Stable simulations of models of interacting electrons 209

path integrals requires us to study the limit At — 0. In practice, measurements
obey small-At scaling laws (Suzuki 1985, Fye 1986, Fye and Scalettar 19xx) - in
most cases, either as At or as At? — for surprisingly large values of At. This is
fortunate since the reduced number of degrees of freedom for large-At, coarsely
discretized path integrals allows faster sweeps through the space-time lattice
and more movement through phase space for each sweep. The size of statistical
errors depends greatly on the quantity being measured. For several thousand
sweeps, we would expect path-integral simulations to estimate the energy
— generally the best-behaved observable — to fractions of one percent. In
contrast, long-range observables, such as the antiferromagnetic structure factor,
may well have up to 10% fluctuations for the same number of sweeps.

3.9. Minus signs

Importance sampling requires that the weights p[x] all be positive definite so
that they may be interpreted as probabilities. In case they are not, the weights
governing the importance sampling should be the absolute values |p[x]|. The
expectation value (2.22) becomes

Zin (AP _ B (ADssLxIPL] _ B (ADwSD] (3.24)

Y plx] Yo skx]lplx]l Yix S[x]
where s[x] is the sign of p[x] and the primed sums are over configurations {x}
generated according to the weights |p[x]|.

Of course, the “minus-sign” problem in simulations of fermions is that the
numerator and denominator in eq. (3.24) can be much smaller than the statis-
tical fluctuations in the measurement process. In such a case, the simulation is
defeated. Further, “nodal surfaces” can possibly exist in {x}-phase space, even if
there is no sign problem. In egs. (3.5) and (3.6), we see that each weight
pIx] =Tl.p°[x] is a product of ¢ = 1 and | contributions. As long as the
individual p” can change sign, phase space will be partitioned by “potential
barriers” or “nodal surfaces”. If these surfaces coincide throughout phase space,
however, the product p[x] will have the same sign in every partition. This is in
fact the case for the half-filled Hubbard model and the symmetric Anderson
lattice.

4. Stabilization

As we have seen, the Green’s function, and not the partition function, is the
central object of the simulations. It is needed to perform importance sampling
and to make measurements. As one sweeps from one imaginary time t to
another, G can be produced on the new time slice by “wrapping” matrices, as
described in the previous section. Unfortunately, round-off errors accumulate in
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this procedure, making it necessary occasionally to recompute the Green’s
function from scratch. The more serious difficulty is that at low temperatures, as
B becomes large, the Green’s function cannot be computed at all. The reason is
that as many B matrices are multiplied together, the product becomes more and
more ill-conditioned; with exponentially divergent numerical scales. In calculat-
ing the Slater determinants in egs. (3.5) and (3.6), one computes small differences
of large matrix elements. These differences are very inaccurate, dominated by the
noise in the least significant bits of the matrix elements when the calculations are
performed on finite-precision computers.

More physically, the single-particle propagator B amplifies “low-energy”
states for any particular configuration of the bosonic fields while attenuating the
“high-energy” states. In addition, the states near some intermediate “Fermi
energy”’, buried exponentially by the states at the bottom of the “band”, describe
the important physical phenomena in fermionic systems. Although this corres-
pondence to a single-particle band picture is loose — our strongly correlated
systems are actually sums over many single-particle, time-varying problems
— the fact remains that the fermionic behavior of a model gets “drowned” by
other large numerical scales. Conventional simulations ultimately fail simply
because these important small-scale features cannot be extracted from B(, 1)
and B(z, 0) using computers with finite precision.

The sparse matrices (3.3), which make up B, can be represented with high
precision on a finite-precision computer. Likewise the matrix elements of the
Green’s function can also be represented, since these elements are generally
well-behaved numbers. It is only the intermediate products in the calculation of
G, the single-particle propagator for large imaginary times, that are difficult to
represent on finite-precision machines without loss of important information. It
is our task, then, to organize the calculation of G such that no essential
information is lost.

Several recent cfforts (White et al. 1988, Hirsch 1988) at low-temperature
stabilization use matrices of higher dimensions, at a substantial cost of computer
time and memory. In this section, we describe even more recent developments
(Loh Jr et al. 1989) in efficiently stabilizing the computation of the matrix
products and the matrix inversions needed to get the Green’s function. There are
two keys to this approach. First, in forming matrix products, small scales are
maintained explicitly, rather than implicitly as small differences of large num-
bers. Second, the varied numerical scales are combined only at the last step in
the calculation of the Green’s function, using some scales to cut off smaller,
inconsequential scales. Resorting, once again, to a band picture, the numerical
scale associated with a single-particle state of energy E relative to the chemical
potential p is exp(— B(E — p)), which diverges or vanishes exponentially with g.
On the other hand, the occupation of that state, a Green’s function element, is
1/(exp(B(E — p)) + 1), which ranges between 0 and 1. More generally, if we are
able to keep the numerical scales exp((E — u)) separated, we will be able to cut
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off the ill-behaved scales in the final step in calculating G by adding terms of unit
scale.

We will begin this section by discussing the stable multiplication of matrices.
Then we will discuss various ways of cutting off the large and small scales to
compute the Green’s function for a variety of simulation applications.

4.1. Stable matrix multiplication

The condition number of a matrix is roughly the ratio of the largest singular value
of the matrix to the smallest one and represents an upper bound to be amplifica-
tion of errors in matrix multiplications. Our aim is to decompose ill-conditioned
matrices by representing them in the form UDV, where the diagonal matrix
D contains the diverging singular values explicitly and has the large condition
number, but where U and V are “sufficiently well-conditioned”, a property
which will be made more precise later. If we choose both U and V to be
orthogonal, the resulting decomposition is the singular-value decomposition
(SVD), which is known to be very stable in performance. Unfortunately, the
inner loops of SVD subroutines have vanishingly small lengths and so perform
slowly on vector computers. In practice, the modified Gram-Schmidt (MGS)
factorization UDV, where U is orthogonal and D is diagonal, but V is unit
triangular, is preferable. The computation time for an MGS decomposition is, in
some cases, up to 20 times less than that for SVD. Fortunately, unit-triangular
matrices are sufficiently well-conditioned, so that large numbers of them can be
multiplied in simulations without destroying stability.

To understand what we gain in decomposing an ill-conditioned matrix into
such a UDV factorized form, consider the schematic multiplication

X

X
UDV =

®x K ® o=

NNNXX = =
= o= = =
= X =® =
= = = =

= ® = =
LS < TS S B o

NNNXXXX

SRS
SIS

P
>

Here, U and V are sketched as having only matrix elements of unit scale, while
D has elements of many scales, which we have pivoted into descending order.
Notice that once the multiplication has been performed, all of the elements of
the product matrix are of the largest scale. The product is, essentially, an outer
product of the first column of U and the first row of V. The smallest numerical
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scales exist only implicitly, as small differences of large matrix elements, and they
can never be recovered on a computer of finite precision.

In contrast, a matrix which displays its small scales explicitly can be factorized
stably. Consider, for example, the factorization of a column-stratified matrix M:

X X x

X

u'mMmv!=
x

Ea S = S S

X
X
X
X

% X =%
% R Ox %
% R o= w
Moo o
" ox R X
% % X =

X X x
X X x
X X x

I
I
o

Multiplication on the left of M by a transformation matrix only combines
elements within a given column - elements of the same scale — and so causes no
loss of information. Multiplication on the right by V™! combines columns of
different scales. This multiplication, however, does not overwrite any small-scale
information so long as large-scale columns are scaled down appropriately before
they are added into columns of smalier scale. Such factorization is in fact
possible for both the SVD and MGS decompositions.

To compute the product of many matrices stably, we decouple the various
scales present throughout the calculation. To illustrate this, we first imagine we
have decomposed some partial product B(z, 0) = UDV. To extend the single-
particle propagator to imaginary time t + 74, we write

B(t + 19,0) = B(t + 19, 7)UDV = (B(t + 74, T)UD)V

X

=| Bt + 14, T)U X \"
X
X

X X x «x

X X x «x
:XXXXV

X X x «x
— (U'D'V)V = U'D'(V'V), 4.1)

giving the decomposition of the new partial product B(z + 1o, 0). Here, 7, is
the length of imaginary time for which the single-particle propagator can be
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extended without swamping the machine precision. We have decomposed
the stratified matrix B(t + 74, 7)UD into U'D’V’. The V matrices must be
sufficiently well-conditioned in order that we can multiply many of them
together stably; we can do this for both orthogonal (for SVD) and unit-triangu-
lar (for MGS) V matrices. The product B{(r + 14, 1)U is formed as a series of
sparse-matrix multiplications (3.3) on U.

Gram—Schmidt orthogonalization has long been used to stabilize matrix
products (Wilkinson 1965). In the calculation of characteristic Lyapunov ex-
ponents from time series, transformations are linearized and represented as
matrices at each time step. The stable computation of a long product of many
such matrices is often carried out by decomposing partial products (Benettin
and Galgani 1979, Shimada and Nagashima 1979). MacKinnon and Kramer
(1983) have used orthogonalization in the scaling theory of electrons in dis-
ordered solids. Sugiyama and Koonin (1986} first proposed limited applications
of these techniques to Monte Carlo simulations of fermions. Only recently (Loh
Jr et al. 1989), have decomposition techniques been applied widely, and in
a greater variety of contexts, to fermionic simulations. We will now describe how
to use decomposed forms of the single-particle propagator to simulations of
fermions.

4.2. Zero-temperature studies

Sugiyama and Koonin (1986) first used matrix-decomposition techniques in
fermion Monte Carlo for equal-time measurements in a zero-temperature con-
text. Recently, Sorella et al. (1989) used this stabilized approach with a Langevin
updating of the auxiliary fields.

In the zero-temperature approach, the Green’s function (3.9) is

G’(r,7) =1 — R°(0)(L°(7)R%(7)) "' L°(x).
The factorized forms for the L and R matrices are
L”=VIDiUi, R’ =UZD}V§,

where the order of the U, D, and V matrices has been reversed for
L° = P{B?(p, ) since the product is built up on the right side, instead of on the
left side as in eq. (4.1). In the zero-temperature, canonical (fixed-number) ap-
proach, L? (R?) are N, x N (N x N,) rectangular matrices, where the Uy (U})
are also N, x N (N x N,) rectangular matrices, while the Df (D§) and V{ (V§)
are “small” N; x N, square matrices. Using the factorized forms in the expres-
sion for the Green’s function, we find that

G =1 — (UFDZVR)((VI D{ U7)(UZDEVR)) (VDL UY)
=1 - UR(UTUR) Ut

i.e. the Green’s function depends only on the rectangular U{ and U§ matrices
but not at all on the square V{, Df, Vg, or D§ transformation matrices.
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In zero-temperature simulations, then, we can stabilize the calculation by
orthonormalizing the rows of L? and the columns of R? without ever keeping or
manipulating the linear transformations which effect the orthonormalization.

4.3. Finite-temperature G(z, 1): 1

For finite-temperature simulations, however, we are not interested in the effect
of the single-electron propagator B on the preselected set of single-particle states
represented in P, and Pg. Rather, we trace over all possible states. Thus, the
transformation matrices must be kept. Since only G (z, t) is needed to update the
Hubbard-Stratonovich field variables, we will begin by examining the equal-
time Green’s function. Fortunately, there is a simple prescription for calculating
the G(z, 7) that can be added as a module to stabilize standard BSS codes.
The equal-time Green’s function (3.10) is

G°(r,7)=(1 + B(t, )B(B, 7))~ L. 4.2)

We build up the decomposition for the product of sparse factors of which
B(t, 0)B(f, 1) is composed in the manner suggested by eq. (4.1). Now the
Green’s function becomes

G=(1+UDV)"l=V-{U-'V-! 4+ D) Ut
=V LU'D'V) U =(V'V) (D) L{UU) L. 4.3)

Once we have formed the sum U~V ! + D, we decompose it into U'D’'V’ and
the remaining factors are easily inverted and combined in any order.

What we have done is to isolate the divergent scales in D until they are
combined with the unit elements of U~V ™! which cut off these divergent
scales much like the unit term cuts off exp(B(E — u)) in the standard band
picture.

In all, we define numerical stability in an operational fashion. While the
implication all along has been that we do not lose information when the
numerical scales of the problem are maintained explicitly, in fact, much informa-
tion is lost. For example, if we multiply the inverse (U "1V ~! 4+ D) lineq. (4.3)
by the original matrix (U ™'V ™! + D), we would never recover the identity
matrix — even if the original matrix and its computed inverse were both kept in
decomposed form. Similarly, if we perform many operations, such as “wrap-
ping”, on the “stably” computed Green’s function, small errors that are present
in our representation of the Green’s function on any finite-precision machine
—even if G is kept in decomposed form — would accumulate until the errors
became larger than the calculated matrix elements. Our operational definition of
stability, then, is simply that we should be able to calculate matrix elements of
the Green’s function, the only object needed for the simulation importance
sampling and measurement process, to several significant figures. The overwrit-
ing of small scales by unit numbers and of unit scales by big numbers in the
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addition U™'V~! + D does not introduce any significant errors into the
computation of the Green’s function. Rather, this addition simply cuts off
certain numerical scales. In a simple band picture, it is not important whether
a state deep in the band is amplified by 10'°° or by 101°°° — all that is important
is that states deep in the band are filled. Similarly, it is not important whether
high-energy states are attenuated by 10~ 1°° or by 1071°°° — it only matters that
such states are cut off. In our calculation of the Green’s function, we generate the
single-particle propagator in decomposed form, identifying the “transforma-
tion” matrices U and V, which describe the “single-particle” states for a given set
of Hubbard-Stratonovich fields, and the scales D associated with the different
states. At this point, addition of U ™'V ™! cuts off the divergent scales to identify
which states have been amplified and which have been attenuated. It is for this
reason that the overwriting of scales, which we have so tediously been avoiding,
can be performed in this last step on U~!'V~! + D without introducing any
errors into the computation of Green's function. Indeed, in practice the expo-
nentially divergent elements of D cannot be stored on a computer of finite
dynamic range and so we cut them off at, say, 10" '°° and 107 °°. It is enough
for us to know simply which scales are “big” and which are “small”.

Again, even while we are able to compute the matrix elements of the Green’s
function to reasonably high accuracy, we may “wrap” G only for a short
imaginary time — of the scale 7o, which was introduced in the discussion of
eq. (4.1). Thus, G must be recomputed from scratch from time to time. The
number of times G must be recomputed in one sweep of all time slices goes as
B/70. The number of decompositions one must perform in each such recomputa-
tion also goes as B/to. Thus, the overhead associated with stabilizing the
computation scales as (f/7,)*. While this scaling may dominate the computa-
tion at very low temperatures (large f8) or for unstable problems on machines of
small world lengths (small 7,), we have found that for sets of problems — such as
sufficiently low temperatures to study the ground state of a single-band
Hubbard model on up to 16 x 16 lattices on a 64-bit machine — the stabilization
overhead represents only a fraction of the running time.

4.4. Finite-temperature G(t, 7): 11

An alternative to the great deal of recomputation involved in re-evaluating
€q. (4.3) for many different 7 is to use computer memory to store partial
products. Now, we imagine we have the decompositions of two partial products.
Building up a partial product from the right, we define

B(z, 0) = UgDg Vg, (4.4)
and building up the remaining factors from the left, we define

B(f,1)=V.D_ Uy, 4.5)
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where the order of the factorization is reversed. In contrast with the zero-
temperature case, all these matrices are square. Now, from eq. (4.2), we obtain

G(r, 1) = (1 + UgDg VRV, D, U, )7}
= U]jl(UR_IUIjl + DRVRVLDL)*IUR*I. (46)

Again, the inverse of the ill-conditioned sum can be stabilized by decomposing
the sum and then inverting its individual pieces. Schematically, the piece to be
inverted is

X X

X X X X X X X X

X X X X X X X X x X

X X X X * X X X X Xx X

X X X X X X X X X X
X X X X XX XX XX XX
X X x X XX XX Xx Xx

- X X x X * XX XX XX Xx

X X X X XX xX xX XX

Because we have kept the diagonal matrices on the outsides of the terms,
elements of different scales are added together only in the last step, to “cut off
scales”, as before.

In building up the partial product B(z, 0), one may store the decompositions
of the partial products B(zg, 0), B(21, 0), B(37,, 0), and so on. Thereafter, to
move from some imaginary time 7 to t + 74, one must perform the appropriate
series of sparse-matrix multiplications and another decomposition, as in
eq. (4.1). To move from 7 backward to © — 74, on the other hand, one need only
recall a previously stored partial product. This procedure is both faster and
accumulates fewer roundoff errors than when applying and then stripping off
factors with multiplication of matrices and then their inverses. Similarly, one
may store the partial products B(f, 8 — 14), B(B, § — 210,), B(8, B — 310), and
so on, in building up B(f, 7). In all, storage of these partial products and
utilization of eq. (4.6) brings the stabilization overhead down to scaling as
(B/10). While it becomes necessary to store the decompositions of many partial
products, the memory costs are affordable.

4.5. Unequal-time Green’s function

Finally, while equal-time measurements can always be expressed in terms of
averages of the equal-time Green’s function Gz, 1), application of Wick’s
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Theorem to time-dependent quantities such as susceptibilities

s
x(iwn)=J (AT(D)A(0))e " dr
0

will generate contractions between fermion operators at different imaginary
times. Thus, we will require matrix elements of the unequal-time Green’s
function

G(r, 1) = B(, 1)(1 + B(z, 0)B(B, 1)) .

For small changes 7" — 1" in the arguments of G, multiplication by the single-
particle propagator B(z”, t') produces the appropriate Green’s function:

G(t",1) = B{", 1)G(7, 7).

As with “wrapping”, however, this procedure cannot propagate Green’s
functions for more than some imaginary time — again, roughly 7,. In this
section, we describe two methods of stably forming

G(z.0)= B(z,0)(1 + B($,0) ' = (B(z,0) ' + B(5, 7). @7
First, we can pattern our approach as closely as possible to eq. (4.3). Using the
decompositions (4.4) and (4.5), we get
G(r,0)= (Vg 'Dr 'Ug* + V. D, U )" L.
We then isolate the most ill-conditioned diagonal matrix. For example, if
T > f — 1, we write
G(T> 0)= UR(DE1 + VgV D LU, UR)VIVR = UR(U,D/V,)_IVR, (4.8)
proceeding somewhat as before. If, on the other hand, t < § — 7, one would
isolate D,. In preliminary tests, this decomposition has proven to behave
surprisingly well, even in the case of T ~ f§ — 7, where it is not clear which
diagonal matrix to isolate.
Alternatively, we can arrange the factors in eq. (4.7) so that the two terms in

the final, “cutoff” addition are stratified matrices with explicitly maintained
small scales. We write

G(T, 0) = UEI(PDlz] UEI UEI + PVRVLDL)_IPVR. (49)

Since we have been pivoting the largest singular values to the upper left-hand
corner of the diagonal matrices, (4.9) includes a pivoting matrix

1
P:
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to order the elements of Dy !

inverted in eq. (4.9) is

in the same way. Schematically, the sum to be

X X X X X X x x
X X X X X X x «x
x x x x |T{X x x «
X X X X XXXX

Clearly, the small scales in the problem are kept explicitly until this addition,
when we would expect that the cutting off of scales would not introduce any
significant errors. Indeed, eq. (4.9) generally outperforms eq. (4.8) in tests of
Green’s function computation on finite-precision machines, calculating matrix
elements of G with errors one order of magnitude below those from eq. (4.8).
Unfortunately, the algorithm also seems to fail occasionally. This is not
currently understood.

5. Results for Hubbard models

The stabilization algorithms of the previous section have been tested in a variety
of circumstances. As we noted in section 2, the massless Hubbard—Stratonovich
fields are characterized predominantly by their fluctuations. Thus, a simple test
of stability is to calculate the matrix elements of the Green’s function in both
single and double precision for random configurations of the auxiliary variables.
The agreement between the elements from these two different calculations is
typically at least to ten significant figures when the tests are performed on 64-bit
computers. Further, Monte Carlo results on very small lattices (4 sites) can be
compared to results from exact diagonalizations. Results for energies and
ground-state correlation functions have been checked down to temperatures of
T = 0.01 (§ = 100), almost two orders of magnitude beyond the temperatures at
which unstable calculations fail or the temperatures that are needed to project
out the ground-state properties of this small system.

At the time this chapter was finished (March, 1989), work utilizing the recently
developed stabilization techniques were just reaching the published literature.
Here, we report some results for Hubbard models in two dimensions (White
et al. 1989a, Scalettar et al. 1989, Scalettar et al. 1991). Simulations have been
run on lattices up to 18 x 18 sites at reciprocal temperatures as high as f = 32.
The Green’s functions were never propagated very far (o ~ 0.5-1) in imaginary
time before the computation was restabilized. These results come from simula-
tions using the discrete Hubbard-Stratonovich transformation and Monte
Carlo updating with both the finite- and zero-temperature formulations. The
longest runs needed the order of 10 hours on a CRAY X-MP computer.
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5.1. Repulsive Hubbard model

The single-band, repulsive Hubbard model is the model most studied by quan-
tum Monte Carlo methods. The bulk of these studies has occurred in the past
two years in connection with various proposals regarding mechanisms for high-
temperature superconductivity. These recent studies have confirmed the basic
results of the original study by Hirsch (1987): at half filling, the model is
antiferromagnetic and this antiferromagnetism rapidly diminishes as one dopes
with electrons or holes to move away from half filling. The newer studies have
also, quite naturally, focussed on calculations of various superconducting pair-
ing correlation functions and susceptibilities over a range of dopings and on-site
Coulomb interaction strengths. All calculations to date have shown that these
measures of superconductivity are suppressed relative to their values when the
Coulomb interaction is zero. Recently, other procedures for calculating attrac-
tive pairings have been suggested, but even with their use the superconducting
state is yet to be seen (White et al. 1989b).

A traditional difficulty with simulations of fermions has been achieving
sufficiently low temperatures to study the ground-state properties of a system.
With the stabilized methods discussed in section 4, not only is it now numer-
ically possible to go to extremely low temperatures, but the overhead associated
with the stabilization is negligible. By computing with both the zero-temper-
ature and finite-temperature algorithms, White et al. (1989a) have shown that by
B = 20 the finite-temperature simulation measures ground-state properties. Be-
cause of the efficiency of these methods, computation time can be devoted to
studies on increased lattice sizes rather than on stabilizing small-lattice calcu-
lations. For example, in fig. 4 the antiferromagnetic structure factor (3.19) is
plotted against the reciprocal temperature B for various sizes of square lattices at

Fig. 4. The antiferromagnetic structure factor (3.19) as a function of reciprocal temperature B at
U = 4t for the repulsive Hubbard model in two dimensions (White et al. 1989a).
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acoupling U = 4, i.e. half of the bandwidth (White et al. 1989a). It is clear from
this figure that there is no essential difficulty in going well beow the temperature
that is needed to isolate the ground state. At high temperatures (low f) there is
little size dependence. At low temperatures, however, the structure factor is seen
to diverge with lattice size. Fits of the data to finite-size corrections predicted
from spin wave theory suggest long-range antiferromagnetism in the ground
state (White et al. 1989a).

The original work of Hirsch (1987) was also the first to discuss and illustrate
the existence of a severe sign problem in simulations of this model. White et al.
(1989a) also measured the average sign, the denominator in eq. (3.24), as
a function of doping at low temperatures. At half filling, a particle-hole sym-
metry ensures that (s> = 1. At extreme fillings — either very few particles or very
few holes — there are so few opportunities for exchange that the fermionic nature
of the model becomes unimportant and the average sign is close to 1. What is
surprising is that the determinants incorporate so much fermionic nature into
the calculations of configuration weights (3.5) and (3.6) that the “low-density”
value of {s) & 1 holds even up to quarter filling. What is disconcerting is that
the drop off of the sign as one moves away from half filling is extremely fast. It is
unfortunate that so near half filling, where the possibility of superconductivity in
a repulsive model exists, the simulations are the most difficult to perform.

5.2. Attractive Hubbard model

While no convincing explanation has yet been given for the pairing mechanism
binding charge carriers in the novel high-temperature superconductors, the
short coherence lengths in these materials have prompted many researchers to
explore local, real-space pairing models. Neglecting the question as to what
gives rise to the effective interaction, one can, nonetheless, assume a local, on-site
attraction between fermions and study the resulting U < 0 Hubbard model.
In addition to its possible relevance to high T, the negative-U model in two
dimensions is interesting in its own right, displaying curious phenomenology
near half filling. Due to the high degree of symmetry (O(3)) at half filling, the
model is expected to have no finite transition temperature. (At half filling, the
model is isomorphic to the half-filled, repulsive Hubbard model, which belongs
to the same universality class as the Heisenberg antiferromagnet and has
long-range order only in the ground state) Doping off of half filling in the
negative-U model, however, reduces the symmetry of the ground state and gives
rise to a finite, Kosterlitz-Thouless transition temperature (Scalettar et al. 1989).
In fig. 5, the number of singlet pairs in the pair condensate at zero temper-
ature, normalized to the number of sites in the system, is plotted against the
reciprocal of the linear size of the system for U = —2, —4, and —8 at quarter
filling on lattices of up to 18 x 18 sites (Scalettar et al. 1989). Again, finite-size
corrections from spin wave theory predict a straight-line extrapolation of the
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Fig. 5. Spin wave extrapolation of the ground-state fraction of singlet pairs in the pair condensate

for the quarter-filled, two-dimensional, attractive Hubbard model (Scalettar et al. 1989). At weak

coupling U = — 2, finite-size modulations make extrapolations difficult. At a stronger coupling

U = — 8, error bars increase dramatically. The numerical simulation performs best at an intermedi-

ate coupling U = — 4, for which analytical approaches are most limited. Data are shown for
periodic boundary conditions (solid lines) and open boundaries (dotted line).

data to the infinite-system limit. Several features are apparent from the plot.
First, at weak couplings U = -2 and —4, the data have a fairly irregular
dependence on lattice size. The reason for this is easy to deduce from the U = 0
limit. In this limit, the fermions no longer interact and the Hamiltonian is easily
diagonalized in momentum space. The single-particle density of states in this
limit is very sparse for finite-size lattices. In order to achieve a particular filling
for a given lattice size, the Fermi energy must sometimes lie on a single-particle
energy and sometimes between levels. Thus, the effective density of states at the
Fermi surface varies widely. This irregular dependence on lattice size, of course,
diminishes with N, as the interlevel spacing gets smaller, and with |U]|, as the
single-particle levels get mixed.

Due to these irregularities, it is impossible to extrapolate the U = —2 data to
the thermodynamic limit. By the time U = —4, however, it is clear that a macro-
scopic fraction of the fermions are in the pair condensate. Increasing the
magnitude of the electron—electron coupling to U = — 8§, the pairs become more
defined and the macroscopic fraction grows. The irregularities with lattice size
have, presumably, been damped out by the electronic correlations. Now, how-
ever, this is difficult to tell since the error bars have increased dramatically.
From the discrete Hubbard-Stratonovich transformation (2.8), we see that the
coupling « of the electrons to the fluctuating field grows with |U|. Thus, for weak
couplings U = —2 and U = — 4, the statistical errors associated with sampling
only a finite number of field configurations are small. As we see from fig. 5,
however, these fluctuations increase dramatically as one goes to the strong-
coupling limit.
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In short, simulations are difficult to perform in weak coupling, due to the
severe lattice-size dependence, and also in strong coupling, due to the increasing
statistical fluctuations. The parameter regime in which numerical simulations
perform best is one that is difficult to study with analytical techniques.

In fig. 6, the charge-density-wave structure factor

CDW(q) =% Y elrtiTrdg g, S.h
is plotted as a function of wavenumber ¢ for two-dimensional lattices of up to
18 x 18 sites for U = —4 (Scalettar et al. 1989). Other than for the smallest
(4 x 4) lattice, results generally lie on top of one another for the different
numbers of sites. While there is structure in the plot, the peaks do not diverge
with lattice size. Thus, we characterize the system as a liquid, rather than as
a solid. The peak in CDW(q ) at half filling is, of course, at g = (m, x) due to the
perfect nesting of the Fermi surface. At quarter filling, the peak occurs on the
lines g = (q,, m) and g = (7, g, ), as predicted in the RPA.

Consider a charge excitation

Wa> = pal¥o>/{Wol p-gpaltho>'?

of wavenumber ¢, where

1 ig-r
pqzﬁge‘q n,

and |y, > is the ground state. Then the energy of the excitation is

0(g) = Yol HIy = (ol HIod = g%(l - qu)/CDwm,
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Fig. 6. The charge-density-wave structure factor (5.1) as a function of wave number g for quarter
filled, two-dimensional, Hubbard lattices of up to 18 x 18 sites for U = — 4 (Scalettar et al. 1989).
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where (Ey,/N) is the ground-state energy per site and &(q)=
—2t(cos g, + cosgq,). Thus, peaks in CDW(g) can become dips in w(q). The
weak structure in fig. 6, however, is not strong enough to lead to a roton
minimum in the excitation spectrum w(q ).

5.3. Copper-oxide clusters

Of course, more directly relevant to the high-temperature superconductors are
multiband Hubbard models that have the structure of the CuQ, planes. In the
planes, each Cu site is surrounded by four nearest-neighbor O sites, while each
O site has two nearest-neighbor Cu sites. While the debate over which orbitals
of the Cu and O atoms are relevant — or even if the physics of the superconduc-
tivity is contained in the planes — continues, a great deal of attention remains
focussed on the “Emery” model (Emery 1987) which considers only the
d,:_,2 Cu and p-o bonding/antibonding O orbitals. The largest orbital overlap
is between neighboring d- and p-orbitals and the largest Coulomb repulsion is
the on-site Hubbard repulsion Uy . Thus, Scalettar et al. (1991) have studied

H=—1t Y (che,+clco)+edn+ Uy mynmy, (5.2)
iy j i

where the hopping sum is over nearest-neighbor Cu-O pairs, the site-energy

sum is over O sites j, and the correlation sum is over Cu sites i. The creation and

annihilation operators are actually for holes, with the reference “undoped”

system having one hole per cell. We will choose t =1, ¢ = 1, and U, = 4, all

energies nominally in eV.

40 —— T
30 .
E | 10 .
& R0 -~
N’ r -
> L B
10~ 0. a
L 11 ]

L 1.2\ ]

o) PRI E I AN RN
0 005 01 015 02

T

Fig. 7. The antiferromagnetic susceptibility y(n, ) on the copper sublattice as a function of
temperature for different lattice fillings on a two-dimensional CuO, cluster (Scalettar et al. 1991).
Slight doping suppresses the antiferromagnetism.



224 E.Y. Loh Jr and J.E. Gubernatis

—
w

TT T T [T T T [T T T T[T pTT

—- -
- [\]
LN L L I I L O

—

o
©

NS N N R S RN

average hole occupation

Y- ST R R S
-34 -32 -3 -28 -26

o2

Fig. 8. The average number of holes per cell on the CuQ, cluster as a function of the chemical
potential y for reciprocal temperatures 8 = 12, 16, 20 (Scalettar et al. 1991). As the temperature is
lowered, a broad, flat plateau develops about the reference filling of 1 hole/cell.

In fig. 7, the antiferromagnetic susceptibility y(r, ) on the copper sublattice is
plotted as a function of temperature for different lattice fillings (Scalettar et al.
1991). The lattice is made up of 16 CuQ, cells arranged in a 4 x 4 cluster. Thus,
there are 48 sites in the system. This should be large enough to observe
a bound-pair of holes since the coherence lengths in these systems are only
several cell lengths. The effect of the site-energy difference is to place the holes
predominantly on the Cu sites. Antiferromagnetic superexchange between
Cu sites leads to the divergence in y at low temperatures. Upon doping,
however, itinerant holes wash out the staggered order. Figure 7 shows the
low-temperature behavior of the antiferromagnetism as the doping is varied
from 0.9, 1.0, 1.1, to 1.2 holes per unit cell.

In eq. (5.2), the filling of the lattice is controlled with a chemical potential
term. In fig. 8, the average number of holes per cell is plotted as a function of the
chemical potential p for reciprocal temperatures § = 12, 16, 20 (Scalettar et al.
1991). As the temperature is lowered, a broad, flat plateau develops about the
reference filling of 1 hole/cell. This is a clear signature of the stability of that
filling.

6. Conclusion

In this chapter, we have briefly reviewed “determinantal” methods of simulating
many-electron systems. In such methods, direct electronic interactions are
replaced by couplings to auxiliary bosonic fields. Sums over the fermionic
degrees of freedom are performed exactly for fixed configurations of the bosonic
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fields. In contrast, sums over these fields are performed stochastically, using the
determinantal weights to guide the importance sampling.

We have concentrated on providing a more heuristic exposition of the
simulation formalism. Further, we have described recently developed methods
for stabilizing the calculations at low temperatures.

Alternative stable algorithms do exist for specialized problems. The first
approach is the world-line method for one-dimensional systems of interacting
electrons (and quantum spin systems). This method has been reviewed by
De Raedt and Lagendijk (1985). The second approach is the “impurity” algo-
rithm of Hirsch and Fye (1986). In this approach, electrons interact on a small
number N; of impurity orbitals. The non-interacting part of the Hamiltonian is
integrated out and the impurities may be regarded as being embedded in an
infinite medium. Procedures exist for performing the updating (Hirsch and Fye
1986) and for restoring correlations between the impurities and the non-interac-
ting degrees of freedom (Gubernatis 1987). Unfortunately, the updating process
needs the elements of the Green’s function between all imaginary times instead
of just the equal-time elements. Hence, the computing time scales as (N; 8)°. For
the one and two-impurity Anderson Hamiltonians, the method is stable and
efficient. For a lattice of impurity sites, however, this approach is very expensive.
Other algorithms (White et al. 1988, Hirsch 1988) have reduced the prefactor for
many-impurity problems, but methods that stabilize simulations by expanding
Green’s function matrices remain very costly.

In contrast, the overhead associated with explicitly maintaining essential
small scales is modest. It is possible to stabilize a variety of simulation algo-
rithms in this manner. Thus, one must choose a particular implementation. It
appears that the Monte Carlo updating of discrete Hubbard—Stratonovich fields
has the most desirable properties. Since the phase space of discrete fields is
smaller than for continuous fields, the importance sampling is much more
effective. The correlations (Buendia 1986, Lin and Hirsch 1986) and integration
errors of Langevin and molecular-dynamics approaches make those methods
less efficient and more difficult to implement well. Finally, Monte Carlo updat-
ing appears to be the most successful algorithm is crossing the “nodal barriers”
which divide the bosonic-field phase space.

These efficient stabilization techniques have allowed relatively inexpensive
explorations of the low-temperature phases of a variety of models of strongly
correlated electrons. In most cases, it is no longer necessary to extrapolate to
low temperatures. Rather, it is now possible simply to run at temperatures that
are low enough to extract ground-state properties. Further, the overhead asso-
ciated with the stabilization is only a small portion of the computational cost.
Thus, low-temperature simulations (White et al. 1989a) of the two-dimensional
Hubbard model can easily be realized at costs one order of magnitude below
those previously possible (Tang and Hirsch 1988).
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Nevertheless, important algorithmic difficulties remain in the numerical stud-
ies of fermions. Undoubtedly, the most important of these is the “minus-sign”
problem. To date, this obstacle can really only be overcome by avoiding it.
(Sorella et al. (1989) speculate that the sign problem can be ignored in the limit of
zero temperature.) Hence, studies of the single-band Hubbard model are per-
formed either for the U < 0 modet or for the half-filled U > 0 model. Studies of
the Anderson lattice are best limited to the symmetric case. These limitations
can be extremely unfortunate. For example, the simplest explanation for high-
temperature superconductivity wotld be the single-band Hubbard model. How-
ever, the validity of such a theory cannot be checked with numerical methods
because it is just close to half filling, the only doping at which the repulsive
Hubbard model could superconduct, that the sign problem is worst.

Large-scale simulations always benefit by faster algorithms. The most serious
factor in limiting the speed of fermionic simulations is the dependence on lattice
size. Determinantal methods scale as the cube of the number of lattice sites. The
linear dependence of conjugate-gradient methods on N is highly attractive.
Unfortunately, despite many attempts, such as “preconditioning”, at controlling
of the number of conjugate-gradient iterations needed at low temperatures,
these techniques tend to lose their desirable scaling properties.
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Appendix 1. Extended electronic interactions

In section 2, we considered only on-site interactions between electrons. Here, we
briefly consider the case of interactions

Z Vijnin; (L)
)
extended to other sites as well.

The standard approach is to rewrite each term — At ¥;jn;n; as a perfect
square, which may be eliminated with an auxiliary field, and an on-site repul-
sion. Then, the on-site repulsions may be collected and eliminated with eq. (2.8).
Unfortunately, the introduction of a new field for each term further expands the
phase space that must be explored, making efficient simulations more difficult.
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As the range of the interaction is increased, this approach simply becomes
intractable.

The alternative is to couple auxiliary fields not only to the local electronic
degrees of freedom but also to bosonic fields on other orbitals. For example,
generalizing the Hubbard-Stratonovich transformation, we can write (Negele
and Orlando 1988)

exp(3n" Mn) ~ fdx exp(— 3x'M™'x + x"n)

~ jdy exp(~3y"My + y"Mn), (12)
where n' = (n,,n,,...)is a vector of electron occupation numbers in orbitals
1,2, ..., N.All of the eigenvalues of M must be positive in order that the

integrals converge. In the first integral, the electronic charge n couples only to
the local bosonic field .x, while the field x on each site couples to the field on each
of the other sites through M ~'. In the second integral, if M has a limited-range
interaction, then the boson-electron coupling y"Mn and boson-boson coupling
¥"My are also of limited-range.

For a general repulsive interaction, however, the left-hand side of (1.2) is
exp( — Awn'Vn) with V; > 0. To make the eigenvalues of 1M = — AtV all
positive in such cases, we must add an offset to the action. The contribution to
the path integral from this generalized repulsion becomes

exp< — Aty Vijn,-nj> = exp(Ar A Z nf— Aty Vijninj>

ij ij

Xexp<—AT VoZn%>. (L3)
With the use of (I.2), the first factor in (I.3) may now be expressed in terms of
a bosonic field whose components couple both to the local electronic charge
density and to each other. The second factor may not be so treated as its
“matrix” has only negative eigenvalues. This factor has the form of an on-site
repulsion; as we have seen, it may be interpreted as resulting from a second
intermediate field, whose components couple to the local electronic spin density
but not to each other.

Again, we have engineered these transformations so that the auxiliary fields
and the couplings are always real.

Appendix 11. Bosonic world lines

In this appendix, we will continue the characterization of imaginary-time evolu-
tions of bosonic field variables from section 2.
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We first examine the relationship between the discrete [eq. (2.8)] and continu-
ous [eq. (2.6)] transformations in the limit At — 0, considering, as an example,
the case U > 0. We average the external potential felt by the electrons over
an imaginary time that is infinitesimally small and yet much larger than Ar.
The coupling of the electrons to this locally time-averaged field is simply
ax(ny —ny ) -/ At|U|x(ny —n;), as At — 0, where x is the averaged field.
Phase space for the discrete field variables is uniform. Each such variable has
zero mean and unit variance. A local time average x of many such fields,
therefore, must have a Gaussian distribution exp( — x2/2)/\/2_1t, from the
central-limit theorem. Incorporating this weighting factor, we see that the
elimination of high-frequency oscillations in the discrete field of (2.8) produces
the continuous transformation (2.6). In the limit At — 0, then, the discrete and
continuous transformations are equivalent.

In section 2, we argued that the massless Hubbard-Stratonovich fields are
essentially decoupled in time and that the time averages of such fields are
necessarily of order \/ Ar, but that the electron—boson terms still enter the action
to the same order in At as the purely electronic terms, since the coupling to this

weak average field is 1/\/A_r. We presented our case using fields that were
generated by purely bosonic actions. Here, we justify our characterization of the
massless fields rigorously.

We will examine discrete Hubbard-Stratonovich fields in the limit At — 0.
Further, we will work within the finite-temperature formalism. Our results
remain valid within the zero-temperature formalism as well. The correlation of
two distinct field variables is

s x(t)x(t)Tr T exp(~ Lf S(v)dr)

(x(1)x(z)) S Tr T exp(— |2 S(r)dr)

: (IL1)

where the trace is over fermionic degrees of freedom and S(z) is the action of the
electrons evolving through the time-varying Hubbard—Stratonovich fields {x}.
The field variable x(z) enters the numerator of (II.1) as

Z X(T) e—ArS(r) — Z X(T) eazx(r)s(t)
x(ty==*1 x(t)==x1

= tanh(as(z)) 3y (s

x(r)==1

= tanh(as()) Y e A4S,

x(t)y==*1
where s = n, — n, is the local electronic spin. Hence,

{x(1)x(t")) = <tanh(as(r))tanh(as(z’}))> = At|U|<{s{t)s(z')> = O(AT)
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as At — 0. Further, if t = 7/, then {(x?> = (1) = 1. The correlation of two field
variables, then, drops to order At for even an infinitesimal separation in
imaginary time. As a corollary, while field-variable correlations are related to
physical measurements, the fluctuations in these quantities make them impracti-
cal estimators in simulations.

We can now calculate the characteristic size of the mean field N 'Y, x(1),
averaged over, again, some infinitesimal imaginary time N,At that is large
compared to Ar. The mean-square field is

<<Ni2x<r>>2> ~3E GO + 3 O

x X t#t’

1 1

=ty 2 AUIGEs() = 0(4e)

Xt#zr

Hence, the time-averaged field is of order /A, as in section 2.

Appendix I1I. Many-electron propagator

In this appendix, we examine the many-electron propagator (2.15). The
many-electron propagator naturally takes the form of a determinant since the
antisymmetry of electron exchange is automatically incorporated by the
odd parity of the row or column exchange in determinantal evaluation.

The inner product of two N -electron states is

B

i, Bij,

ileo‘
{Oleg,ep,+ - c,-Nac;Nﬂ cele] 0 = det Bifj‘ Bisz . Bizzj”a ,
BiNdjl BiNdjz BiNUjN(I
(TIL1)

where the B;; = <0|cic;f|0> are the single-electron inner products. The proof
proceeds easily via induction. Clearly, the result holds true for N, = 1. Assume
eqg. (IIL.1) holds for N, — 1. The anticommutation of electron operators gives

+
iCis

T —
cic; =By —g¢

even if ¢; and c; are expressed in different bases. In eq. (I111.1), we may exchange
fermion operators to bring ¢;, all the way over to the right side until it
multiplies the vacuum state |0 directly, producing a null result. The nonzero
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remainders of the electron exchanges give

R U R |
QUIEREN Ciy, € cjzcj1|0>

,J‘Ng
- S t R
= BiNdjNo<O|Ci1('i2 ciNa—lchﬂfi C}-ZCJ-1|O>
i t t
_BiNﬂJ.Nq—1<O|Ci1ciz...CiN6—1CjN”CJ'N6—z”.Cj1|0>
t t T i
= Bijy, o CO0les iy ciy €y Clay 1 Cln oy €100
e (I11.2)

Expressing the (N, — 1)-electron inner products as determinants, we see that eq.
(111.2) is simply the cofactor expansion of the N, x N, determinant in eq. (IIL1).

Now consider the imaginary-time propagation of a N,-electron state. We may
expand the imaginary-time propagator as

0

fexp< — JV; S(r)dr) =exp( — AtS(B)) - - - exp( — ATS(2A1))

x exp( — A1S(A1))

in terms of piecewise-constant contributions S(/A7) in the limit At — 0. With the
quartic terms in the electron operators reduced by the Hubbard-Stratonovich
transformations, the contributions S(/At) are at most quadratic in ¢ and c'.
Further, we will require that each piece S(/At) is Hermitian and number-
conserving. (While each exp( — ArS(IAt)) must be Hermitian, the product of
many such factors need not.) Then, the imaginary-time propagator becomes

B
7exp< - J S(‘E)d‘[) = constant x exp( — ¢'My,¢) - - - exp( — ¢"M¢)
(4]
x exp( —¢"M¢),

where we have written the creation and annihilation operators

ch=( o o )
and
C1
Ca
¢ = .
Cn

as vectors and the contributions to the action explicitly as number-conserving
operators in matrix form.
Working in the basis in which M is diagonal, we can easily prove that

e ¢ Megt — ¢fe~Me=c'Me (I11.3)
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Using (I1L.3) to propagate the N,-electron wavefunction

(e—”*MNtc ce e—C'Mw)chjN ety |0

.4

— (CTe_MNl N e_MlvjN ) (cTe*MNt e e_M‘v1)|0>,

we may invoke eq. (IIL.1) to prove eq. (2.15).

Appendix 1V. Finite-temperature field weights

Here, we show that eq. (3.6) is the weight of a configuration of field variables {x}
within the finite-temperature formalism. For a fixed configuration of bosonic
field variables, the electrons evolve through a time-dependent field described by
{x}. The electrons are decoupled from each other, however, so that the weight
can be expressed in terms of the single-electron propagator B, which depends on
{x}. We would like to show that the trace

B

rlx] = Trfexp( — f

0

S(‘E)dl’) (IV.1)

over electronic degrees of freedom is det(1 + B(f, 0)), where B is given by
€q. (2.12) and the action S depends on the configuration of the bosonic fields
{x}. Here, we will consider electrons of only one particular spin ¢ since the
generalization to electrons of many spins is trivial.

Here, we use the grand-canonical trace over all numbers N, of electrons. Since
Pauli exclusion allows at most one electron per orbital, the number N, of
clectrons must fall in the range 0 < N, < N, where N is the total number of
orbitals. For each choice of N,, we must sum over the states

b
CTiNU s cichl|0>,
where the sum over the iy, i, . .., iy, must be over all distinct subsets of the
orbitals 1,2, ..., N.
For a particular number N, of electrons and a particular subset i, i,, ...,

iy, of orbitals, the contribution

B
Ofeg e, - ¢y <,7exp< —.j S(r)dr))ch - -c,TZc,Tli0>
k<2 0 a

Bii(B,0) Biio(B0) ... By (B0)
d Bizil(ﬂa 0) Biziz(ﬂa 0) e BiziN (ﬁ» 0)

= det _ . - g
BiNui,(ﬁ’ O) BiNciz(ﬁs 0) R BiNaiNd(ﬁa 0)

to the trace is given by eq. (2.15).
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Further, the determinant

B 1+B,, ... B
det(1 + B(B, 0)) = det 2 o v (IV.2)
By, By, ... 14 Byy

can be expanded as
det(1)
+ det(Bll) + det(Bzz) + -+ det(BNN)

B,, B B, B
+det< H ‘2>+det< H 13>+~--
B21 BZZ B31 B33

+d€t<BN_1N_1 BN—IN)

Byn-1 Byw
+ .
Byi Bix ... By
B B
+ det 21 .22 2N
BNl BNZ « . BNN

in terms of the number of factors of B. We can easily see that this sum is precisely
the grand-canonical trace that we are trying to evaluate. The first term is the
contribution from the vacuum state. The next line is made up of contributions
from all single-electron states. The following line is made up of contributions
from all two-electron states. The last term, finally, is the contribution from the
N-electron state, which packs each orbital with an electron.

In the special case that the fields are time independent, the trace (IV.1) can be
evaluated in terms of stationary states. Once again, writing the electron creation
and annihilation operators as vectors, the time-independent Hamiltonian

H= —c'Mc= — ¢/ (0'DO)c= —d'Dd= - D,dd;

may be diagonalized with the unitary transformation O in terms of the station-
ary states d = Oc of the system. The grand-canonical trace

Tre 1 = Trexp(ﬂZDﬁdfd,) =[] Y eppudid:

i did;=01

=10+ (IV.3)
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is easily found using the diagonalized form. The final expression is just the
partition function for free electrons. Rewriting it in basis-invariant form, we find

Tre P = det(1 + e”D) = det(1 + ¢*M),

the time-independent form of (1V.2).

Appendix V. Determinants of different-size matrices

To produce eq. (3.13) from eq. (3.12), we used an identity
det(1y + AB) = det(1,, + BA), (V.1

where A is an N x M rectangular matrix while B is an M x N rectangular
matrix. To highlight the fact that (V.1) relates determinants of matrices of
different sizes, we have written the N x N unit matrix as 1y and the M x M unit
matrix as 1.

To prove (V.1), let us simply prove that fy(4) = f3,(4), where

fv(2) = det(1y + AAB)
and
Ju(A) = det(1y, + ABA).

It is clear that fy and fy; are polynomials in A of order at most N and M,
respectively, and that fy(0) = f,,(0) = 1. Expanding the logarithm of fy(1) as
a power series about 4 = 0 and using the relation det(M) = exp(Trln M), we
find
> (— AABY"
In(f(4)) = Trin(1y + LAB)= —Tr ). (= 2AB)
n=1
Due to the cyclic nature of the trace, the order of A and B can be reversed. This
gives the power-series expansion of In( fo;(4)), proving the relationship between

v and fy,.

n
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