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Abstract—Numerical algorithm runtimes are increasingly
dominated by the cost of communication (memory access), which
can exceed the cost of floating point operations by orders of
magnitude. A great deal of efforts had been focused on the
design of communication-avoiding parallel matrix operations
using techniques such as blocking or tiling. However, not all
matrix operations can be efficiently parallelized by these tech-
niques. A matrix operation is referred to as a hard-to-parallel
matrix operation (HPMO) if there have hard serial bottlenecks
that are hardly parallelizable. Otherwise, it is referred to as
an easy-to-parallel matrix operation (EPMO). The performance
scalability of an HPMO is significantly poorer than an EPMO
on multicore and distributed architectures. The design of an
application higher-level algorithm should try to avoid the use
of HPMOs as computational kernels.

In this paper, as a case study, we present an HPMO-avoiding
algorithm for the Green’s function calculation in quantum
Monte Carlo simulation. The original algorithm utilizes the QR-
decomposition with column pivoting (QRP) as computational
kernel. QRP is an HPMO. The redesigned algorithm maintains
the same simulation stability but employs the standard QR
decomposition without pivoting (QR), which is an EPMO. Dif-
ferent implementations of the redesigned algorithm on multicore
and distributed architectures are investigated. Although some
implementations of the redesigned method use about a factor of
three more floating-point operations than the original algorithm,
they are about 20% faster on a quad-core system and 2.5 times
faster on a 1024-CPU distributed system. The broader impact of
the redesign of higher-level matrix algorithms to avoid HPMOs
in other computational science applications will also be discussed.

Index Terms—Matrix algorithm; Quantum Monte Carlo sim-
ulation; Multicore algorithm; Distributed algorithms; Commu-
nication avoid algorithm; HPMO and EPMO.

I. I NTRODUCTION

We are experiencing a dramatic transformation of comput-
ing landscape to multicore and distributed systems. The shift to
an increasing number of cores and heterogeneous architectures
requires significant modification to today’s computationaltools
and technologies. The communication cost of an algorithm has
already exceeded arithmetic cost by orders of magnitude, and
the gap is growing exponentially over time [9]. To compensate
the speed gap, new principles of software and algorithm design

for performance are gradually built via extensive studies.For
instance, one may use massive fine grained and asynchronous
threading to improve processor utilization and to hide the com-
munication latency [7], or trade with additional computation
for reducing communication among processing units [8].

Those ideas have been widely applied in designing basic
matrix operations and algorithms. In [1], the pivoting in the LU
decomposition is avoided by using randomization technique
and the QR decomposition. In [17], [7], [6], [15], tiled
algorithms with dynamically scheduling are used to achieve
fine granularity and asynchronicity for Cholesky, LU and QR
factorizations and Hessenberg reduction. In [20], [8], processor
utilizations are enhanced by minimizing communication cost
on various platforms.

However, not all matrix operation can be efficiently par-
allelized for great efficiency. For example, the QR decom-
position with column pivoting (QRP) performs significantly
poorer than the QR without pivoting (see Figure II.1). One
challenge is that the pivoting involves moving the columns
of the matrix between levels of a memory hierarchy and/or
between processors over a network. Another challenge is
that the pivoting criterion is computed based on the global
runtime information, which requires a global synchronization
when subtasks run in parallel. The first challenge alone
may not be a critical performance killer, since it can be
improved by techniques like pre-fetching and computation and
communication overlapping. It is the combinative effects of
those two challenges that jeopardize an effective performance
improvement by parallelization.

We call a matrix operation such as the pivoted QR ahard-
to-parallel matrix operation (HPMO). On the other hand,
matrix operation such as matrix-matrix multiplication and
the QR decomposition (without pivoting) are calledeasy-to-
parallel matrix operations (EPMOs). By nature, it is not likely
to improve the performance of an HPMO significantly by
parallelization. In [1], the LU decomposition with pivoting
for solving a linear system of equations and matrix inversion
is recommended to be replaced by the QR decomposition.

For large-scale application simulations that currently em-



ploy HPMOs as computational kernels, it is highly desired and
often challenging to redesign the kernel to avoid the use of HP-
MOs. In this paper, we present an HPMO-avoiding algorithm
for a real physical simulation application: the Green’s function
in Determinant Quantum Monte Carlo (DQMC) simulation
[2], [14]. For stabilizing the matrix multiplication and inver-
sion, the original algorithm uses the pivoted QR decomposi-
tion to stratify matrix elements of different magnitude order
[13], [12], [4]. Our redesigned algorithm, calledStructural
Orthogonal Factorization (SOF), reformulates the calculation
to avoid the pivoted QR, and uses matrix-matrix multiplication
and QR-decomposition only, which both are EPMOs. We
will present different implementations of SOF that use BLAS
and LAPACK on multicore and PBLAS and ScaLAPACK on
distributed architecture as building blocks to harvest thegreat
performance of those highly optimized numerical libraries.
Experiment results showed the SOF algorithm is as stable as
the original one. Moreover, although the operation count ofthe
SOF algorithm is three times more than that of the original
algorithm, the SOF still outperforms the original algorithm
by 20% on a quad-core system, and 250% on a 1024-CPU
distributed system.

The rest of the paper is organized as follows. Section II
compares the performance and scalability of three matrix
operations on multicore and distributed architectures, namely
matrix-matrix multiplication, QR, and pivoted QR. Based
on their properties of parallelization, they are classifiedas
HPMOs or EPMOs. Section III introduces the Green’s function
calculation in the determinant quantum Monte Carlo simula-
tions, and the HPMO-based algorithm. The redesigned algo-
rithm, structured orthogonal factorization (SOF), is presented
in section IV. Section V illustrates different implementations
of SOF utilizing highly optimized numerical libraries and
analyzes their operation counts. Section VI compares the
performance of various implementations of SOF to the original
algorithm. The concluding remarks and future work are given
in section VII.

II. EPMO AND HPMO

This section begins with the performance and scalability
measurement of some basic matrix operations from well-
established BLAS and LAPACK on multicore and PBLAS
and ScaLAPACK distributed architectures. From there, a clas-
sification of easy-to-parallel matrix operations (EPMOs) and
hard-to-parallel matrix operations (HPMOs) is presented.

The following three basic matrix operations are selected for
their distinct characteristic of parallelism and relevance to the
application studied in this paper.

• The matrix-matrix multiplicationC = AB is often used
as a performance benchmark to indicate the achievable
peak performance on various architectures, whereA, B
and C are n × n matrices. Its computational subroutine
is DGEMM in BLAS andPDGEMM in PBLAS.

• The QR decomposition is defined asA = QR, whereQ
is an orthogonal matrix andR is an upper triangle matrix.
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Fig. II.1. Performance of MKL10.2DGEMM, DGEQRF andDGEQP3 on an
Intel i7 Quad 2.66GHz.

Its computational subroutine isDGEQRF in LAPACK and
PDGEQRF in ScaLAPACK.

• The pivoted QR decompositionAP = QR, whereQ is
orthogonal,R is upper triangular andP is a permuta-
tion matrix. Its computational subroutine isDGEQP3 in
LAPACK andPDGEQP3 in ScaLAPACK.

Figure II.1 shows the performance of these three basic
matrix operations on an Intel Core i7 Quad 2.66GHz machine
as available in MKL version 10.2. Figure 1(a) compares the
Gflop/s of three subroutines for different matrix size using
4 cores; Figure 1(b) displays their Gflop/s using 1 core, 2
cores, and 4 cores for matrix size 12000. As can be seen,
the performance of QR is close to that of the matrix-matrix
multiplication. Although the QR and the pivoted QR are kin to
each other, the performance of the pivoted QR is much poorer
than QR. Furthermore, we notice that the speedup ofDGEQP3
on quad core is only a slight better than two-core, as shown
in Figure 1(b). By contrast, the performance ofDGEMM and
DGEQRF are almost quadrupled from one to quad cores. It is
anticipated with more cores, the performance improvement of
DGEQP3 would be further deteriorate.

To measure the performance of these matrix operations on a
message passing based cluster, we used a Cray XT4 massively
parallel processing system (named Franklin) at NERSC (Na-
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Fig. II.2. Performance of PDGEMM, PDGEQRF and PDGEQP3 on a Cray
XT4 at NERSC.

tional Energy Research Scientific Computing Center). Franklin
has 9,572 compute nodes. Each compute node consists of
a 2.3GHz single socket quad-core AMD Opteron processor
(Budapest) with a theoretical peak performance of 9.2 GFlop/s
per core (4 flops/cycle if using SSE128 instructions). MPI task
assignment follows the SMP placement style. For instance, 8
MPI tasks are distributed on 2 compute nodes as follows

Node Node 1 Node 2

Core 1 2 3 4 1 2 3 4
MPI Rank 0 1 2 3 4 5 6 7

To match the nature of matrix algorithms, PBLAS and ScaLA-
PACK maps processors onto a two-dimensional rectangular
grid (process grid) according to the row-major order or the
column major order. In our test cases, the square process grid
is used, and the number of allocated processors is represented
by the size of the grid. For instance, a2×2 processor allocation
means 4 processors are mapped onto a two by two process
grid.

We chose a typical matrix size,16384 = 214, to compare
the performance differences of these three routines, and used
different number of processors,2×2, 4×4, 6×6, 8×8, 12×12
and 16 × 16 to illustrate their scalability. Figure II.2 shows
the performance results of three PBLAS and ScaLAPACK
subroutines with respect to different number of processors.
It can be seen that the performance of the pivoted QR is only
about one tenth of the other two matrix operations and the
scalability is extremely poor as well.

There are issues which make the pivoted QR extremely hard
to parallelize. First, the pivoting involves exchanging columns
of the matrix, which may locate at different levels of a memory
hierarchy and/or between processors over a network. Second,
the pivoting criterion requires a global synchronization to eval-
uate the norms of remaining columns. The first issue cannot be
resolved by pre-fetching or computation and communication
overlapping because of the second issue. Thus, the pivoting,
which entails expensive data communication, can be regarded
as the non-parallelizable operations of the pivoted QR.

The ineffectiveness of parallelizing the pivoted QR can also

be explained by Amdahl’s law. LetTp be the time for the
communication requested by pivoting, andTc be the time
for computation. If we assume the communication cannot be
parallelized at all and the computation part can be perfectly
parallelized, the asymptotical speedup of the parallel pivoted
QR is

ρ =
Tp + Tc

Tp
.

If Tp is much larger thanTc, the limited speedup and scala-
bility can be anticipated by parallelization.

A number of matrix operations share the same characters as
the pivoted QR. We call a matrix operation ahard-to-parallel
matrix operation (HPMO) if its most time consuming subtasks,
including communication, cannot be parallelized. Otherwise, a
matrix operation is called aeasy-to-parallel matrix operation
(EPMO). It should note that our classification does not imply
that the performance of HPMOs cannot be improved by other
methods. For instance, one can improve the performance of
pivoted QR by minimizing the communication or by relaxing
the pivoting criterion. This is the effort beyond the scope of
our current work.

III. G REEN’ S FUNCTION CALCULATION

Green’s function calculation is the kernel in quantum Monte
Carlo simulations of interacting electrons in computational
material science [5], [13], [12]. Specifically, in the Determi-
nant Quantum Monte Carlo (DQMC) simulation, the Green’s
function is formulated as

G = (I + BLBL−1 · · ·B1)
−1, (III.1)

where Bi = BVi, is a product of a symmetric matrixB
and a diagonal matrixVi [2]. Matrix B = e∆τK is a matrix
exponential of thehopping matrix K, which describes how
electrons hop among sites. Scalar∆τ is the time discretization
parameter. Its product withL, β = ∆τL, is the inverse tem-
perature. The diagonal elements of matrixVi are in{eλ, e−λ},
whereλ = cosh−1(eU∆τ/2). ScalarU is an energy parameter
that related to local repulsion between electrons [2].

When L is large (a.k.a. low temperatures), the matrix
G in (III.1) is extremely ill-conditioned. Several methods
have been proposed [13], [12], [18], [4] to stabilize the
computation by stratifying the magnitude of elements in the
matrix multiplications. All those methods inevitably require
the pivoted QR decomposition. Algorithm 1 by Lohet al
[13], [12] is currently used to calculate the Green’s function
G. In the algorithm, elements of different energy levels, which
correspond to different magnitude of numbers, are stratified by
the pivoted QR decomposition. The stratification step protects
small numbers to be rounded by mixing with large ones. The
stability analysis of the stratification method can be foundin
[4].

IV. SOF ALGORITHM

To avoid HPMO QR decomposition with pivoting, Al-
gorithm 2 is a redesigned method to compute the Green’s



Algorithm 1 Stratification method

1) Compute the pivoted QR:B1 = Q1R1P
T
1

2) SetU1 = Q1, D1 = diag(R1) and
T1 = D−1

1 R1P
T
1

3) For i = 2, 3, · · · , L

a) ComputeCi = (BiUi−1)Di−1

b) Compute the pivoted QR:Ci = QiRiP
T
i

c) SetUi = Qi, Di = diag(Ri), and
Ti = (D−1

i Ri)(P
T
i Ti−1)

4) ComputeG = T−1
L (UT

L T−1
L + DL)−1UT

L

function G. It is referred to as a SOF (Structured Orthog-
onal Factorization) method since the computational kernel
involves an orthogonal decomposition of a structured matrix.
The similar computational kernel has also appeared in other
higher-level matrix algorithms, such as inverse-free method for
computing the generalized Schur decomposition of a matrix
pair [3] and the matrix polar decomposition [11, Chap.8][16].

Algorithm 2 SOF method
1) SetM2 = I, A2 = B1

2) For i = 2, 3, · · · , L

a) Compute QR decomposition of the matrix
[

Mi

−Bi

]

=

[

Q
(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]

[

Ri

0

]

(IV.2)

b) UpdateAi+1 = (Q
(i)
12 )T Ai and

setMi+1 = (Q
(i)
22 )T

3) ComputeG = (ML + AL)−1ML

The number of floating point operations of the SOF method
is about 3 times to that of the stratification method. However,
because the SOF algorithm does not use any HPMOs, its
performance can be efficiently improved by parallelization,
which will be shown in Section VI.

The correctness of the SOF algorithm is justified as the
follows.

Lemma 4.1: SubmatricesQ(i)
11 , Q

(i)
12 , Q

(i)
21 , and Q

(i)
22 are

nonsingular fori = 2, · · · , L.
Proof: By the CS decomposition [19, page74-75],Q

(i)
11

and Q
(i)
22 have the same singular values; and so doQ

(i)
21 and

Q
(i)
12 . Thus we only need to prove the non-singularity ofQ

(i)
11

andQ
(i)
21 . From (IV.2), we have

{

Mi = Q
(i)
11 Ri

−Bi = Q
(i)
21 Ri

for i ≥ 2. SinceBis are nonsingular,Q(i)
21 andRi are nonsin-

gular. The non-singularity ofQ(i)
11 is proved by induction. In

the base case,M2 = I, which makesQ(2)
11 nonsingular. Sup-

poseQ
(i−1)
11 is nonsingular. ThenMi = (Q

(i−1)
22 )T = Q

(i)
11 Ri

is also nonsingular. Therefore,Q
(i)
11 is nonsingular.

Theorem 4.2: G = (ML + AL)−1ML

Proof: For i = 2, 3, . . . , L, by premultiplying QT
i to

(IV.2), we have
[

(Q
(i)
11 )T (Q

(i)
21 )T

(Q
(i)
12 )T (Q

(i)
22 )T

]

[

Mi

−Bi

]

=

[

Ri

0

]

.

The second block row gives the equations






















(Q
(2)
12 )T M2 − (Q

(2)
22 )T B2 = 0

(Q
(3)
12 )T M3 − (Q

(3)
22 )T B3 = 0

...

(Q
(L)
12 )T ML − (Q

(L)
22 )T BL = 0

With M2 = I and Mi = (Q
(i−1)
22 )T for i > 2, the above

equations can be rewritten as






















(Q
(2)
12 )T = (Q

(2)
22 )T B2

(Q
(3)
12 )T (Q

(2)
22 )T = (Q

(3)
22 )T B3

...

(Q
(L)
12 )T (Q

(L−1)
22 )T = (Q

(L)
22 )T BL

By Lemma 4.1,Q(i)
22 is invertible. Thus,























(Q
(2)
12 )T = (Q

(2)
22 )T B2

(Q
(3)
12 )T = (Q

(3)
22 )T B3(Q

(2)
22 )−T

...

(Q
(L)
12 )T = (Q

(L)
22 )T BL(Q

(L−1)
22 )−T

If multiplying all terms of the above equations from bottom
to top, we have

(Q
(L)
12 )T · · · (Q

(3)
12 )T (Q

(2)
12 )T

=(Q
(L)
22 )T BL(Q

(L−1)
22 )−T · · ·

(Q
(3)
22 )T B3(Q

(2)
22 )−T · (Q

(2)
22 )T B2

=(Q
(L)
22 )T BL · · ·B3B2. (IV.3)

From Step 1 and Step 2(b),

AL = (Q
(L)
12 )T · · · (Q

(3)
12 )T (Q

(2)
12 )T B1. (IV.4)

By combining (IV.4) and (IV.3),AL can be expressed as

AL = (Q
(L)
22 )T BL · · ·B3B2B1.

As the result,

G = (ML + AL)−1ML

=
[

(Q
(L)
22 )T + (Q

(L)
22 )T BL · · ·B2B1

]

−1

(Q
(L)
22 )T

= (I + BL · · ·B2B1)
−1.

V. I MPLEMENTATIONS

The most time consuming task in the SOF algorithm is step
2)-a). In this section, we consider a variety of implementations
of step 2)–a) on multicore and distributed architectures. We try
to use the subroutines of BLAS and LAPACK or PBLAS and
ScaLAPACK as much as possible to harvest the performance
of those highly performance optimized numerical libraries.



A. On multicore architectures

A straightforward implementation of SOF step 2)-a) to
apply the QR decomposition routines as available in LAPACK
is shown in Algorithm 3. The subroutineDGEQRF computes
the QR decomposition while stores theQ-factor as a product
of elementary Householder reflectors. Subsequently, the sub-
routineDORGQR is used to form theQ-factor explicitly. The
right half of theQ-factor is then extracted. The combination
of Algorithms 2 and 3 is referred to asSOF-M1.

Algorithm 3 SOF step 2)-a) – multicore version 1
1) Compute the QR decomposition byDGEQRF.
2) Form the fullQ-factor by callingDORGQR.
3) Extract subblocksQ(ℓ)

12 andQ
(ℓ)
22 .

We can improve Algorithm 3 by computing the right half
of the Q-factor only. Suppose the Householder elementary
reflectors are stored in a2n × n matrix V . the Q-factor can
be written as

Q = I − V TV T , (V.5)

whereT is ann× n upper triangular matrix. If the matrixV
is conformally partitioned as

V =

[

Vu

Vd

]

, (V.6)

then the right half of theQ-factor is given by
[

Q
(ℓ)
12

Q
(ℓ)
22

]

=

[

−VuTV T
d

I − VdTV T
d

]

.

Furthermore, note thatVu is a lower triangular matrix, which
can be exploited to further reduce the computational cost ofthe
matrix multiplication. This leads to the second implementation
of SOF step 2)-a) shown in Algorithm 4. The combination of
Algorithms 2 and 4 is referred to asSOF-M2.

Algorithm 4 SOF step 2)-a) – multicore version 2
1) Perform the QR decomposition byDGEQRF.
2) Compute theT matrix by DLARFT
3) Form (Q

(ℓ)
12 )T = −VdT

T V T
u , and

(Q
(ℓ)
22 )T = I − VdT

T V T
d usingDGEMM andDTRMM

One can use the partial results computed insideDGEQRF for
form theT matrix, which can save some floating point oper-
ation than callingDLARFT after DGEQRF as in Algorithm 4.
If we representT in the block format,

T =











T11 T12 · · · T1b

T22 T2b

.. .
...

Tbb











,

SubroutineDGEQRF producesTii in block. The computation
of T can take advantage of those partial results. Suppose in
the middle ofDGEQRF, the partial Householder transformation

is H1 = I − V1T1V
T
1 , and H2 = I − V2T2V

T
2 is the next

generated block Householder transformation. The merging of
H1 andH2 is

H1H2 = (I − V1T1V
T
1 )(I − V2T2V

T
2 )

= I −
[

V1 V2

]

[

T1 −T1V
T
1 V2T2

0 T2

] [

V T
1

V T
2

]

,

which shows theT matrix of merged Householder transfor-
mation is

[

T1 −T1V
T
1 V2T2

0 T2

]

. (V.7)

Thus, with additional computation of−T1V
T
1 V2T2 for each

block, the entireT matrix can be computed recursively. This
leads to the third implementation of SOF step 2)-a), sketched
in Algorithm 5. The combination of Algorithms 2 and 5 is
referred to asSOF-M3.

Algorithm 5 SOF step 2)-a) – multicore version 3
1) Modify DGEQRF to generate additionalT matrix, as

described in (V.7).
2) Form (Q

(ℓ)
12 )T = −VdT

T V T
u and

(Q
(ℓ)
22 )T = I − VdT

T V T
d usingDGEMM andDTRMM

SOF-M1 is easy to implement but performs most unneces-
sary computations. SOF-M3 has the least computational cost
but involves those routines that are not optimized for targeted
platforms. SOF-M2 is in between, which can be implemented
by invoking routines from BLAS and LAPACK libraries. The
leading operation counts and the number of calls of the BLAS
and LAPACK subroutines used in the stratification method and
SOF methods are summarized in Tables V.1.

B. On massive parallel processing architectures

Two implementations of SOF method step 2)-a) on dis-
tributed architectures are shown in Algorithms 6 and 7. They
are similar to Algorithms 3 and Algorithm 5 respectively,
except using the corresponding subroutines from PBLAS
and ScaLAPACK. The lack of the corresponding version of
Algorithm 4 is because thePDLARFT subroutine does not
generate globalT matrix. The combinations of Algorithm 2
with Algorithms 6 and 7 will be denoted asSOF-H1 and
SOF-H2, respectively.

Algorithm 6 SOF step 2)-a) – distributed version 1
1) Perform the QR decomposition by usingPDGEQRF.
2) Form the fullQ-factor by callingPDORGQR.
3) Extract the subblocksQ(ℓ)

12 andQ
(ℓ)
22 from theQ-factor.

VI. EXPERIMENTS

We begin with a validation of numerical stability and accu-
racy of the SOF method by comparing with the stratification
method and then report the performance of the stratification
and SOF methods on multicore and distributed architectures.



TABLE V.1
OPERATION COUNTS AND NUMBER OF CALLS OFBLAS AND LAPACK SUBROUTINES BY STRATIFICATION ANDSOFMETHODS

Op.counts No. of calls.
Subroutine Function strati.alg SOF-M1 SOF-M2 SOF-M3

DGEMM Matrix-matrix multiplication 2n3
2L − 1 L − 1 2L − 2 2L − 2

DTRMM Triangular matrix-matrix multiplication n3
2L − 2 2L − 2

DGEQP3 Pivoted QR 4/3n3 L − 1

DGEQRF QR decomposition for a2n × n matrix 10/3n3 L − 1 L − 1 L − 1

DGEQRF_M Modified DGEQRF to form T inside 4n3 L − 1

DORGQR Form Q-factor afterDGEQRF 28/3n3 L − 1

DLARFT Form T matrix afterDGEQRF n3 L − 1

Algorithm 7 SOF step 2)-a) – distributed version 2
1) Perfom the QR decomposition using modifiedPDGEQRF

to generate additionalT matrix
2) Compute(Q(ℓ)

12 )T = −VdT
T V T

u , and
(Q

(ℓ)
22 )T = I − VdT

T V T
d usingDGEMM andDTRMM

A. Stability and accuracy

The first experiment compares the correctness and numerical
stability of the direct method, stratification method (Algorithm
1) and SOF-M1. The direct method for Green’s function calcu-
lation first forms the product ofBis and then inverts the shifted
product. The computed Green’s functions by three methods
are denotedGD, GL and GS respectively. The stability and
accuracy of SOF-M2 and SOF-M3 are essentially the same as
SOF-M1.

Figure VI.3 shows the relative difference of three methods
for computing the Green’s function with a4 × 4 (n = 16)
periodic square lattice. The local repulsion parameterU = 2
and the number of time slicesL varies from L = 5 to
L = 100. The solid line is the difference of the direct method
and stratification method:‖GD − GL‖/‖GL‖. The crosses
are for the stratification method and the SOF algorithm:
‖GL − GS‖/‖GL‖. The circled-line is for the direct method
and the SOF algorithm.‖GL − GS‖/‖GL‖. As can be seen,
the difference of the direct method to the other two methods
grows exponentially asL increases. On the other hand, the
results of the stratification and SOF methods are consistentto
machine precision even for largeL.
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Fig. VI.3. Results forU = 2 andL = 5, 10, · · · , 100.

The experiment result tells two things. First, the experiment
shows the results computed by the stratification method and
SOF-M1 method are essentially numerically identical. Second,
the direct method is instable, although it is also an HPMO-
avoiding algorithm. Without the stabilizing procedures, the
produced result has no significant digit at all.

B. Performance on multicore

Let us compare the performance of the stratification method
and the SOF methods an Intel Core i7 920 2.66GHz processor
with Intel’s ifort Fortran compiler, MKL BLAS and LA-
PACK libraries. The tested problem is the Green’s function
for periodic square lattices32 × 32 (n = 1024), 48 × 48
(n = 2304), and 64 × 64 (n = 4096). The number of time
slice isL = 96.

Table VI.2 displays the CPU execution time for the stratifi-
cation method and three SOF implementations on multicore.
The corresponding Gflop/s are listed in Table VI.3. From the
results, one can see that on one core, the stratification method
is the fastest one. However, when using more cores, the SOF
algorithm shows its superiority. For all three cases, SOF-M2
and SOF-M3 are faster than the stratification method on quad-
core. Figure VI.4 displays the relative execution time of SOF-
M1, SOF-M2 and SOF-M3 to the stratification method for
n = 2304, L = 96. The relative execution time is calculated
as

T rel
i =

Ti − TL

TL
, (VI.8)

where Ti is the execution time of SOF-Mi and TL is the
execution time of the stratification method. It can be seen that
when 4 cores are used, SOF-M2 is more than 20% faster than
the stratification method, and SOF-M3 is about 16% faster.

Although SOF-M1 is the slowest among those methods, it
has better speedup than the stratification method. In other
word, one can expect better scalability on parallel envi-
ronments, which eventually can outperform the stratification
method when the number of cores is increased.

C. Performance on distributed architecture

In this experiment, we compare the performance of the
stratification method and the SOF implementations SOF-H1
and SOF-H2 on a Cray XT4 (named Franklin) with the number
of processors4×4, 8×8, 16×16, and32×32. The platform
description of Franklin is in section II.



TABLE VI.2
THE CPU EXECUTION TIME OF FOUR IMPLEMENTATIONS

problem size method 1 core 2 cores 4 cores

Stratification 95.93 65.56 51.23
32 × 32 SOF-M1 195.96 110.91 69.66
(1024) SOF-M2 139.68 74.34 43.94

SOF-M3 139.88 76.73 46.32
Stratification 1108.04 726.26 537.36

48 × 48 SOF-M1 2004.81 1072.40 619.84
(2304) SOF-M2 1464.60 764.11 426.90

SOF-M3 1493.49 791.34 448.60
Stratification 6452.46 3740.33 2633.87

64 × 64 SOF-M1 10864.11 5698.11 3096.94
(4096) SOF-M2 8161.95 4277.24 2348.55

SOF-M3 8357.09 4406.83 2412.09
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Fig. VI.4. Relative execution time of SOF-M1, SOF-M2 and SOF-M3 to
stratification method forn = 2304, L = 96 on Intel Core i7 920.

The Green’s function has the size4096×4096 with L = 12.
Table VI.4 shows the execution time of three methods.

The advantage of the SOF algorithm is clear on distributed
architectures. One can see even with more floating point
operations, SOF-H1 runs much faster than the stratification
method, and scales better with more processors. The strati-
fication method becomes slower when the processor number
increases from16 × 16 to 32 × 32.

The GFlops of the stratification method and two SOF
implementations on Franklin are shown in Table VI.5 and
Figure VI.5. One can see the performance of SOF-H1 and
SOF-H2 are much higher than that of the stratification, which
explains the faster running time of the SOF algorithm even
with much larger operation counts. Theoretically, SOF-H2
uses less operations and should outperform SOF-H2. However,
SOF-H2 was programmed without any performance tuning,
which might be the reason that its performance is lower than
that of SOF-H1.

VII. D ISCUSSION AND FUTURE WORK

Numerical algorithm runtimes are increasingly dominated
by the cost of memory access (communication), which can
exceed the costs of floating point operations by orders of
magnitude. Although this trend has been around for a while
since the development of the high-level BLAS (i.e., BLAS
3) and its use in LAPACK and ScaLAPACK in 1980s and

TABLE VI.3
PERFORMANCE INGLOPS

problem size method 1 core 2 cores 4 cores

stratification 5.76 8.42 10.78
32 × 32 SOF-M1 7.65 13.51 21.52
(1024) SOF-M2 7.59 14.25 24.12

SOF-M3 7.36 13.41 22.21
stratification 5.68 8.66 11.70

48 × 48 SOF-M1 8.51 15.92 27.54
(2304) SOF-M2 8.24 15.79 28.27

SOF-M3 7.83 14.78 26.08
stratification 5.48 9.45 13.41

64 × 64 SOF-M1 8.83 16.83 30.96
(4096) SOF-M2 8.31 15.85 28.87

SOF-M3 7.86 14.90 27.23

TABLE VI.4
CPU EXECUTION TIME OF STRATIFICATION METHOD ANDSOF-H1AND

SOF-H2ON FRANKLIN .

Number of 16 64 256 1024
Processors (4x4) (8x8) (16x16) (32x32)

stratification 354.36 127.13 41.12 53.23
SOF-H1 249.29 79.36 29.21 21.29
SOF-H2 158.35 57.75 28.55 26.79

early 90s, it has continued to grow more important with the
shift to an increasing number of cores and heterogeneous
architectures. Significantly new and redesigned algorithms are
needed to reduce and minimize communication costs [8]. In
this paper, we demonstrate how to redesign a higher-level
matrix algorithm by using those matrix operations that are
easier to parallelize and their performance tuned softwareare
widely available.

The performance of the SOF algorithm proposed in this
paper depends on QR. The implementations we discussed here
do not utilize any fine-grained and asynchronous techniques
to explicitly form the partialQ-factor. A potential improving
method is to design a multi-threaded subroutine that can fully
utilize the power of multicore as those presented in [17], [7],
[6], [15].

The idea of HPMO-avoidance discussed in this paper can
be extended to other higher-level matrix algorithms that are
critical to large scale scientific computing applications.For
example, matrix polar decomposition is also another important
matrix operation widely used in many applications, such as the
subspace alignment in electronic structure calculation [10].
We plan to investigate a low-communication algorithm for
computing the polar decomposition [16]. We also plan to
revisit an inversion-free spectral divide and conquer algorithms
for nonsymmetric eigenproblems [3].
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TABLE VI.5
GFLOPS/S OF THE STRATIFICATION METHOD AND TWO IMPLEMENTATIONS

ON FRANKLIN .

Number of 16 64 256 1024
Processors (4x4) (8x8) (16x16) (32x32)

stratification 12.64 35.23 108.92 84.14
SOF-H1 61.20 192.26 522.34 716.65
SOF-H2 70.68 193.80 392.02 417.77
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