Redesign of Higher-level Matrix Algorithms for
Multicore and Distributed Architectures and
Applications in Quantum Monte Carlo Simulation

Che-Rung Lee Zhaojun Bai
Department of Computer Science Department of Computer Science
National TsingHua University University of California
Hsinchu, Taiwan 30013 Davis, CA 95616, USA
cherung@cs.nthu.edu.tw bai@cs.ucdavis.edu

Abstract—Numerical algorithm runtimes are increasingly for performance are gradually built via extensive studies.
dominated by the cost of communication (memory access), which jnstance, one may use massive fine grained and asynchronous
can exceed the cost of floating point operations by orders of threading to improve processor utilization and to hide ta-c

magnitude. A great deal of efforts had been focused on the L . o .
design of communication-avoiding parallel matrix operations munication latency [7], or trade with additional computati

using techniques such as blocking or tiling. However, not all for reducing communication among processing units [8].
matrix operations can be efficiently parallelized by these tech-  Those ideas have been widely applied in designing basic
niques. A matrix operation is referred to as ahard-to-parallel  matrix operations and algorithms. In [1], the pivoting ie thU
matrix operation (HPMO) if there have hard serial bottlenecks decomposition is avoided by using randomization technique

that are hardly parallelizable. Otherwise, it is referred to as " .
an easy-to-parallel matrix operation (EPMO). The performance and the QR decomposition. In [17], [7], [6], [15], tiled

scalability of an HPMO is significantly poorer than an EPMO  algorithms with dynamically scheduling are used to achieve
on multicore and distributed architectures. The design of an fine granularity and asynchronicity for Cholesky, LU and QR

application higher-level algorithm should try to avoid the use factorizations and Hessenberg reduction. In [20], [8]cessor

of HPMOs as computational kernels. . utilizations are enhanced by minimizing communicationtcos
In this paper, as a case study, we present an HPMO-avoiding -
on various platforms.

algorithm for the Green’s function calculation in quantum . . o
Monte Carlo simulation. The original algorithm utilizes the QR- However, not all matrix operation can be efficiently par-
decomposition with column pivoting (QRP) as computational allelized for great efficiency. For example, the QR decom-
kernel. QRP is an HPMO. The redesigned algorithm maintains position with column pivoting (QRP) performs significantly
the same simulation stability but employs the standard QR nogrer than the QR without pivoting (see Figure 11.1). One
decomposition without pivoting (QR), which is an EPMO. Dif- hall is that th ivoti . | . th |

ferent implementations of the redesigned algorithm on multicore challenge 'S at the pivolng INvoives movm.g € columns
and distributed architectures are investigated. Although some ©Of the matrix between levels of a memory hierarchy and/or
implementations of the redesigned method use about a factor of between processors over a network. Another challenge is
three more floating-point operations than the original algorithm,  that the pivoting criterion is computed based on the global

they are about 20% faster on a quad-core system and 2.5 times r,ntime information, which requires a global synchrorizat
faster on a 1024-CPU distributed system. The broader impact of when btasks r r,1 in r ﬂ L Th gfir t %’ llen lon
the redesign of higher-level matrix algorithms to avoid HPMOs €n sublasks ru paralléel. € nrst challenge aione

in other computational science applications will also be discussed. May not be a critical performance Kkiller, since it can be
improved by techniques like pre-fetching and computatioth a

Index Terms—Matrix algorithm; Quantum Monte Carlo sim-  communication overlapping. It is the combinative effects o
ulation; Multicore algorithm; Distributed algorithms; Commu-  those two challenges that jeopardize an effective perfooma
nication avoid algorithm; HPMO and EPMO. improvement by parallelization.

We call a matrix operation such as the pivoted QRaged-
to-parallel matrix operation (HPMO). On the other hand,

We are experiencing a dramatic transformation of computiatrix operation such as matrix-matrix multiplication and
ing landscape to multicore and distributed systems. THetshi the QR decomposition (without pivoting) are calleasy-to-
an increasing number of cores and heterogeneous archésctparallel matrix operations (EPMQs). By nature, it is not likely
requires significant modification to today’s computaticioals to improve the performance of an HPMO significantly by
and technologies. The communication cost of an algorithsn hparallelization. In [1], the LU decomposition with pivogn
already exceeded arithmetic cost by orders of magnitud#, dor solving a linear system of equations and matrix inversio
the gap is growing exponentially over time [9]. To compeasats recommended to be replaced by the QR decomposition.
the speed gap, new principles of software and algorithngdesi For large-scale application simulations that currently- em

I. INTRODUCTION



ploy HPMOs as computational kernels, it is highly desired an 50

often challenging to redesign the kernel to avoid the useRf H 4sr = BEE“Q",“{'F

MOs. In this paper, we present an HPMO-avoiding algorithm a0 [ EEJ DOEQPS

for a real physical simulation application: the Green’sction 351

in Determinant Quantum Monte Carlo (DQMC) simulation @ 20

[2], [14]. For stabilizing the matrix multiplication andvar- =25

sion, the original algorithm uses the pivoted QR decomposi- © 20}

tion to stratify matrix elements of different magnitude erd 151

[13], [12], [4]. Our redesigned algorithm, calle®ructural 10r

Orthogonal Factorization (SOF), reformulates the calculation 5f

to avoid the pivoted QR, and uses matrix-matrix multiplicat 2000 4000 6000 8000 10000 12000

and QR-decomposition only, which both are EPMOs. We Matrix Size

will present different implementations of SOF that use BLAS (a) GFLOPS vs matrix size (quad-core)

and LAPACK on multicore and PBLAS and ScalLAPACK on

distributed architecture as building blocks to harvestghreat O o Do

performance of those highly optimized numerical libraries 45| N DGEQRF 1

Experiment results showed the SOF algorithm is as stable as 4o LE=—PSEQP3 1

the original one. Moreover, although the operation courthef 351 T

SOF algorithm is three times more than that of the original « sor T

algorithm, the SOF still outperforms the original algomith = T

by 20% on a quad-core system, and 250% on a 1024-CPU© 2o 1

distributed system. 151 1
The rest of the paper is organized as follows. Section I 10 1

compares the performance and scalability of three matrix 51 II’_| |—| H 1

operations on multicore and distributed architecturesyeia 0 1 coro > core 4 core

matrix-matrix multiplication, QR, and pivoted QR. Based Number of cores

on their properties of parallelization, they are classifae (b) GFLOPS vs number of cores

HPMOs or EPMOs. Section Il introduces the Green’s function
. . . . ig. 11.1.  Performance of MKL10.DGEMM DGEQRF and DGEQP3 on an
calculation in the determinant quantum Monte Carlo simulgse i7 Quad 2.66GHz.
tions, and the HPMO-based algorithm. The redesigned algo-
rithm, structured orthogonal factorization (SOF), is presd

inf section I_\I_/._Sec:]ipr;]lv illugtrqtez diﬁerent iTrl)_lsmgm q Its computational subroutine BGEQRF in LAPACK and
of SOF utilizing highly optimized numerical libraries an PDGEQRF in Scal APACK.

analyzes their operation counts. Section VI compares the. The pivoted QR decompositioRP — QR, where( is
performance of various implementations of SOF to the oabin orthogonal, R is upper triangular and? ié a permuta-

algorithm. The concluding remarks and future work are given tion matrix. Its computational subroutine BGEQP3 in
in section VII. LAPACK and PDGEQP3 in ScaLAPACK.

II. EPMO AND HPMO Figure 1.1 shows the performance of these three basic
. _ _ _ _matrix operations on an Intel Core i7 Quad 2.66GHz machine
This section begins with the performance and scalabilifs available in MKL version 10.2. Figure 1(a) compares the

measurement of some basic matrix operations from welfiop/s of three subroutines for different matrix size using
established BLAS and LAPACK on multicore and PBLA& cores; Figure 1(b) disp|ays their Gﬂop/s using 1 core, 2

and ScaLAPACK distributed arChitectUreS. From there, a—CI%oreS, and 4 cores for matrix size 12000. As can be seen,
sification of easy-to-parallel matrix operations (EPMOBJi a the performance of QR is close to that of the matrix-matrix
hard-to-parallel matrix operations (HPMOs) is presented. myltiplication. Although the QR and the pivoted QR are kin to
The following three basic matrix operations are selected feach other, the performance of the pivoted QR is much poorer
their distinct characteristic of parallelism and relevane the than QR. Furthermore, we notice that the speedupGEQP3
application studied in this paper. on quad core is only a slight better than two-core, as shown
« The matrix-matrix multiplication”’ = AB is often used in Figure 1(b). By contrast, the performance BEMM and
as a performance benchmark to indicate the achieva¥EQRF are almost quadrupled from one to quad cores. It is
peak performance on various architectures, whéreB  anticipated with more cores, the performance improvemént o
and C aren x n matrices. Its computational subroutineddGEQP3 would be further deteriorate.
is DGEMMin BLAS and PDGEMMin PBLAS. To measure the performance of these matrix operations on a
« The QR decomposition is defined ds= QR, where message passing based cluster, we used a Cray XT4 massively
is an orthogonal matrix anf is an upper triangle matrix. parallel processing system (named Franklin) at NERSC (Na-



1200 be explained by Amdahl's law. Lel}, be the time for the
S POGEMM communication requested by pivoting, afid be the time

1000} I PDGEQRF

[ PDGEQPF | for computation. If we assume the communication cannot be
800} ] parallelized at all and the computation part can be pefectl
Fa parallelized, the asymptotical speedup of the parallebteid
g 600 | 1 QR is
400} =
TP
200}

If T, is much larger tharf,, the limited speedup and scala-
bility can be anticipated by parallelization.
4 '\}Smbe?%f Priiess{i: 256 A number of matrix operations share the same characters as
the pivoted QR. We call a matrix operatiorhard-to-parallel
matrix operation (HPMO) if its most time consuming subtasks,
dncluding communication, cannot be parallelized. Othseyi
matrix operation is called easy-to-parallel matrix operation
(EPMO). It should note that our classification does not imply
tional Energy Research Scientific Computing Center). Arankthat the performance of HPMOs cannot be improved by other
has 9,572 compute nodes. Each compute node consistgngthods. For instance, one can improve the performance of
a 2.3GHz single socket quad-core AMD Opteron process@ivoted QR by minimizing the communication or by relaxing
(Budapest) with a theoretical peak performance of 9.2 GEloghe pivoting criterion. This is the effort beyond the scoge o
per core (4 flops/cycle if using SSE128 instructions). MBkta Our current work.
assignment follows the SMP placement style. For instance, 8

MPI tasks are distributed on 2 compute nodes as follows
Green'’s function calculation is the kernel in quantum Monte

| Node | Nodel | Node2 | Carlo simulations of interacting electrons in computagion
Core 1/2]3]/4)1/2]|3)|4 material science [5], [13], [12]. Specifically, in the Dater
MPIRank|[ 0|12 |3|4]|5/6|7 nant Quantum Monte Carlo (DQMC) simulation, the Green’s

To match the nature of matrix algorithms, PBLAS and ScaLAunction is formulated as

PACK maps processors onto a two—dimensi.onal rectangular G=(+ByLBy_1-- By}, (I11.2)

grid (process grid) according to the row-major order or the

column major order. In our test cases, the square process grhere B; = BV;, is a product of a symmetric matri®

is used, and the number of allocated processors is repegsemind a diagonal matri¥; [2]. Matrix B = ¢27X is a matrix

by the size of the grid. For instance2a 2 processor allocation exponential of thehopping matrix K, which describes how

means 4 processors are mapped onto a two by two procektrons hop among sites. Scafar is the time discretization

grid. parameter. Its product with, 3 = ArL, is the inverse tem-
We chose a typical matrix sizé$384 = 2'*, to compare perature. The diagonal elements of matrixare in{e*, e=*},

the performance differences of these three routines, aed usvhere\ = cosh‘l(eUAT/Q). ScalarU is an energy parameter

different number of processorsx 2,4x 4,6 x6,8x8,12x 12 that related to local repulsion between electrons [2].

and 16 x 16 to illustrate their scalability. Figure 11.2 shows When L is large (a.k.a. low temperatures), the matrix

the performance results of three PBLAS and ScalLAPACK in (lll.1) is extremely ill-conditioned. Several methods

subroutines with respect to different number of processotgve been proposed [13], [12], [18], [4] to stabilize the

It can be seen that the performance of the pivoted QR is odgmputation by stratifying the magnitude of elements in the

about one tenth of the other two matrix operations and theatrix multiplications. All those methods inevitably reu

scalability is extremely poor as well. the pivoted QR decomposition. Algorithm 1 by La# al
There are issues which make the pivoted QR extremely hdid®], [12] is currently used to calculate the Green’s fuowti

to parallelize. First, the pivoting involves exchangindurons G. In the algorithm, elements of different energy levels, ahhi

of the matrix, which may locate at different levels of a meynorcorrespond to different magnitude of numbers, are stratifie

hierarchy and/or between processors over a network. Secoe pivoted QR decomposition. The stratification step jotste

the pivoting criterion requires a global synchronizatioreval- small numbers to be rounded by mixing with large ones. The

uate the norms of remaining columns. The first issue cannotgsability analysis of the stratification method can be foimd

resolved by pre-fetching or computation and communicatidf].

overlapping because of the second issue. Thus, the piyoting

which entails expensive data communication, can be redarde IV. SOF ALGORITHM

as the non-parallelizable operations of the pivoted QR. To avoid HPMO QR decomposition with pivoting, Al-
The ineffectiveness of parallelizing the pivoted QR cam algjorithm 2 is a redesigned method to compute the Green'’s

Fig. 1.2. Performance of PDGEMM, PDGEQRF and PDGEQP3 on & Cr.
XT4 at NERSC.

Ill. GREEN'S FUNCTION CALCULATION




Algorithm 1 Stratification method Theorem 4.2: G = (M, + Ar)~ M,

1) Compute the pivoted QRB; = Q1 R Pl Proof: Fori = 2,3,...,L, by premultiplying Q7 to
2) SetU; = Q1, D = diag(R,;) and (IV.2), we have
— -1 T . .
h=D A @) (@) | [ M R
3) Fori=2,3,---,L ( (l))T (Q(Z))T —B; - 0 ’
a) ComputeCZ' = (BiUi71>Di71 12 22
b) Compute the pivoted QRZ; = Q;R; PT The second block row gives the equations
C) SetUiD:_ClQi, P— dlag(R ) and ( 522))TM2 _ (Qé%))TBQ - 0
T, = ( i Ri)( i Tl—l) ( g))T]w3 —( g;))TBS - 0

4) ComputeG = T; "(UTT; ' + D)~ tUT

(Qiz) M — (@) "Br = 0

function G. It is referred to as a SOF (Structured Orthogwjith Az, = I and M; = ( élz NT for i > 2, the above

onal Factorization) method since the computational kem@&uaﬂons can be rewritten as
involves an orthogonal decomposition of a structured matri @7

The similar computational kernel has also appeared in other = §22))TBQ

higher-level matrix algorithms, such as inverse-free metior @)T@ENT = (@)TBs

computing the generalized Schur decomposition of a matrix :

pair [3] and the matrix polar decomposition [11, Chap.8][16 (DT (L= (D)\T
(Qi2)" (R ) = (@) Br

Algorithm 2 SOF method By Lemma 4.1,Q")) is invertible. Thus,

1) SetMsy =1, A2 =
2) Fori=2,3,--- L
a) Compute QR decomposition of the matrix

[ M; } %) Q%)
—Bi Q21 Q212)

( (122))T = (z))TB2 i
Q)T = (@) Bs(@E) T

IS @Y = @E)TBLQE )T

If multiplying all terms of the above equations from bottom

b) Updated;.; = ( (T A, and to top, we have
setMiy; = (Q3)" (le))T (@) @)
3) ComputeG = (M + Ap)~'M
) p (Mg L) Mg ( )TB (QQL 1)

oo . (Q53) " Bs(Q53) ™" -<Q<§;>T32
The number of floating point operations of the SOF method
is about 3 times to that of the stratification method. Howgever =( (L))TBL - B3 Bs. (IV.3)
because the SOF algorithm does not use any HPMOs, fg Step 1 and Step 2(b),
performance can be efficiently improved by parallelization

which will be shown in Section VI. AL = (@™ (@) T(@QF)T By (IV.4)
The correctness of the SOF algorithm is justified as tf®y combining (1V.4) and (IV.3),4;, can be expressed as
follows. 4 (DT
Lemma 4.1 SubmatrlcesQu, (172) 21, and Q22 are Ap = (@) Br - BsBa2 By
nonsingular for; = 2,--- | L. » As the result,
K3
Proof By the CS decomposmon [19, page74-78);; G = (Mp+ A" M

and Q22 have the same singular values; and so@ﬁf an_d
. Thus we only need to prove the non- smgularity@gf’l)

(@) + (@) B BB (@)

andQé’f. From (1V.2), we have = (I+ By ByB;)™"
M, = QR n
-B; = Qéﬁ)Ri V. IMPLEMENTATIONS

(i) The most time consuming task in the SOF algorithm is step
for i > 2. Since ;s are nonsmguIaQ and R; are nonsin- 5y o "1y this section, we consider a variety of implemeatet
gular. The non-singularity o6\ is proved by induction. In ¢ step 2)-a) on multicore and distributed architectures thy

the base casell, = I, which makes\? nonsmgular Sup- to use the subroutines of BLAS and LAPACK or PBLAS and
pOSEQ(Z Y is nonsingular. Ther; = (Q(z % ) (Z)Ri ScalLAPACK as much as possible to harvest the performance
is also nonsingular. Thereforézn) is nonsmgular m of those highly performance optimized numerical libraries



A. On multicore architectures is H = I - ViV, and Hy = I — VTRV is the next

A straightforward implementation of SOF step 2)-a) t@enerated plock Householder transformation. The merging o
apply the QR decomposition routines as available in LAPACK1 and Hy is
is shown in Algorit'h'm 3. The subroutineGEQRF computes HiHy = (I — VTV — VoTo Vi)
the QR decomposition while stores thefactor as a product T T VTVLT VT
of elementary Householder reflectors. Subsequently, the su S [ Vi Vo } { 01 1 % 212 ] [ VlT } 7
routine DORGQR is used to form the&)-factor explicitly. The 2 2
right half of the Q-factor is then extracted. The combinatiorwhich shows thel’ matrix of merged Householder transfor-
of Algorithms 2 and 3 is referred to &0OF-M1. mation is

(V.7)

{ Tn —-TiVIVoTy }

Algorithm 3 SOF step 2)-a) — multicore version 1 0 T

1) Compute the QR decomposition DEEQRF. Thus, with additional computation of T,V VT, for each
2) Form the fuIIQ-fact(%r by cal(l:}gngDCRGQ?. block, the entirél’ matrix can be computed recursively. This
3) Extract subblocks);; andQy; . leads to the third implementation of SOF step 2)-a), sketche
in Algorithm 5. The combination of Algorithms 2 and 5 is
We can improve Algorithm 3 by computing the right halfeferred to asSOF-M3.
of the Q-factor only. Suppose the Householder elementary i i
reflectors are stored in 2n x n matrix V. the Q-factor can Algorithm 5 SOF step 2)-a) — multicore version 3

be written as 1) Modify DGEQRF to generate additiondl” matrix, as
Q=I1-vTVT, (V.5) described in (V.7).
_ _ _ _ 2) Form(Q{)T = —V,77VT and
yvhereT is ann x n upper triangular matrix. If the matrik ( gg))T = I — V7TV using DGEMM and DTRWM
is conformally partitioned as
V= { “i" } , (V.6) SOF-ML1 is easy to implement but performs most unneces-
d sary computations. SOF-M3 has the least computational cost
then the right half of the)-factor is given by but involves those routines that are not optimized for tege
© . platforms. SOF-M2 is in between, which can be implemented
[ %g) ] - { I_V%l/TJ‘“/Xd/T ] ] by invoking routines from BLAS and LAPACK libraries. The
29 — Vat Vg leading operation counts and the number of calls of the BLAS

Furthermore, note that, is a lower triangular matrix, which and LAPACK subroutines used in the stratification method and
b U ’

can be exploited to further reduce the computational costeof SOF methods are summarized in Tables V.1.

matrix multiplication. This leads to the second impleméota B On massive parallel processing architectures
of SOF step 2)-a) shown in Algorithm 4. The combination of

Algorithms 2 and 4 is referred to BOF-M2. Two implementations of SOF method step 2)-a) on dis-

tributed architectures are shown in Algorithms 6 and 7. They
are similar to Algorithms 3 and Algorithm 5 respectively,
except using the corresponding subroutines from PBLAS
) and ScalLAPACK. The lack of the corresponding version of
2) Comput((az)th;:T matrix Ey ?LARFT Algorithm 4 is because th®DLARFT subroutine does not
3) Fo(rg1(T 12) = _‘;dTT Vi K and generate global’ matrix. The combinations of Algorithm 2
Q)" =1 —VaT"Vy usingDGEMMand DTRVM with Algorithms 6 and 7 will be denoted aSOF-H1 and

SOF-H2, respectively.

Algorithm 4 SOF step 2)-a) — multicore version 2
1) Perform the QR decomposition CEQRF.

One can use the partial results computed inEIGEQRF for
form the T matrix, which can save some floating point operAlgorithm 6 SOF step 2)-a) — distributed version 1
ation than callingDLARFT after DGEQRF as in Algorithm 4. 1) Perform the QR decomposition by usiRPCEQRF.
If we representl” in the block format, 2) Form the fullQ-factor by callingPDORGQR.
3) Extract the subblocké)(lg) and Qé? from the Q-factor.

Ty T -+ Ty
T Ty
T: . bl
: VI. EXPERIMENTS
T

We begin with a validation of numerical stability and accu-

SubroutineDGEQRF producesT;; in block. The computation racy of the SOF method by comparing with the stratification
of T' can take advantage of those partial results. Supposeniethod and then report the performance of the stratification
the middle ofDGEQRF, the partial Householder transformatiorand SOF methods on multicore and distributed architectures



TABLE V.1
OPERATION COUNTS AND NUMBER OF CALLS OFBLAS AND LAPACK SUBROUTINES BY STRATIFICATION ANDSOFMETHODS

Op.counts No. of calls.

Subroutine || Function strati.alg [ SOF-M1 | SOF-M2 [ SOF-M3

DGEMM Matrix-matrix multiplication 2n3 2L —1 L—-1 2L — 2 2L —2

DTRW Triangular matrix-matrix multiplication n3 2L — 2 2L —2

DGEQP3 Pivoted QR 4/3n3 L-1

DGEQRF QR decomposition for &n x n matrix 10/3n3 L—-1 L—-1 L—-1

DGEQRF_M || Modified DGEQRF to form T inside 4n3 L—-1

DORGQR Form Q-factor afterDGEQRF 28/3n3 L—-1

DLARFT Form T matrix after DGEQRF n3 L—-1

Algorithm 7 SOF step 2)-a) — distributed version 2 The experiment result tells two things. First, the experime
1) Perfom the QR decomposition using modifRIGEQRF  shows the results computed by the stratification method and
to generate ?dditionﬂ” matrix SOF-M1 method are essentially numerically identical. &dco

2) Compute(Q{)T = —V,TTV7, and the direct method is instable, although it is also an HPMO-

(Q(Q‘Q)T =1 - V,;TTV} using DGEMM and DTRW avoiding algorithm. Without the stabilizing procedurebe t
produced result has no significant digit at all.

. B. Performance on multicore
A. Sability and accuracy

et us compare the performance of the stratification method

The first experiment compares the correctness and numerigal o SOF methods an Intel Core i7 920 2.66GHz processor

stability of the direct method, stratification method (Aliglom with Intel’'s i f ort Fortran compiler, MKL BLAS and LA-

1) gnd ,SOF'Ml' The direct method forGregnsfunctlon _CaIClrb'ACK libraries. The tested problem is the Green’'s function
lation first forms the product aB;s and then inverts the shlftedf r periodic square lattice82 x 32 (n — 1024), 48 x 48
product. The computed Green’s functions by three methoé)s i

. e = 2304), and 64 x 64 (n = 4096). The number of time
are denotedip, G, and Gg respectively. The stability and srllice is I, :) 96 (n )

accuracy of SOF-M2 and SOF-M3 are essentially the same Fable VI.2 displays the CPU execution time for the stratifi-

SO'.:'Ml' _ ) ation method and three SOF implementations on multicore.
Figure V!‘3 shows the ,relat|ve_d|ffer(_ence of three memOCI;\Sne corresponding Gflop/s are listed in Table VI.3. From the
for computing the Greens function W'th ax 4 (n = 16) results, one can see that on one core, the stratificationatheth
periodic square Iattlcg. The !ocal rep_uIS|on parameter 2 is the fastest one. However, when using more cores, the SOF
and the number' Of, “”Fe shcgﬁ varies from L, = 5 lo Igorithm shows its superiority. For all three cases, SGF-M
L =100. The solid line is the difference of the direct methoind SOF-M3 are faster than the stratification method on quad-

and stratification method||Gp — GLl/||GL]. The crosses core. Figure V1.4 displays the relative execution time offSO

are for the stratification method and the SOF algorithmy; soE.M2 and SOE-M3 to the stratification method for
IGL = Gs||/|GL|. The circled-line is for the direct method - 2304, L = 96. The relative execution time is calculated

and the SOF algorithm|Gy, — Gs||/||GL||. As can be seen,

. ) S

the difference of the direct method to the other two methogs o Ti—Tr

grows exponentially ad. increases. On the other hand, the " = T (V1.8)
results of the stratification and SOF methods are consitent ) ] ) )
machine precision even for large where T; is the execution time of SOF-Mand T}, is the

execution time of the stratification method. It can be sean th
when 4 cores are used, SOF-M2 is more than 20% faster than

4
10 Direct—Lonhs ' ' the stratification method, and SOF-M3 is about 16% faster.
100 | EérﬁgiéBSSC)?:F e Although SOF-M1 is the slowest among those methods, it

/ has better speedup than the stratification method. In other

g 107 | ’ // | word, one can expect better scalability on parallel envi-

5 7 ronments, which eventually can outperform the stratifaoati

%’ 108 | // | method when the number of cores is increased.

P
107 // | C. Performance on distributed architecture
W' In this experiment, we compare the performance of the
107%° stratification method and the SOF implementations SOF-H1
20 40 L 60 80 100 and SOF-H2 on a Cray XT4 (named Franklin) with the number

of processord x 4, 8 x 8, 16 x 16, and32 x 32. The platform
Fig. VI.3. Results folU = 2 and L = 5, 10, - - -, 100. description of Franklin is in section II.



TABLE VI.2 TABLE VI.3

THE CPUEXECUTION TIME OF FOUR IMPLEMENTATIONS PERFORMANCE INGLOPS
[ problem size[[  method | Icore | 2cores| 4 cores | [ problem size[[  method | 1 core| 2 cores| 4 cores |
Stratification 95.93 65.56 51.23 stratification | 5.76 8.42 10.78
32 x 32 SOF-M1 195.96 110.91 69.66 32 x 32 SOF-M1 7.65 13.51 21.52
(1024) SOF-M2 139.68 74.34 43.94 (1024) SOF-M2 7.59 14.25 24.12
SOF-M3 139.88 76.73 46.32 SOF-M3 7.36 13.41 22.21
Stratification | 1108.04 | 726.26 | 537.36 stratification | 5.68 8.66 11.70
48 x 48 SOF-M1 2004.81 | 1072.40| 619.84 48 x 48 SOF-M1 8.51 15.92 27.54
(2304) SOF-M2 1464.60 764.11 426.90 (2304) SOF-M2 8.24 15.79 28.27
SOF-M3 1493.49 | 791.34 | 448.60 SOF-M3 7.83 14.78 26.08
Stratification | 6452.46 | 3740.33 | 2633.87 stratification | 5.48 9.45 13.41
64 x 64 SOF-M1 10864.11 | 5698.11| 3096.94 64 x 64 SOF-M1 8.83 16.83 30.96
(4096) SOF-M2 8161.95 | 4277.24 | 2348.55 (4096) SOF-M2 8.31 15.85 28.87
SOF-M3 8357.09 | 4406.83| 2412.09 SOF-M3 7.86 14.90 27.23
TABLE V1.4
— Alg 3 CPUEXECUTION TIME OF STRATIFICATION METHOD AND SOF-H1AND
80% | I Alg 4 |- SOF-H20N FRANKLIN .
[ Alg.5

Number of 16 64 256 1024
Processors || (4x4) (8x8) | (16x16) | (32x32)
stratification || 354.36 | 127.13 | 41.12 53.23
SOF-H1 249.29 | 79.36 29.21 21.29
SOF-H2 158.35 | 57.75 28.55 26.79

60% |

40%

20%

Relative execution time

20%¢ early 90s, it has continued to grow more important with the

shift to an increasing number of cores and heterogeneous
1 core 2 core 4 core . e g . .
Number of cores architectures. Significantly new and redesigned algostiane
needed to reduce and minimize communication costs [8]. In
Fig. VI.4. Relative execution time of SOF-M1, SOF-M2 and SKB-to ; ; ; _
stratification method for, = 2304, L = 96 on Intel Core i7 920. this paper, we demonstrate how to (edeSIgn a higher-level
matrix algorithm by using those matrix operations that are
easier to parallelize and their performance tuned softwege

The Green's function has the siz@96 x 4096 with I — 12, Widely available. . o
Table VI.4 shows the execution time of three methods. The performance of the SOF algorithm proposed in this

The advantage of the SOF algorithm is clear on distribut@&®Per depends on QR. The implementations we discussed here
architectures. One can see even with more floating poffff Not utilize any fine-grained and asynchronous techniques
operations, SOF-H1 runs much faster than the stratificatiffh €xPlicitly form the partialQ-factor. A potential improving

method, and scales better with more processors. The strdifthod is to design a multi-threaded subroutine that cdp ful

fication method becomes slower when the processor numbdfize the power of multicore as those presented in [17], [7

increases from6 x 16 to 32 x 32. [6], [15]- i ) o
The GFlops of the stratification method and two SOF The idea of HPMO-avoidance discussed in this paper can

implementations on Franklin are shown in Table VI.5 anpe extended to other higher-level matrix algorithms that ar
Figure VI.5. One can see the performance of SOF-H1 afftical to large scale scientific computing applicatiofgr
SOF-H2 are much higher than that of the stratification, whic@mple, matrix polar decomposition is also another ingpuart
explains the faster running time of the SOF algorithm eveRatrix operation widely used in many applications, sucthas t
with much larger operation counts. Theoretically, SOF-H34Pspace alignment in electronic structure calculatiody. [1
uses less operations and should outperform SOF-H2. HoweW¥g Plan to investigate a low-communication algorithm for
SOF-H2 was programmed without any performance tuning®MpPuting the polar decomposition [16]. We also plan to

which might be the reason that its performance is lower th&gVisit an inversion-free spectral divide and conquer allgms
that of SOF-H1. for nonsymmetric eigenproblems [3].
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TABLE VL5

GFLOPYS OF THE STRATIFICATION METHOD AND TWO IMPLEMENTATIONS  [11]
ON FRANKLIN .
[12]
Number of 16 64 256 1024
Processors || (4x4) | (8x8) | (16x16) | (32x32)
stratification || 12.64 | 35.23 108.92 84.14 [13]
SOF-H1 61.20 | 192.26 | 522.34 | 716.65
SOF-H2 70.68 | 193.80 | 392.02 | 417.77
800 (14]
I | ohs
700T| . Alg.6 A
Alg.7
600 | [ Alg ] [15]
v 500t :
o
S 400t 1 [16]
L
© 300} 1
2001 1 (17
100 1
4x4 8x8 16x16 32x32 (18]
Number of Processors
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