
QUEST Users’ Guide

(version 1.0.0)

Che-Rung (Roger) Lee
Zhaojun Bai

Richard Scalettar

1



Acknowledgement

Development of QUEST is supported through a SciDAC (Scientific Discovery through Ad-
vanced Computing) grant by the U.S. Department of Energy - Office of Science, Advanced
Scientific Computing Research and the National Nuclear Security Agency under the contract
number DE-FC-02-06ER25793. It is a part of the project on “Modeling Materials at the
Petascale: next generation multi-scale quantum simulation software for strongly correlated
materials”.

2



Contents

1 Introduction 4

1.1 Problems that QUEST can solve . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Organization of the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Compilation and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic usages 6

2.1 Input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Equal time measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Unequal time measurements . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Advanced usages 12

3.1 Add new configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Create new lattice geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Files for geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Add new measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Measuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Fourier transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.5 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A Example programs 18

A.1 test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2 verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.3 tdm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



1 Introduction

QUantum Electron Simulation Toolbox (QUEST) is a Fortran 90/95 package that implements
the Determinant Quantum Monte Carlo (DQMC) method for quantum electron simulations.
The original version of DQMC programs (“legacy codes”) have been developed and extensively
used for years to study magnetism, metal-insulator transition and superconductivity in the
Hubbard model.1 QUEST, the new version of DQMC simulations, serves three purposes.

1. To improve simulation performance: QUEST has improved the performance of simula-
tions by using new algorithms, like delayed update, and by integrating modern numerical
kernels, such as BLAS and LAPACK. A six to eight times speedup had been observed
for medium sized simulations.

2. To integrate existing programs: QUEST has integrated many legacy codes by modular-
izing their computational components, which makes QUEST not only a single program,
but a toolbox. The advantages of modularization also include the ease of maintenance
and the convenience of program interfacing.

3. To assist new simulations development: QUEST has several properties for developing
new simulations, such as the ability of creating new lattice geometries. Several novel
simulations had been done by using QUEST.

1.1 Problems that QUEST can solve

QUEST uses a two-dimensional periodic rectangular lattice as the default geometry in the
simulation. The lattice size and physical parameters are configurable through an input file.
Several physical measurements for the Hubbard model can be calculated by the program, as
will be discussed in Section 2.2.

QUEST is stable for interaction strength from U = 0 to U = 16t and inverse temperatures
β = 0 to 20/t. Here U is the onsite repulsion and t is the coefficient of the kinetic energy term,
see Section 2.1. However, away from half-filling, µ = 0, error bars are large for large β because
of the sign problem.

The current implementation allows hundreds of sites to be simulated on commodity comput-
ers within a reasonable time. Appendix A provides performance benchmark for some example
problems.

1.2 Organization of the package

The top level files and directories of QUEST include

• README: installation guide.

• make.inc: configuration file for system dependent parameters.

• Makefile: instruction file for make program.

1The codes mentioned here were developed by the condensed matter theory group at UCSB including

R. L. Sugar, D. J. Scalapino, S. R. White and E. Y. Loh, and maintained by R. Scalettar.
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• SRC: directory for source code

• EXAMPLE: directory for executable programs.

• DOC: directory for documentation.

Under EXAMPLE directory, several programs are contained.

• test: A simple test program for 2 dimensional square lattice.

• verify: A program verifying the correctness of QUEST by examining its results against
theoretical values of two special cases, U = 0 and t = 0.

• tdm: A test program for time dependent measurements.

• parallel: A test program for MPI type parallelization.

• wrap: Programs for different input and output formats.

• sheet: Programs for multilayer geometry.

• DCA: Programs for using DQMC as DCA solver.

• gemo: Programs for general geometry.

The details for each program will be illustrated in Appendix A.

1.3 Compilation and execution

The compilation of QUEST can be done through the following steps.

1. Download package from the link

http://www.cs.ucdavis.edu/~bai/QUEST/quest1.0.tar.gz

and save it to a desired directory.

2. Extract the file by

tar -xzf quest1.0.tar.gz

which will create a directory QUEST_1.0

3. Edit QUEST\make.inc. The major changes that should be made include

(a) FC: The Fortran 90 compiler.

(b) FC_FLAG: The flags of Fortran compiler.

(c) HOME: The full path where QUEST is installed.

(d) BLASLIB and LAPACKLIB: path of BLAS/LAPACK library. The reference implemen-
tation is available on
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http://www.netlib.org

4. Use the command make or make lib to compile the library. A successful compilation
will generate dqmclib.a under QUEST directory.

5. Go to any example directory, such as EXAMPLE\test, and use the command make to
generate executables. To compile the program in EXAMPLE\parallel, one needs mpifc,
an MPI Fortran compiler, to compile the program.

6. Use make clean to clean up the compiled library and programs.

Most executables require input parameters from standard input, the keyboard. A simple
way to input those parameters is to use IO redirect. For example, suppose the executable is
called test. The execution of test will be

./test < param.in

where param.in is a file that contains input parameters. In each directory of executables, there
will be some sample input files provided. The meaning of each parameter will be explained in
the following section.

2 Basic usages

In this section we will introduce the basic input parameters and output formats of QUEST.
Those parameters and formats are not universal, since QUEST allows each program to define
its own input parameters and output results, as introduced in section 3. However, by walking
through those basic parameters and formats, one can understand what QUEST needs and
what QUEST can do, and the input/output styles.

2.1 Input file

An input file of QUEST is consisted of a list of parameter assignments,

parameter name = parameter value

and arbitrary single line comments, starting with symbol #. Each parameter is associated with
one of the following types: integer, real, real array, and string. The basic parameters include

1. fname (string): file name for output files.

2. n (integer): total number of sites.

3. nx (integer): number of sites in the x-direction.

4. ny (integer): number of sites in the y-direction.

5. nz (integer): number of sites in the z-direction.

6. U (real array): Hubbard interaction parameters.

7. t (real array): Hubbard hopping parameters.
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8. mu (real array): Hubbard chemical potential parameters.

9. L (integer): number of time slices.

10. dtau (real): discretization parameter.

11. HSF (integer): indicator of how Hubbard Stratonovich field is input.

12. HSFin (string): file name of input file of HSF.

13. HSFout (string): file name of output file of HSF.

14. nwarm (integer): number of warmup sweeps.

15. npass (integer): number of measurement (sample) sweeps.

16. nmeas (integer): frequency of performing equal time measurements.

17. tausk (integer): frequency of performing unequal time measurements.

18. nbin (integer): number of bins for measurement results.

19. seed (integer): random number seed.

20. north (integer): frequency of performing orthogonalization in matrix product.

21. nwrap (integer): frequency of recomputing Green’s function.

22. difflim (real): tolerable difference of the matrices computed from different methods.

23. errrate (real): tolerable error rate of recomputing.

24. ntry (integer): number of sites to be flipped in the global sweep.

These parameters can be roughly divided into three groups:

1. Parameters for Hubbard model:

Parameters nx and ny specify the x-dimension and y-dimension of the 2-D rectangular
lattice to be simulated. Note that the parameter n, the number of total sites, is equivalent
to nx×ny. Parameter t, mu, and U are used in the Hubbard Hamiltonian

H = −t
∑

<i,j>,σ

(c†iσcjσ + c†jσciσ) − µ
∑

i,σ

niσ + U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
),

for kinetic energy, chemical energy and potential energy respectively. Parameter L and
dtau are for inverse temperature β.

β = L∆τ =
1

T
.

Parameter HSF indicates how the Hubbard-Stratonovich Field (HSF) is initialized.

HSF =











−1, randomly generating HSF;
0, use HSF in the memory;
1, read HSF from a file.
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If HSF=1, then HSFin is the input file name. The generated HSF can be also output to a
file by specifying the file name in HSFout.

2. Parameters for Monte Carlo simulation and physical measurements:

Parameter nWarm and nPass in the second group decide how many updates of the entire
set of all Hubbard-stratonovich variables will be executed for warm up and measure-
ment sweep. Parameter nMeas and tausk specify the frequency of performing physical
measurements. Parameter nBin determines how the computed data is divided into bins.
Parameter ntry is used to specify how many global flips should be performed per sweep.

3. Parameters regarding numerical concerns.

Parameter seed is used for random number generator. If it is 0, a new seed will be gener-
ated from system time. Parameter nOrth specifies how often the stabilization algorithm
should be performed in the calculation of Green’s function. Parameter nWrap provides
the initial frequency of recomputing Green’s function instead of “wrapping” G to the
next time slice. In QUEST, nWrap will be dynamically adjusted according to the errors
of updating. Parameters difflim and errrate are used for the adjusting algorithm,
which specify the tolerable matrix difference and the acceptable error rate.

2.2 Output

The output of QUEST varies in different programs. The goal for this section is to introduce
what QUEST can output, and their formats. The output of QUEST can be classified into
three types

• Input/configuration parameters.

• Equal time measurements.

• Unequal time measurements.

The input/configuration parameters are as introduced in the previous section. Some of
them may be created or changed during the simulation, like seed and nWrap. Those configu-
ration parameters can help identifying the output results.

In terms of formats, concerned only with measurements, there are three kinds

• Single real number.

• Array of real numbers.

• Array of complex numbers.

If a measurement is a single real number, it will be shown with three terms: name, average,
and error. For example,

Density : 1.000000 +- 0.000000

The measurement formatted in an array of real numbers (or complex numbers) is a function,
whose arguments can be anything, like the distances between sites. The output of this type
enumerates all its function arguments and values. For example, the equal time Green’s function
of a 4 × 4 periodic lattice is output like
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Equal time Green’s function:

dx = 0, dy = 0 0.500000 +- 0.000000

dx = 1, dy = 0 -0.119358 +- 0.000754

dx = 2, dy = 0 0.000000 +- 0.000000

dx = 0, dy = 1 -0.118936 +- 0.000414

dx = 1, dy = 1 0.000000 +- 0.000000

dx = 2, dy = 1 0.020050 +- 0.000307

dx = 0, dy = 2 0.000000 +- 0.000000

dx = 1, dy = 2 0.019829 +- 0.000184

dx = 2, dy = 2 0.000000 +- 0.000000

The first line is the name of measurements. Below that, the first column is the arguments of
the function. The second and the third columns are the averages and errors.

Complex results will be defined similarly with separated error bars for the real part and
imaginary part.

For the detailed definition, please refer to the working notes.

2.2.1 Equal time measurements

There are three groups of equal time measurements. The first group is the measurements that
aggregate values from entire lattice. The second group is the correlation functions that average
pair of sites within the same distance class. The third group measures the pair susceptibilities.

1. Up spin occupancy

2. Down spin occupancy

3. Potential energy

4. Kinetic energy

5. Total energy

6. Density

7. XX Ferromagnetic structure factor

8. ZZ Ferromagnetic structure factor

9. XX Antiferromagnetic structure factor

10. ZZ Antiferromagnetic structure factor

11. Equal time Green’s function

12. Density-density correlation function (up-up)

13. Density-density correlation function (up-dn)

14. XX Spin correlation function
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15. ZZ Spin correlation function

16. S-wave pair structure factor

17. SX-wave pair structure factor

18. D-wave pair structure factor

19. SXX-wave pair structure factor

20. DXX-wave pair structure factor

21. PX-wave pair structure factor

22. PY-wave pair structure factor

23. PXY-wave pair structure factor

24. PYX-wave pair structure factor

2.2.2 Unequal time measurements

Every unequal time measurement is a function of imaginary time. The format of array typed
measurement with two arguments, space and time, is like

G(nx,ny,ti)

dx = 0, dy = 0

0 0.50000 +- 0.00000

1 0.36076 +- 0.00311

2 0.27942 +- 0.00328

...

dx = 1, dy = 0

0 -0.12042 +- 0.00162

1 -0.07183 +- 0.00097

2 -0.04248 +- 0.00133

...

dx = 2, dy = 0

...

where dx = 0, dy = 0 are labels of space and followed by a list of time label and corre-
sponding values.

Some measurements are from Fourier transformation, which are complex. Their format
will be like

0( 0.05179 +- 0.00270) +i( 0.00000 +- 0.00000)

1( 0.05085 +- 0.00248) +i( -0.00061 +- 0.00055)

2( 0.04343 +- 0.00190) +i( -0.00067 +- 0.00078)

3( 0.03755 +- 0.00144) +i( -0.00080 +- 0.00051)

4( 0.03004 +- 0.00099) +i( -0.00090 +- 0.00076)

5( 0.02512 +- 0.00092) +i( -0.00100 +- 0.00048)
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6( 0.02152 +- 0.00074) +i( -0.00134 +- 0.00031)

7( 0.01829 +- 0.00072) +i( -0.00087 +- 0.00055)

8( 0.01499 +- 0.00066) +i( -0.00051 +- 0.00055)

9( 0.01332 +- 0.00065) +i( -0.00042 +- 0.00035)

The numbers inside the first parenthesis are the average and error of the real part and the
numbers in the second parenthesis are for imaginary part.

1. Unequal time Green’s function: G(dx, dy, t)

2. Discrete cosine transformed G(dx, dy, t): G(qx, qy, t)

3. Fourier Transformed G(dx, dy, t): G(dx, dy, w)

4. Fourier Transformed G(qx, qy, t): G(qx, qy, w)

5. Spin-spin correlation function: χ(dx, dy, t)

6. Discrete cosine transformed χ(dx, dy, t): χ(qx, qy, t)

7. Fourier Transformed χ(dx, dy, t): χ(dx, dy, w)

8. Fourier Transformed χ(qx, qy, t): χ(qx, qy, w)

9. S-Wave pair structure factor, vertex and nonvertex

10. SX-Wave pair structure factor, vertex and nonvertex

11. D-Wave pair structure factor, vertex and nonvertex

12. SXX-Wave pair structure factor, vertex and nonvertex

13. DXX-Wave pair structure factor, vertex and nonvertex

14. PX-Wave pair structure factor, vertex and nonvertex

15. PY-Wave pair structure factor, vertex and nonvertex

16. PXY-Wave pair structure factor, vertex and nonvertex

17. PYX-Wave pair structure factor, vertex and nonvertex

18. FTed S-Wave pair structure factor, vertex and nonvertex

19. FTed SX-Wave pair structure factor, vertex and nonvertex

20. FTed D-Wave pair structure factor, vertex and nonvertex

21. FTed SXX-Wave pair structure factor, vertex and nonvertex

22. FTed DXX-Wave pair structure factor, vertex and nonvertex

23. FTed PX-Wave pair structure factor, vertex and nonvertex
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24. FTed PY-Wave pair structure factor, vertex and nonvertex

25. FTed PXY-Wave pair structure factor, vertex and nonvertex

26. FTed PYX-Wave pair structure factor, vertex and nonvertex

3 Advanced usages

To assist in creating new simulations,2 QUEST provides several simple mechanisms to

1. Add new configuration parameters,

2. Create new lattice geometries,

3. Add new measurements.

This section will introduce how to apply them.

3.1 Add new configuration parameters

Section 2.1 lists the basic input parameters, which are enough for current programs. However,
for new simulations, additional parameters may be required. QUEST allows new parameters
to be specified through current configuration system. For example, in the diluted lattice, in
which some sites are randomly removed, the percentage of removal sites can be specified in the
input file

rmv_ratio = 0.1

just like the other parameters.
To add new configuration parameters, the user/developer needs to edit a file called config.def.

When the subroutine DQMC_Config_Read is called, it will first search config.def for the defi-
nition of parameters. If the file exists, then the program will use the parameter defined in the
file. Otherwise, it uses default parameter set, as described in section 2.1.

A parameter in config.def is defined by a quintuple:

{name, type, isArray, printed, default }

where

name: a string, maximum characters 30, specifying the name of the parameter.

type: an integer specifying the data type of the parameter.











type = 1, real;
type = 2, integer;
type = 3, string.

2Currently, QUEST is limited to the single band Hubbard model with on site repulsion, but allows very

general lattice geometries
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isArray: a boolean {T,F} specifying whether the parameter is an array. Note,
when type is a string, isArray cannot be T.

printed: a boolean {T,F} specifying whether the parameter will be printed in the
output.

default: a string, maximum characters 30, specifying the default value of the
parameter.3 QUEST will convert it to a proper data type based on the ”type”-
tuple.

Each tuple is separated by spaces. For example, the parameter rmv_ratio can be defined in
the config.def as

rmv_ratio 1 F T 0.1

The file config.def should be placed in the directory where the executable is.

3.2 Create new lattice geometries

In QUEST, geometry dependent variables are placed together in a derived data type Struct.
To create a new lattice geometry, one needs to fill out the data fields in Struct. There are
several ways to achieve this; each has its advantages and drawbacks.

1. Write a program to fill out the data fields: most efficient way in execution, but need to
write programs for different geometries.

2. Use primitive cell definition as input:4 Most compact representation of general geometry,
but requires understanding the definitions of primitive cell.

3. Input data for each data field from files: Most easy way to create a new lattice geometry,
but less flexible and efficient.

In this section, we will illustrate the data fields in Struct and the file formats for method 3.
Note not all the data fields are essential for simulations. Some of them are just for a particular
measurements. When lacking one or some of the fields, QUEST will skip the corresponding
measurements.

3.2.1 Struct

Derived data type Struct is defined as

type Struct

integer :: nSite ! number of sites

character(gname_len):: name ! name of the structure

integer, pointer :: dim(:) ! dim of the geometry

integer :: n_t ! number of hopping types

type(CCS):: T ! hopping matrix

3Note, even a parameter is an array, its default value can be only set by one number.
4This feature is still under development.
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integer :: n_b ! number of neighbors types

type(CCS):: N ! neighborhood matrix

integer :: nClass ! number of distance classes.

integer, pointer :: D(:,:) ! distance classes

integer, pointer :: F(:) ! counts for each dist class.

character(label_len), pointer :: &

label(:) ! label for distant class.

integer :: nGroup ! number of diff singletons.

integer, pointer :: map(:) ! site classification

real(wp), pointer :: W(:,:) ! wave functions

integer :: nWave

character(label_len), pointer :: &

wlabel(:)! label for wave functions.

real(wp), pointer :: P(:) ! phase assignment

real(wp), pointer :: FT(:,:) ! Fourier Transform matrix

logical::checklist(N_CHECKLIST) ! flags

end type Struct

Here are the detailed comments for each field.

• Sites must be numbered from 1, with continuous numbering.

• String name is of length 80 characters, used in display.

• Vector dim is used to hold dimension parameters. For example, for a two dimensional
square lattice, dim=(nx,ny), where nx and ny are the number of sites in x direction and
in y direction. This field can be of arbitrary length. QUEST does not use this field
directly.

• Hopping matrix T stores the indices of hopping parameter t for adjacent sites.5 It
is normally a sparse matrix; and therefore is represented in the Compressed Column
Storage (CCS) format.6 Field n_t is the number of different hopping parameters.

• Neighboring matrix N is similar to T, and is also represented in the CCS format. It is
used in pair measurements, for which the link indices should be consistent with the wave
function W. Field n_b is the number of different links.

• The distance classification is represented by D, F and label. Two pairs of sites are in
the same class if they have equivalent separation in geometry in question. The number
of classes is specified by nClass. The class index is also started from 1. The number of

5Two sites i, j are called adjacent if electrons can hop from site i to site j.
6The detail of CCS format can be found in http://www.netlib.org.
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pairs in each class is stored in F. String array label gives a label for each class, used
in output. Matrix D records the classification for each pair of site. Number in D(i,j)

denotes the class index for site i and j.

• The vector map classifies sites. Site i and site j are in the same class if they have the
same physical parameters, like U and µ. The number nGroup denotes the number of site
classes.

• Matrix W defines wave functions for the pair measurements, which are related to various
spherical harmonic functions. The number of functions is specified by nWave. Each
function has n_b elements, and is stored in a column of W matrix.

• The phase assignment vector P gives each site {+1,−1} so that adjacent sites have
opposite phases. This is used in spin correlation measurements, and in Green’s function
calculation when µ = 0. This is useful only for bipartite lattices.

• Matrix FT is the Fourier transformation matrix for distance classes, which is used in time
dependent measurements.

• Vector checklist is a set of flags that indicates which data fields are assigned. The flags
include

STRUCT_INIT = 1

STRUCT_DIM = 2

STRUCT_ADJ = 3

STRUCT_CLASS = 4

STRUCT_WAVE = 5

STRUCT_NEIG = 6

STRUCT_PHASE = 7

STRUCT_FT = 8

3.2.2 Files for geometry definition

The file name of geometry definition is specified in the configuration file with parameter name
gfile. For example,

gfile = strip.def

tells QUEST to use the file strip.def as geometry definition. The format of the geometry
definition is similar to the configuration file.

1. The symbol # is used to start a comment.

2. The data fields are set by the assignment

data_field_name = data_field_value

3. Some fields depend on the other. Depended fields should be declared first.
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T → nSite

B → nSite

D → nSite

FT → nClass

W → n_b and nWave

4. Not every field in Struct need be defined in the file. For example, vector F and map will
be derived from matrix D.

5. Array type assignment, including matrix or vector, is different from that in a configura-
tion file. The right-hand-side of assignment should be the number of lines to read. For
example

D = 64

means there are 64 immediate lines to read for matrix D. Those lines are called content

lines. Note NO empty lines are allowed between content lines.

6. The format for a content line of a matrix is

i j value

where i is the row index, j is the column index, and value is the (i,j) element of the
matrix.

7. Format for a content line of a vector is

value

Those values should be ordered sequentially, since indices are assumed to be implicitly
embedded.

An example of how to create new geometry using method 3 can be found in the example
program in EXAMPLE\gemo.

3.3 Add new measurements

New measurements need be made through programming in QUEST. Several subroutines can
be used to create new measurements. The standard procedure to add a new measurement
includes three steps.

1. Measuring.

2. Binning.

3. Postprocessing. (Statistics, Fourier transformation, output.)
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3.3.1 Measuring

Several components may be needed to create a new measurements.

1. Equal time Green’s function: Equal time Green’s function is defined in the module
dqmc_gfun, which will be initialized automatically when the subroutine DQMC_Hub_Init

is called. Suppose Hub is typed Hubbard, the major data type of entire simulation. The
Green’s function matrices, spin-up and spin-down, can be obtained from

Hub%G_up%G

Hub%G_dn%G

And the signs of their determinants are recorded in

Hub%G_up%sgn

Hub%G_dn%sgn

2. Unequal time Green’s function: Unequal time Green’s function, denoted Gτ
ρ, ρ ∈

{↑, ↓}, is defined in the module dqmc_gtau. Unlike equal time Green’s functions, Gτ

are not essential in the simulation. Therefore, user needs to initialize it by calling
DQMC_Gtau_Init explicitly. The construction of Gτ can be made in two ways. The
first way is to call DQMC_Gtau_Big, which returns entire Gτ

ρ. The second method is to in-
voke DQMC_MakeGtau, which returns block submatrices of Gτ . Since the signs of unequal
time Green’s functions are the same as the equal times, one can obtain the signs from
Hub%G_up%sgn, Hub%G_dn%sgn.

3. Parameters of Hamiltonian: Parameters, such as t, µ and U , are stored in the data
type Hubbard. The access is straightforward.

4. Geometry related information: Geometry information, such as hopping matrix, can
be obtained from the data type struct, which is introduced in section 3.2.

3.3.2 Binning

In order to generate error bars, measurements in QUEST need be grouped into bins. Currently,
equal divided binning strategy is used, which means the measurements are evenly divided by
the total number of bins. Measurements in the same bin are averaged. The total number of
bins are stored in the variable nbin.

3.3.3 Statistics

There are two special properties for some of the physical measurements produced by the DQMC
method.

1. The distribution is not normal.

2. Measurements are weighted with signs of the determinants of Green’s functions, for which
the average needs be normalized by the average of signs.
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QUEST uses Jackknife resampling technique in error estimation. Two subroutines are
provided to perform the statistics: DQMC_JackKnife and DQMC_SignJackKnife. The former is
for error estimation of signs; the latter is used for other measurements. Those subroutines are
defined in module dqmc_util.

3.3.4 Fourier transformation

For unequal time measurements, there are two possible Fourier transformations to be applied:
transformation on the real space and transformation on the time domain. For the transfor-
mation on real space, since it is geometry dependent, a transformation matrix FT, defined in
Struct, is required.7 Once the matrix is available, the transformation is just a matrix-matrix
multiplication. In the module dqmc_tdm, QUEST provides a subroutine DQMC_DCT_Space for
the space transformation.

The Fourier transformation on the time domain is an integration. The numerical procedure
is

1. Refine the time grid.

2. Interpolate the refined data points.

3. Integrate on the interpolated data with Fourier coefficients.

In step 1, QUEST evenly subdivides the time domain by the given parameter nitvl. In
step 2, QUEST uses spline interpolation, which is supported by the subroutine DQMC_Spline.
Step 3 requires an additional Fourier matrix, which can be generated from the subroutine
DQMC_Make_FTM. The entire procedure is coded in the subroutine DQMC_FT_Time.

3.3.5 Printing

QUEST has two subroutines that print out arrays of numbers. Subroutine DQMC_Print_RealArry
prints out an array of real numbers; DQMC_Print_ComplexArray prints out an array of complex
numbers. The title of the measurements and the labels of each array items are required for
those two functions.

A Example programs

Eight example programs are included in the EXAMPLE directory. Here is a short introduction
for each of them.

A.1 test

Program test demonstrates the simplest usage of the QUEST. Besides the timing commands,
there is only one line in the program, which runs DQMC simulation on a two dimensional
periodic rectangular lattice. In spite of its simplicity, this program can be configured dynam-
ically for different lattice size, Hubbard parameters and execution iterations. Four sample
configurations are included within this program, as showing below.

7see section 3.2 for more details.

18



Configuration Lattice size Time slice Running time

small.in 4 × 4 12 2 second
medium.in 8 × 8 48 198 second
large.in 16 × 16 96 15,629 second

Their execution time is also presented. This result is obtained by using checkerboard
method, 1000 warmup steps and 5000 measurement steps, with Intel MKL BLAS and LAPACK
libraries, on an Intel Core 2 Duo 2.4GHz processors (but only run in one core).

A.2 verify

The verify program examines the correctness of the execution results of two special cases,
single site (t = 0) and no Coulomb interaction (U = 0). Each test case runs through 9
configurations.

The correctness of those results are checked against the theoretical results. Statistically,
63.2 percent of the computed results are expected to have errors smaller than one standard
error, and 86.5 percent of results should be within two standard errors. The verification
program runs 1000 warm-up sweep and 5000 measurement sweep for t = 0 cases, which gives
error bars of 0.33% on the energy and less than 0.22% on the spin correlation SpinXX.

A.3 tdm

This example program demonstrates how unequal time measurements can be performed. This
program also shows the flexibility of using the subroutines in QUEST. Four sample configura-
tions, the same those in test, are available for this program. The time dependent measure-
ments are made every 10 measurement sweeps. Their execution time is summarized in the
following table.

Configuration Lattice size Time slice Running time

small.in 4 × 4 12 3 second
medium.in 8 × 8 48 266 second
large.in 16 × 16 96 19446.18 second

A.4 Others

• parallel: This program uses MPI to parallelize the measurement steps. The compilation
of this program requires mpif90. The base compiler of mpif90 should be the same as
the one used in compiling library.

• wrap: This directory contains a module dqmc_wrapper and a program tw. The mod-
ule wraps all computation components of QUEST into several simpler functions. The
program tw, test wrapper, can perform equal time and unequal time measurements.

• sheet: This directory contains a module and programs for the multilayer lattice. Module
dqmc_sheet defines the multilayer geometry. Program meas1 and meas2 provides new
measurements for the multilayer structure.
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• geom: The program inside this directory tests the general geometry method 3 mentioned
in section 3.2.

• DCA: This is a project that interfacing QUEST with other programs. Basically, the entire
project uses DQMC as a DCA solver. This demonstrates how to use QUEST as a library
in other programs.

20


