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Multiresolution chemistry objectives
o Complete eimination of the basis error

— One-electron models (e.g., HF, DFT)
— Pair models (e.g., MP2, CCSD, ...)
e Correct scaling of cost with system size

e Genera approach
— Readily accessible by students and researchers
— Higher level of composition

— No two-€electron integrals — replaced by fast
application of integral operators

 New computational approaches
 Fast algorithms with guaranteed precision
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Molecular electronic Schrodinger

equation
* A 3-N dimensional, non-separable, second-
order differential eguation
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* Practical approximations reduce to solving
non-linear problems for single-particle (3D)
and two-particle (6D) functions
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“Independent” particle models

o Atomic and molecular orbitals

— Each electron feels the mean field of all other electrons (self-
consistent field, Hartree-Fock)

— Replaces linear 3AN-D Schrodinger w. non-linear 3-D elgen-problem
— Provides the structure of the periodic table and the chemical bond
— Linear combination of atomic orbitals- LCAO

— E.g., molecular orbitals for water, H,O
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Density functional theory (DFT)

* Hohenberg-Kohn theorem
— The energy isafunctional of the density (3D)

e Kohn-Sham

— Practical approach to DFT, parameterizing the density
with orbitals (easier treatment of kinetic energy)

— Vey smilar computationally to Hartree-Fock, but
potentially exact

(~2 V24V, (1 £) +V, (15 0) + Vi (1)) (1) = £,(1)
p(r)= Z¢i2(r)



Integral Formulation
o Solving the integral equation
— Eliminates the derivative operator and related “issues’
— Converges as fixed point iteration with no preconditioner

(-1VZ+V )¥ =E¥
¥ =-2(-V?-2E) V¥
=-2G*(VV¥)

—kh—ﬂ

f(s) in3D:k?=—2E

(G* )(r) = stdﬂ‘ e

Such Green’ s Functions (bound state Helmholtz, Poisson) can be rapldly
and accurately applied with asingle, sparse matrix vector product



Essential techniques for fast
computation
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 Multiresolution
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How to “think’ multiresolution

e Consider aladder of function spaces
V@&V Ve eV
— E.g., Increasing quality atomic basis sets, or finer
resolution grids, ...
» Telescoping series
V, =V, + (Vl _Vo) 5 (Vz _V1) 1o L (Vn _Vn—l)
— Instead of using the most accurate representation, use
the difference between successive approximations
— Representation on V, small/dense; differences sparse
— Computationally efficient; possible insights
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Scaling Function Basis
e Divide domain into 2" pieces (level n)
— Adaptive sub-division (local refinement)
— |t sub-interval [1*2",(I1+1)*2-"] I=0,...,n-1
 In each sub-interval define a polynomial basis
— First k Legendre polynomials ¢ (x) = J2i +1P (2x —1)
— Orthonormal, digoint support 8 (x) = 224 (2" x ~ 1)
o P—o—
- ———

1=0 =1 |=2 =3 =



Multiwavelet Basis
* An orthonormal basisto span W _ .=V -V .
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Vanishing moments
 Critically important property
—3Since W =V, ,,-V, Isorthogonal to V_ the first k
moments of functionsin W, vanish, 1.e.,

j Xy (X)dx =0, j=0,...,k -1

e Compact representation of smooth functions

— Consider Taylor series ... thefirst k terms vanish and
smooth implies higher order terms are small

« Compact representation of integral operators
— E.g., |r-s|! ... interaction decays as r-2¢1

e Derivativesvanish at origin in Fourier space
— Diminishes effect of singularities at that point 1



e Aboveisrather

e For accurate function

Truncation Error

o To satisfy the global
error condition

Hf—f”

, <&t

d,’

e Truncate according to LS 2_n/2‘9H f Hz

d,’

. <
conservative — often use e

di|,<2"¢
& derivative o
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lterative solution scheme — v1

Suppose i 1sthe exact eilgenfunction and we seek a
correction A to an approximate eigenvalue ¢

y=—(T-e-A) (V)

(7))~ AT ) (V) -
L eft projection with Vi yields Overall linear convergence

A=—(Vyl|y-)

Error in eigenvalue is quadratic

where In error in wavefunction (for
b linear problem) due to related
W = _(T L ! g) (VW) variational approach.

The correction to the wavefunction is then

v
T
] :



For many-electron systems, we must extract multiple eigenpairs from the Fock op-
erator. Straightforward iteration of the integral equation does not work because all roots
will collapse to the lowest root unless the initial guesses are very close to the correct
solutions. Two modifications are necessary. First, we use deflation to recast the integral
equation for each orbital as a ground-state problem. Let P, denote a projector onto
the space of the eigenfunctions of lower energy than orbital z. At convergence, the i’th
occupied orbital (¢;) will be the lowest energy solution of

(1= PR)H(1 - P)¢; = €idh;, (38)
which may be rearranged as
(H-PH(1-PF)—- (- PF)HP, + PHP) ¢; = €;¢;. (39)

Since P;¢; = 0, only the first two terms on the left hand side are non-zero. The second
term may be included in the potential, thereby incorporating the effect of deflation into
iteration of the integral equation. However, we note that if, prior to each iteration, the
Hamiltonian or Fock matrix is diagonalized in the space of occupied orbitals, then the
second term is also zero and the unmodified integral equation may be used. The second
modification is to orthogonlize the updated orbitals in order of increasing energy.

1. destroys pure asymptotic form of eigenfunctions

2. requires additional work to compute differential operator, and

3. reguirestheintegral and differential operators to be consistent to desired preC|S|on
4. solvesfor eigenfunctions which may be delocalized



Strontium s orbitals
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lterative Solution vl

* Form update as described above
» Usethisasresidual ininexact-Newton
(Krylov subspace) non-linear solver

— Well preconditioned (residual is approximate
correction to solution)

 Multiscale solution

— Solveto low precision at low resol ution/threshold
— Repeat at higher precision with tighter threshold
(analgous to h-p refinement)

20



lterative Solver vl

 Workswell for relatively small systems

— Typical #iterations 7, 3,1, 1, ...
(k,e) = (5,103), (7, 10), (9, 10", (11, 109), ...

 Problems

— Convergence stalls for large molecules

 hypothesized to be due to accidental degeneracy
|eading to poorly resolved rotations

* inconsistent handling of orthogonality constraints
(enforced after making the updated)
— Inefficient for large molecules (esp. high

symmetry) due to delocalized eigenvalues

— Often only need space spanned by the eigenfunctions =



Water dimer LDA
aug-cc-pVTZ geometry, kcal/mol.

Basis Uncorrected BSSE Corrected
cc-pvVDZ -11.733 -3.958 -71.775
cc-pVTZ -9.464 -1.654 -7.810
cc-pvVQZ -8.708 -0.821 -7.888

aug-cc-pvDZ -8.187 -0.382 -7.805
aug-cc-pvVTZ -7.992 -0.086 -7.906
aug-cc-pvQ~Z -7.995 -0.0x4 -7.941

£=103 -6.483

=107 -7.932

=10 -7.943
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LDA scaling with Z and system size (energy £=10)

200077 _o— timels 200 1
- 7.27/".5 ry —&—time/min Al
1500 | 20.506*Z+0.6334*Z"2 A 150 || -M-22.55*m1.86
6.1*n+17.3*n\2
1000 - 100 -
500 - 50 - b
0 A ‘ ‘ ‘ | 0
0 10 20 30 40 1 2 3
Rare earth atoms Z=4,12,20,38 (CsHg), M P2 aug-cc- vaZ geometry
st R )
(H,0),n=59 ... t=0(n'}) .4 B » '3,

Stacked benzene — MOs are delocalized by symmetry f. Q
Water cluster — MGOs are asymptotically localized
(long tail Is smooth so isinexpensively treated)



lterative Solver v2

o Solvefor aset of functions to span the
space of the lowest N eigenfunctions
— C.f., Bernholc, Yang, ...

— Choose computationally efficient resolution
 Maximally localized set
 Strive for overall linear scaling

24



Return to the variational form of the eigen-problem and introduce
the Lagrangian inlcuding the orthonormality constraints.

L-E- >4, ((il)-5,)

i, j=1
In the linear case,

=3 ([H )

and in the non-linear case define
ok
g

Differentiation w.r.t. the eigenfunctions and multipliers

=2H |i)

H i)~ Z‘ i)4; =0 At this point normally invoke invariance
g : of trace or energy w.r.t. rotations and
<" J>_5ij =0 choose to diagonalize A 25



A common approach to generating localized orthonormal orbitalsis to solve

minz<i2 j2>

i#

where <i2 j2> —~ j¢i2M ¢;dr> for some positive operator M.

(Identity - Niessen, square dipole - Boys, Coulomb - Edmiston-Ruedenberg).
Thisisequivalent to

max ) <i 2 ‘ i2>
A Newton iteration is readily constructed from an orthonormal rotation
formed by exponentiating an antisymmetric matrix K

W= () D) () (e5)

oW e
— =4 Ji{n
il
OAW A Ty
k| = 45, (( js|ii) + 2( ji|si}) + 40,0, (si[ii) o]




The integral equations becomes

| Iterative
g ) ((V_W_qu’”"‘):o Solver v2
<¢i ‘¢j>_5ij =0
where A must be treated as a sparse matrix and & anegative energy
probably best chosen as 4.

With analogy to the conventional approach of diagonalizing the matrix
representation of the Hamiltonian, we first compute the residuals r. and
then solve in aleast squares sense alinearized version of

=0

<¢' ‘¢j > et

fully maintaining the orthonormality constraints.

After (during) determining this update, the orthonormal orbitals are
subjected to one (severa) Newton iteration of the localization procedu2r7e.



Electron correlation

e All defectsin the mean-field model are ascribed to
electron correlation

e Consideration of singularities in the Hamiltonian
Imply that for atwo-€electron singlet atom (e.g., He)

¥(r,r,,1,)=1+3r,+0(r3) as r,—0 '%A
* Include the inter-electron distance in the 2 /
My

wavefunction
— E.g., Hylleraas 1938 wavefunction for He

\I"(I’l, r2’ r12) = e_g(ﬁ-l-l’z) (1_|_ ar12 %y )

— Potentially very accurate, but not systematically

Improvable, and (until recently) not computationally
feasible for many-electron systems 28



Conventional approach

The two-€electron wave function is expanded as a
product of one-particle functions (orbitals)

\P(rl’ rz) 7 Zcij¢i (r1)¢j (rz)

Can prove for atans, that if saturate the atomic basis
up to some angular momentum L, then

L d f 9 h

-3
AE oC (L + 1) (L+1)3 | 0.04 0.016 | 0.008 | 0.0046

corr

Correlation consistent basis sets (Dunning) are
currently the best choice — cost is O(s™)

Explicitly correlated wave functions yields O(s**)
Fully numerical promises O(log &™)

29



==X £,009,(9)

r = separation rank

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagona
r = O(-log &)
30




Multiresolution solver of two-electron
Schrodinger equation

Wavefunction in 6-D multiresolution representation

Solve integral equation

— The 6D GF nominally has 12 indices! Separated
representation of operator accurate and efficient

Partly or fully use SVD to represent 6-D tensor
coefficient sets

— Blocks separated from the diagonal have low rank (1 or 2,
the full rank being k3)

— Directly analogous to linear Cl expansion but not global

Can compute directly in this form, but other
refinements make it much more practical a1



Summary

 Multiresolution in multi-wavel et bases

— Made practical in three and higher dimensions by
separated representations

 Integral form of non-linear e gen-problem
— Well preconditioned

— Original formulation not consistent thru first order
with poor treatment of accidental degeneracies

— New formulation
e consistent (?)
» well resolved (must still treat ambiguity in localization)
 hopefully much more efficient (O(N) ?) o



Separated form for integral operators

T* f :stK(r—s)f(s)

e Approach in current prototype code
— Represent the kernel over afinite range as a sum of Gaussians

lii jj LKk Z an Yn|yanz ‘|‘O(€) In 3D

K (r) = Zwie-tifz +0(¢)

— Only need cc')mpute 1D transition matrices (X,Y,Z)

— SVD the 1-D operators (low rank away from singularity)
— Apply most efficient choice of low/full rank 1-D operator
— Even better algorithms not yet implemented

33



Accurate Quadratures

 Trapezol daI quadrature

Suffl CI ent Im Oothn ess, _ _

The kernel for x=1e-4,1e-3,1e-2, 1e- 1e0 e _ A
The curve for x=1e-4 isthe rlghtmos-t _ B R e 34



Automatically generated
representations of
exp(-30r)/r accurate to

: | . . 1&10, 1e-8, 1e-6, 1e-4, 1e-2
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i
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Current Capabilities

e Open/closed shell Hartree-Fock and DFT

— Wide range of GGASs, hybrid (O(N) HF exchange),
and asymptotically corrected functionals

— Energies and analytic derivatives

— Full TDDFT and RPA for excitation energies *****
— ADbelian point groups

— Parallel execution on shared memory computers

— Interfaces to NWChem and GAMESS-US

» \Working prototypes for computing in 6D

— Direct solution of the pair equation for polyatomic
systems (initial target is basis-set limit MP2) 36
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Prototype code In use by ...

+ Hideo Sekino at Toyohashi, Japw;v
— Benchmark calculations of base pair stacking

— Electron transport in molecules

o Schaefer and Allen U. Georgia, Athens, USA
— Benchmark HF energies and structures

e Tennant, U. Sheffield, England
— New solvation models

37



High-level composition using

functions and operators

e Conventional quant. chem. uses explicitly
Indexed sparse arrays of matrix elements

— Complex, tedious and error prone

* Python classes for Function and Operator
—1in 1,2,3,6 and general dimensions Hop = —%Vzgo +Vo
— wide range of operations I(r)=G* p
Hpsi = -0.5*Delsg*psi+ V*psi
J = Coulomb.apply(rho)

 All with guaranteed speed and precision

:I P) 4o
[r—s|

38



New solver being developed

» \Working with localized orbitals
— O(1) application of operators to one orbital
— O(N) computation of Coulomb potential (already)

— O(N) computation of Fock-like matrices
e Asaresult of localized orbitals

— More robust convergence

e Near total rewrite in C++

— Two-levels of parallelism targeting massively
parallel computer using multi-processor nodes

— In anticipation of highly-threaded processors

39



()] ol LS TR B )

1-D Example Sub-Tree Parallelism

o e B
S a0
AN  VANTUVANR
[/\ TATHAEN
A A AAAA A
i A AL

Both sub-trees can be donein parallel.
In 3-D nodes split into 8 children ... in 6-D there are 64 children

40



Next Generation
Languages/Mechanisms

e X10 (IBM) (funded under DARPA HPCYS)
— Derivative of Java

— Futures/Async(Dynamic Scheduling)
— Var@Place (notion of locality)

o Chapel (Cray) (funded under DARPA HPCS)
— Rootsin ZPL, MTA stuff, and others
— Futures

— Domains (locality and scheduling)

 In both cases still waiting on a more complete/up-
to-date language spec

41



Futures

 Parallel language construct that ssmplifies parallel
execution with a dependency upon result

— Store an unevaluated expression in avariable of type
Future

— May be executed by another thread as resources permit

— Reference to the result forces it to be evaluated if it has
not yet been done so.

* Implementation as templated C++ class with thread
pool (similar interface to Java)

42



Recursive composition with
Futures

Sequential Multithreaded

void Function::_reconstruct(OctTreeT *t) { void Function::_reconstruct(OctTreeT *t) {
Tensor<double> ss = unfilter(t->data()); Tensor<double> ss = unfilter(t->data());
Future<void,Function,OctTreeT*> fut[2][2][2];
FORIJK (OctTreeT *child = t->child(i,j,k); FORIJK(OctTreeT *child = t->child(i,},k);

iIf (child) { If (child) {

child->data()...; child->data()...;

_reconstruct(child); fut[i][j][k].start(& Function::_reconstruct, this, child);
} }
else { else {

t->insert_child(...); t->Insert_child(...);
}; });

FORIJK( fut[i][j][K].force(); );
b b

43



Analytic removal of cusp(s)

TWO_.eleCt[ron H =—1A1—£A2+V(r1,r2)+ .
Hamiltonian 22 r—r,
WOo-€ ectr_on W(r,r,) = oU(lnr2) A1, 1))
wavefunction : 1
Transformed € He'¥=--Ag-2A

problem

‘ ‘ P V2¢)

+(v (W) +u)+ ‘r - (- 2u’)j¢
Choose u to eliminate singularity at r,,=0

Quantum Monte Carlo calculations
— Best to eiminate dl r,=0, r,=0, r,,=0, r,=r,=r,,=0*




Smoothed potential and wave function

o Similarity-transformed Hamiltonian with correlation
factor (cf. transcorrelated Hamiltonian)

— The effective wavefuntion @ as well as the transformed
Hamiltonian is smoothed at r,,=0

H = e () e!()
Y (r,r,)= e“(rlz)CD(rl, r,)

— Electron-€ ectroln repulsion is smoothed
—(1—2u’(r12))—u’(r12)2—u”(rlz)
1 Ip
— >
2 u'(r,)2 2 .(v,-v,)

r12 45

Correlation factor: u(ry,)



(1-2u(r45))/rqo-((u’(ry 2))2"’“"("12))

Smoothed interelectron potential
« Correlation factor

101 T T L P L B — T 1
[ Jastrow 1 — Jastrow
1/ o exponent ------- ] ar
linear -------- 1 L 12
| SUR=as
1+br,
o - i )
b N i — Exponential

""""""""""""""""""""""""""""""""""" u (r12) = a(l_ e_brlz)
— Linear

1
u(rlz):§r12

10‘2 L L L l § § [ | [ i i | 1 [ 3 l 3 [l [
1073 1072 10 10° 10" 102 46
interelectronic distance r12



Solve for the correlation correction
to the HF wavefunction

* The smoothed wavefunction is separated
Into Hartree-Fock wavefunction and its
perturbation.

— The perturbative wavefunction is numerically
smaller than Hartree-Fock wavefunction.

Q(r,r,)=0" (r,1,)+60(r,",)

-

ol (rl,rz)‘2 =1.0
5(13(['1,['2)‘2 ~ (0.1 For He atom

47



Variational E | AE residual
HF| -2.86161

Ilter.0| -2.87108 0.414 73
1| -2.89492 -0.02384 | 0.017 28

2| -2.90043 -0.00551 | 0.007 94

3| -290218 -0.00175 | 0.003 84

4| -2.90288 -0.000 70 | 0.002 02

5| -2.90320 -0.00032 | 0.001 25

6| -2.90339 -0.00020 | 0.00091
12| -2.90373 -0.00004 | 0.000 36
13| -2.90373 | +0.000004 | 0.000 32
14| -2.903 77 -0.00004 | 0.000 28

Preliminary
results
for He atom

Computational details:

- 5-th order multiwavelets
- Wavelet threshold: 2x107°

- SVD threshold: 2x10®
- Exponential correlation factor

Perturbative wavefunction:
- Maximum refinement: n=4

-Memory: 132M in full SVD
form

exact

-2.903 74 (E(HF)=-2.861 68)

-Energy is variational

Hylleraas (6 terms)

-2.903 24

(small non-variational is
just truncation err)

L 6wdin and Redei

-2.895 4

48

cc-pVvVeZ

-2.903 48 (FCI) (E(HF)=-2.861 67)




Wavefunction (r,1,)

Coulomb hole (He)

0.37 |

= Hartree-Fock
035 b —\N.F. (smoothed target function) | e

= \V.F. (multiplied by correlation factor)
o33N
o3r ¢} N
o2 -
0.27

r,=r,=0.5a,
0.25
-180 -120 -60 0 60 120 180

Radial 0
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Summary

o Multiresolution analysis provides a general
framework for computational chemistry

— Accurate and efficient with high-level composition

— Multiwavel ets provide high-order convergence and
readily accommodate singularities/boundary conditions

— General framework readily accessible to researchers
— Real impact will be application to many-body models

o Separated form for operators and functions

— Critical for efficient computation in higher dimension
* Precision is guaranteed

— Excited states, non-linear responsg, ... i



“Time-dependent” DFT

 Linear response to frequency dependent
perturbation

— Eigenvalues yield excitation energies  transition density

- N, (& G T
1) (2= )1 ) Lot S, 00 () 1) |- m (1

|

— Actually solve corresponding integral eguation

51



Low Separation Rank Representation

Tt N :ia,f[ fO(x)+0(¢)

=t >0

o Different from low operator rank
— ldentity has full operator rank, but unit separation rank

e Beylkin & Mohlenkamp Proc. Nat. Acad.2002

— Many functions and operators have low sep. rank
— E.g., Poisson GF; the many-electron Schrodinger Hamiltonian

e We are combining adaptive multires. & separated
representations to compute in 6D

52



Putting It all together —
A path to O(N) exact MP2

 HF provably O(N) to arbitrary finite precision

— Based upon the density matrix
(Geodecker, Beylkin and Coult)

— Orbital-based schemes more expensive without
enforcing localization (e.g., Bernholc)

* Need an MP2 scheme based upon density
matrices

53



Characteristics of Hand P

e Hamiltonian
— Globally and locally has low separation rank
— Globally has full operator rank
— Locally off-diagonal blocks have low op-rank

* Density matrix has low separation & operator rank
— Full density matrix has operator rank N,

— Local blocks of the density matrix have a much lower
operator rank independent of N ..
e Dueto localization and orbitals being locally smooth

— E.g., water monomer 2.6, dimer 2.5, trimer 2.3 average
off-diagonal block rank. g



Shotglass (not yet the holy grail)

e Global separation of the Hamiltonian
o Sign function (purification) iteration to
produce the density matrix
Soe=F/|F|,
AN TR S P T
* Python classes (+ Fortran)

« \Working, but not practical

— Cost of maintaining LS form istoo high
— LSrank r isO(N) ... rank reduction costs O(r?)
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Efficient representation of the density
matrix and Green’s Function

e Currently exploring these representations
— Global low separation rank
— Local low separation rank + NS/S forms
— Local low operator rank + NS/Sforms €
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The Resolvent has low separation rank
o Already known — Almlof Laplace factorization

00)

-1 e , — :
(8a+8b—gi—g.) :Je(aw i) gy &= Fock matrix
J . eigenvalue
M I,j = occupied states
~ Za)ﬂe‘(ga”b“g“gi i a,b = unoccupied state
=1




Density matrix form of MP?2

E, = _% Z (iuaﬂ | jubﬂ)(z(iuaﬂ | jﬂbu)_(iubﬂ | jﬂaﬂ))

ijaby
1 et
= S ; j 2p,(1,13)p, (5. 1,)a,(n,5)a, (5, 1) I, Ty drdr,drdr,
+ exchange

: _%ij\/ﬂ (r,, )V, (1, 1,)dr,dr, + exchange
U

,Oﬂ (r11 rz) £ a)jl/4e(Ho(1)—5f )te(Ho(Z)—gf )tp(r11 rz)
g=1-p
Vﬂ (r,,r)= Ipﬂ (r, rs)qﬂ (., r3)r1;1dr1
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The KS Green’s Function

 Purification loses precision for all-electron
potential, has limited opportunity for parallelism,
and reguires full precision throughout

» GF approach is self-correcting, efficient (iterative
solution of well-conditioned equations), and
highly parallel

G(r,r;E)=Gy(r,r5 E)+jG (r,r E)V({r"G(r"r;E)dr"

fmE

o(r, r)_—Iij(r r';E)dE

Re E




Summary

o Multiresolution analysis provides a general
framework for computational chemistry
— Accurate and efficient with high-level composition

— Multiwavel ets provide high-order convergence and
readily accommodate singularities and boundary
conditions

— Real impact will be application to many-body models
for which we must compute in 6D

o Separated form for operators and functions
— Critical for efficient computation 60



Linear Combination of Atomic Orbitals
(LCAO)

Molecules are composed of (weakly) perturbed atoms
— Usefinite set of atomic wave functions asthe basis
— Hydrogen-like wave functions are exponential's

E.g., hydrogen molecule (H,)

14

1s(r)=¢e"

p(r)y=e"V4+el™®
Smooth function of
molecular geometry

MOs:. cusp at nucleus
with exponential decay

" 02
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LCAOQO

A fantastic success, but ...

Basis functions have extended support

— causes great inefficiency in high accuracy calculations
— origin of non-physical density matrix

Basis set superposition error (BSSE)

— Incompl ete basis on each center |eads to over-binding as
atoms are brought together

Linear dependence problems

— accurate calculations require balanced approach to a
compl ete basis on every atom

Must extrapolate to complete basis limit
— unsatisfactory and not feasible for large systems



The Kohn-Sham orbital LDA equations (equations 7.2.7-9 and 7.4.3 in [1]) result
from minimization of the LDA energy functional

N
' 1
E[-“"] = 22 /d?‘t?)g(?‘:] (_Evz + chd(r} + ‘Hazt(r)) f»‘f)i(r) + Erc[.("] + e s (15:]
i=1

with respect to variation of the occupied orbitals (¢;(r), ¢ = 1,..., N) which define the
electron density p,

N
p(r) =23 [u(r)" (16)

The negative Laplacian is the kinetic energy operator. In this paper, the external poten-
tial, V.5, includes only the attraction of the electrons to the nuclei,

z
Ver = — — . 17
[3 t(?ﬂ) g |T‘ —r, ( :]
The Coulomb potential, V,u(7), describes the repulsion between electrons,
r
V(1) = [ 2L (18)
r— 7|

In (15) E..[p] is the exchange correlation energy, the exact form of which is unknown.
The repulsion energy of the nuclei,

ZoZy

Eﬂ,uc = )
|Tur —Ta

a<d

ﬁ (19)

does not depend upon the density, but must be included to obtain the dependence of the
total energy upon the nuclear coordinates.

The resulting equations

57+ v 0] 60) = a6 (20)
V(r) = Vig(r) + Vigu(r) + VEPA(r) (21)

define the occupied orbitals as the lowest N eigenfunctions of the Kohn-Sham operator
(also casually referred to as the Fock operator since the Hartree and Hartree-Fock equa-
tions are verv similar [11) which implicit]ly depends upon the orbitals throueh the density.



1.8
16
1.4
1.2

0.g
0.6
0.4
0.2

Scaling Function Basis - Il

1=0

0.2

04 -, OF 0.g 1

1=2

D . o] — ! o .
P BT P R T PR R R Y PRI N T T T T T N T T

0.2

' \7 'K 0.6 0.8 1

3
2
1
0’
1
2
3

0.2 /4 06 0.8




	Multiresolution Solution of Non-linear Integral Eigen-problems in Electronic Structure
	The funding
	References
	Multiresolution chemistry objectives
	Molecular electronic Schrödinger equation
	“Independent” particle models
	Density functional theory (DFT)
	Integral Formulation
	Essential techniques for fast computation
	How to “think” multiresolution
	Scaling Function Basis
	Multiwavelet Basis
	Vanishing moments
	Truncation Error
	Iterative solution scheme – v1
	Iterative Solution v1
	Iterative Solver v1
	Water dimer LDA�aug-cc-pVTZ geometry, kcal/mol.
	Iterative Solver v2
	Iterative �Solver v2
	Electron correlation
	Conventional approach
	Multiresolution solver of two-electron Schrödinger equation
	Summary
	Separated form for integral operators
	Accurate Quadratures
	Current Capabilities
	Prototype code in use by …
	High-level composition using functions and operators
	New solver being developed
	1-D Example Sub-Tree Parallelism
	Next Generation Languages/Mechanisms
	Futures
	Recursive composition with Futures
	Analytic removal of cusp(s)
	Smoothed potential and wave function
	Smoothed interelectron potential
	Solve for the correlation correction to the HF wavefunction
	Preliminary �results� for He atom 
	Coulomb hole (He)
	Summary
	“Time-dependent” DFT
	Low Separation Rank Representation
	Putting it all together – �A path to O(N) exact MP2
	Characteristics of H and P
	Shotglass (not yet the holy grail)
	Efficient representation of the density matrix and Green’s Function
	The Resolvent has low separation rank
	Density matrix form of MP2
	The KS Green’s Function
	Summary
	Linear Combination of Atomic Orbitals (LCAO)
	LCAO
	Scaling Function Basis - III

