Reduction of nonlinear eigenproblems with JD

Henk van der Vorst

H.A.vanderVorst@math.uu.nl

Mathematical Institute Utrecht University

Universiteit Utrecht

Outline

Polynomial Eigenproblems

 $(\lambda^{\ell}C_{\ell} + \cdots \lambda C_1 + C_0)x = 0)$ or $\psi(\lambda)x = 0$

For examples: quadratic eigenproblems

- Reduction to standard problem
- Newton for Rayleigh quotient
- Jacobi Davidson approach Alternatives for Rayleigh quotient

Classical: Reduction

From $(\lambda^2 M + \lambda C + K)x = 0$

To
$$Az = \lambda Bz$$

with $A = \begin{pmatrix} 0 & I \\ -K & -C \end{pmatrix}$ $B = \begin{pmatrix} I & 0 \\ 0 & M \end{pmatrix}$ $z = \begin{pmatrix} x \\ \lambda x \end{pmatrix}$

and then $B^{-1}Az = \lambda z$

Problems:

- matrices twice as big
- how to select wanted solutions?
- inversion of ${\boldsymbol{B}}$

Classical: Newton for RQ

 $x^*\psi(\lambda)x = 0$

 $\lambda^2(x^*Mx) + \lambda(x^*Cx) + x^*Kx = 0$

Two roots; one useful, one spurious In subspace methods: approximations How to select?

Universiteit Utrecht

Jacobi-Davidson

the basic ideas for $Ax = \lambda x$:

Given some subspace $V_m = \{v_1, ..., v_m\}$ (orthonormal) Determine approximations $z = V_m s$, θ such that $AV_m s - \theta V_m s \perp \{v_1, ..., v_m\}$ or $V_m^* AV_m s = \theta s$

heta is Rayleigh quotient for V_ms

Jacobi-Davidson (2)

 $\begin{array}{l} \theta, s \text{ eigenpair of } V_m^*AV_m\\ \text{Select proper eigenpair}\\ \text{Determine } t \perp s \text{ such that}\\ A(s+t) = \lambda(s+t)\\ \text{t satisfies:}\\ (1-ss^*)(A-\lambda I)(I-ss^*)t = -(AV_ms-\theta V_ms)\\ \text{Replace } \lambda \text{ by } \theta\\ \text{Solve (approximately) for } t \text{ and expand } V_m \text{ with } t \end{array}$

Other viewpoint

$$Ax=\lambda x$$
 , Let $\theta=y^*Ay$ with $y^*y=1$

write $x=y+\Delta y$, $\Delta y\perp y$, $\lambda=\theta+\Delta\theta$

Ignore quadratic terms

Then

$$(I - yy^*)(A - \theta I)(I - yy^*)\Delta y = -r$$
 with $r = Ay - \theta y$

Newton method; quadratic convergence

Nonlinear eigenproblems

Similar Newton approach for Rayleigh quotient:

 $x^*\psi(\lambda)x = 0$

leads to the projected problem:

 $V_m^*\psi(\theta)V_ms=0$

 V_m is expanded with approximate $t\perp y=V_ms$ from

 $(I - \frac{py^*}{y^*p})\psi(\theta)(I - yy^*)t = -\psi(\theta)y$ with $p = \psi'(\theta)y$

for this choice of p: quadratic convergence

QEP

Expansion of subspace with

 $(I - \frac{\partial F}{\partial T})(A + \theta B + \theta^{2}C)(I - gg^{*})t = -(Ag + \theta Bg + \theta^{2}C)t$ $V_{m} \text{ is expanded with } t$ New s and θ from: $W_{m}^{*}AV_{m}s + \theta V_{m}^{*}BV_{m}s + \theta^{2}V_{m}^{*}CV_{m}s = 0$ Problem: selection of proper θ and sRayleigh quotient has two solutions for θ

Example from acoustics

$Ax + \lambda Bx + \lambda^2 Cx = 0$

A, C 19 nonzero's per row, B complex, n=136161

Results for interior isolated eigenvalue on CRAY T3D

e

Processors	Elapsed tim
16	206.4
32	101.3
64	52.1

one (sparse) matrix inversion takes about $5\ {\rm minutes}$ on $64\ {\rm processors}$ when at peak performance

Rayleigh Quotient for QEP

Work with Hochstenbach

With y an approximation for eigenvector:

 $(A+\theta B+\theta^2 C)y\perp y$

Hence $\alpha\theta^2 + \beta\theta + \gamma = 0$

 $\alpha = y^*Cy$, $\beta = y^*By$, $\gamma = y^*Ay$

For y close to eigenvector: One θ meaningful

Decision based on value of $||(A + \theta B + \theta^2 C)y||_2$

If y not accurate: difficult to decide

Inaccurate approximations

Situation occurs in subspace methods

Rayleigh quotient for standard eigenproblem is accurate:

First order perturbation in eigenvector gives second order perturbation in Rayleigh quotient For QEP: if $\beta^2 - 4\alpha\gamma$ is small then both solutions for θ are very sensitive for perturbations in *y* QEP (and higher order) offer more possibilities for eigenvalue approximations

Alternatives for RQ

For standard problem Ay and y θ follows from projecting Ay onto yFor CEP three vectors: Ay, By, and CyForm asymptotically one plane

Consider projection of these vectors on plane $\{p,q\}$ with p,q combinations of the three vectors Consider generalized residual $r = (\mu C + \nu B + A)y$ $\mu \approx \lambda^2, \nu \approx \lambda$ Hence μ/ν and ν both approximations for λ

Universiteit Utrecht

Alternatives for RQ (2)

Galerkin conditions for
$$\{p,q\}$$
: $r \perp p$ and $r \perp p$
 $[p \ q]^*[Ay \ By] \begin{pmatrix} \mu \\ \nu \end{pmatrix} = -[p \ q]^*Cy$

Good choices for p, q: two largest left singular vectors of $\begin{bmatrix} Cy & By & Ay \end{bmatrix}$ $\frac{\delta\mu/\nu}{\delta y}(x) = \frac{1}{\lambda} \frac{\delta\mu}{\delta y}(x) - \frac{\delta\nu}{\delta y}(x)$

This suggests:

If θ is small then ν may be better otherwise μ/nu also good candidate quality judged by residual

Example

Results for randomly generated A, B, c, n = 100

Method	Approx	error	r
1-dim Gal	7.218 + 2.738i	0.0428	0.307
2-dim Gal	7.230 + 2.769i	0.0110	0.290
2-dim ν	7.189 + 2.800i	0.0445	0.329

for situation with small discriminant

Method	Approx	error	
1-dim Gal	1.0117 - 0.0444i	0.0444	0.0431
2-dim Gal	1.0076 - 0.0025i	0.0034	0.0034
2-dim ν	1.0095 - 0.0014i	0.0015	0.0027

Relevant references

SIAM Templates for Eigenproblems

Hochstenbach and VDV

SIAM J. Sci. Comput., 25(2), p. 591-603, 2003

