
Reduction of nonlinear eigenproblems with JD

Henk van der Vorst

H.A.vanderVorst@math.uu.nl

Mathematical Institute

Utrecht University

July 13, 2005, SIAM Annual New Orleans – p.1/16

http://www.math.uu.nl/people/vorst


Outline

Polynomial Eigenproblems

(λℓCℓ + · · ·λC1 + C0)x = 0)

or ψ(λ)x = 0

For examples: quadratic eigenproblems

- Reduction to standard problem

- Newton for Rayleigh quotient

Jacobi Davidson approach

Alternatives for Rayleigh quotient
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Classical: Reduction

From (λ2M + λC +K)x = 0

To Az = λBz

with A =

(

0 I

−K −C

)

B =

(

I 0

0 M

)

z =

(

x

λx

)

and then B−1Az = λz

Problems:

- matrices twice as big

- how to select wanted solutions?

- inversion of B
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Classical: Newton for RQ

x∗ψ(λ)x = 0

λ2(x∗Mx) + λ(x∗Cx) + x∗Kx = 0

Two roots; one useful, one spurious

In subspace methods: approximations

How to select?
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Jacobi-Davidson

the basic ideas for Ax = λx:

Given some subspace Vm = {v1, ..., vm} (orthonormal)

Determine approximations z = Vms, θ such that

AVms− θVms ⊥ {v1, ..., vm}

or V ∗
mAVms = θs

θ is Rayleigh quotient for Vms
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Jacobi-Davidson (2)

θ, s eigenpair of V ∗
mAVm

Select proper eigenpair

Determine t ⊥ s such that

A(s+ t) = λ(s+ t)

t satisfies:

(1 − ss∗)(A− λI)(I − ss∗)t = −(AVms− θVms)

Replace λ by θ

Solve (approximately) for t and expand Vm with t
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Other viewpoint

Ax = λx, Let θ = y∗Ay with y∗y = 1

write x = y + ∆y, ∆y ⊥ y, λ = θ + ∆θ

Ignore quadratic terms

Then

(I − yy∗)(A− θI)(I − yy∗)∆y = −r

with r = Ay − θy

Newton method; quadratic convergence
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Nonlinear eigenproblems

Similar Newton approach for Rayleigh quotient:

x∗ψ(λ)x = 0

leads to the projected problem:

V ∗
mψ(θ)Vms = 0

Vm is expanded with approximate t ⊥ y = Vms from

(I − py∗

y∗p)ψ(θ)(I − yy∗)t = −ψ(θ)y

with p = ψ′(θ)y

for this choice of p: quadratic convergence
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QEP

Expansion of subspace with

(I − py∗

y∗p)(A+ θB + θ2C)(I − yy∗)t = −(Ay + θBy + θ2Cy)

Vm is expanded with t

New s and θ from:

W ∗
mAVms+ θV ∗

mBVms+ θ2V ∗
mCVms = 0

Problem: selection of proper θ and s

Rayleigh quotient has two solutions for θ
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Example from acoustics

Ax+ λBx+ λ2Cx = 0

A,C 19 nonzero’s per row, B complex, n = 136161

Results for interior isolated eigenvalue on CRAY T3D

Processors Elapsed time

16 206.4

32 101.3

64 52.1

one (sparse) matrix inversion takes about 5 minutes

on 64 processors when at peak performance

July 13, 2005, SIAM Annual New Orleans – p.10/16



Rayleigh Quotient for QEP

Work with Hochstenbach

With y an approximation for eigenvector:

(A+ θB + θ2C)y ⊥ y

Hence αθ2 + βθ + γ = 0

α = y∗Cy, β = y∗By, γ = y∗Ay

For y close to eigenvector: One θ meaningful

Decision based on value of ||(A+ θB + θ2C)y||2

If y not accurate: difficult to decide
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Inaccurate approximations

Situation occurs in subspace methods

Rayleigh quotient for standard eigenproblem is accurate:

First order perturbation in eigenvector gives second

order perturbation in Rayleigh quotient

For QEP: if β2 − 4αγ is small then both solutions for θ

are very sensitive for perturbations in y

QEP (and higher order) offer more possibilities for eigenva lue approximations
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Alternatives for RQ

For standard problem Ay and y

θ follows from projecting Ay onto y

For QEP three vectors: Ay, By, and Cy

Form asymptotically one plane

Consider projection of these vectors on plane {p, q}

with p, q combinations of the three vectors

Consider generalized residual r = (µC + νB + A)y

µ ≈ λ2, ν ≈ λ

Hence µ/ν and ν both approximations for λ
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Alternatives for RQ (2)

Galerkin conditions for {p, q}: r ⊥ p and r ⊥ q

[p q]∗[Ay By]

(

µ

ν

)

= −[p q]∗Cy

Good choices for p, q: two largest left singular vectors of [Cy By Ay]
δµ/ν
δy (x) = 1

λ
δµ
δy (x) − δν

δy (x)

This suggests:

If θ is small then ν may be better

otherwise µ/nu also good candidate

quality judged by residual
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Example

Results for randomly generated A, B, c, n = 100

Method Approx error ‖|r‖

1-dim Gal 7.218 + 2.738i 0.0428 0.307

2-dim Gal 7.230 + 2.769i 0.0110 0.290

2-dim ν 7.189 + 2.800i 0.0445 0.329

for situation with small discriminant

Method Approx error ‖|r‖

1-dim Gal 1.0117 − 0.0444i 0.0444 0.0431

2-dim Gal 1.0076 − 0.0025i 0.0034 0.0034

2-dim ν 1.0095 − 0.0014i 0.0015 0.0027
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Relevant references

SIAM Templates for Eigenproblems

Hochstenbach and VDV

SIAM J. Sci. Comput., 25(2), p. 591-603, 2003
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