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Nonlinear eigenvalue problems

Nonlinear eigenvalue problems

Let D ⊂ C be an open set (maybe unbounded), and let T (λ) ∈ Cn×n, λ ∈ D be
a family of matrices.

Find λ ∈ D and x 6= 0 such that

T (λ)x = 0.

Then λ is called an eigenvalue of T (·), and x a corresponding eigenvector.

Problems of this type arise in vibrations of conservative gyroscopic systems,
damped vibrations of structures, problems with retarded argument, lateral
buckling problems, fluid-solid vibrations, quantum dot heterostructures, and
sandwich plates, e.g.
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Nonlinear eigenvalue problems

Example 1: Quantum dots

Semiconductor nanostructures have attracted tremendous interest in the past
few years because of their special physical properties and their potential for
applications in micro– and optoelectronic devices.

In such nanostructures, the free carriers are confined to a small region of
space by potential barriers, and if the size of this region is less than the
electron wavelength, the electronic states become quantized at discrete
energy levels.

The ultimate limit of low dimensional structures is the quantum dot, in which
the carriers are confined in all three directions, thus reducing the degrees of
freedom to zero.
Therefore, a quantum dot can be thought of as an artificial atom.
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Nonlinear eigenvalue problems

Quantum dots ct.

DER SPIEGEL, March 14, 2005
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Nonlinear eigenvalue problems

Quantum dots ct.

Determine relevant energy states (i.e. eigenvalues) and corresponding wave
functions (i.e. eigenfunctions) of a three-dimensional quantum dot embedded
in a matrix.
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Nonlinear eigenvalue problems

Schrödinger equation

−∇ ·
(

~2

2m(x , λ)
∇u

)
+ V (x)u = λu, x ∈ Ω1 ∪ Ω2

where ~ is the reduced Planck constant,

m(x , λ) =

{
1

m1(λ) , x ∈ Ω1
1

m2(λ) , x ∈ Ω2
V (x) =

{
0, x ∈ Ω1

V2, x ∈ Ω2

1
mj(λ)

=
P2

j

~2

(
2

λ + gj − Vj
+

1
λ + gj − Vj + δj

)
where mj is the electron effective mass, Vj the confinement potential, Pj the
momentum, gj the main energy gap, and δj the spin-orbit splitting in the j th
region.
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Nonlinear eigenvalue problems

Quantum dot ct.

Boundary and interface conditions

u = 0 on outer boundary of matrix Ω1

BenDaniel–Duke condition
1

m2

∂u
∂n

∣∣∣∣
∂Ω2

=
1

m1

∂u
∂n

∣∣∣∣
∂Ω1

on interface

Variational form

Find λ ∈ R and u ∈ H1
0 (Ω1 ∪ Ω2), u 6= 0, such that

a(u, v ;λ) :=
1

m1(λ)

∫
Ω1

∇u∇v dx +
1

m2(λ)

∫
Ω2

∇u∇v dx + V2

∫
Ω2

uv dx

= λ

∫
Ω1∪Ω2

uv dx =: λb(u, v) for every v ∈ H1
0 (Ω1 ∪ Ω2)

Discretization (FEM, FVM) → rational matrix eigenvalue problem
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Iterative projection methods

Iterative projection methods

For linear sparse eigenproblems

T (λ) = λB − A

very efficient methods are iterative projection methods (Lanczos, Arnoldi,
Jacobi–Davidson method, e.g.), where approximations to the wanted
eigenvalues and eigenvectors are obtained from projections of the
eigenproblem to subspaces of small dimension which are expanded in the
course of the algorithm.

Essentially two types of methods are in use:

methods which project the problem to a sequence of Krylov spaces
like Lanczos or Arnoldi, and

methods which aim at a specific eigenpair like
the Jacobi–Davidson method.
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Iterative projection methods

Generalizations to nonlinear sparse eigenproblems

nonlinear rational Krylov: Ruhe (2000,2005), Hager (2001)
Regula falsi for the nonlinear problem and Arnoldi for the linear problem
are knit together to form a sequence of subspaces Vk ∈ Cn and
corresponding Hessenberg matrices Hk which approximate the projection
of T (σ)−1T (λk ) on Vk for some shift σ close to the wanted eigenvalues.

Can be interpreted as projection method for T (σ)−1T (λ) (Jarlebring, V.
(2003)) .

Arnoldi method: V. (2003, 2004); quadratic probl.: Meerbergen (2001)

Jacobi-Davidson: Betcke, V. (2002), Schwetlick (2005)
polynomial problems: Sleijpen, Boten, Fokkema, van der Vorst (1996),
Hwang, Lin, Wang, Wang (2003,2004)
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Iterative projection methods

Expanding the subspace

Given subspace V ⊂ Cn . Expand V by a direction with high approximation
potential for the next wanted eigenvector.

Let θ be an eigenvalue of the projected problem

V HT (λ)Vy = 0

and x = Vy corresponding Ritz vector, then inverse iteration yields
suitable candidate

v := T (θ)−1T ′(θ)x

BUT: In each step have to solve large linear system with varying matrix
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Iterative projection methods

Way out: Residual inverse It.

1: start with an approximation x1 to an eigenvector of T (λ)x = 0
2: for ` = 1, 2, . . . until convergence do
3: solve eHT (σ)−1T (µ`+1)x` = 0 for µ`+1

4: compute the residual r` = T (µ`+1)x`

5: solve T (σ)d` = r`
6: set x`+1 = x` − d`, x`+1 = x`+1/‖x`+1‖
7: end for

Theorem (Neumaier 1985)

Let T (λ) be twice continously differentiable. Assume that λ̂ is a simple
eigenvalue of T (λ)x = 0, and let x̂ be a corresponding eigenvector
normalized by ‖x̂‖ = 1. Then the residual inverse iteration converges for all σ
sufficently close to λ̂, and it holds

‖x`+1 − x̂‖
‖x` − x̂‖

= O(|σ − λ̂|), and |λ`+1 − λ̂| = O(‖x` − x̂‖).
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Iterative projection methods

Arnoldi method

If θ is an eigenvalue of the projected problem V HT (λ)Vy = 0 and x̃ = Vỹ is a
corresponding Ritz vector, then expand V by new direction

v = x̃ − T (σ)−1T (θ)x̃

In projection methods the new direction is orthonormalized against the
previous ansatz vectors. Since the Ritz vector x̃ is contained in span V we
expand V by

v = T (σ)−1T (θ)x̃ .

For the linear problem T (λ) = λI − A this is exactly the Cayley transformation
or shifted-and-inverted Arnoldi method.

If the linear system T (σ)v = T (θ)x̃ is too expensive to solve for v we may
choose as new direction v = MT (λ)x̃ with M ≈ T (σ)−1, and for the linear
problem we obtain the preconditioned Arnoldi method.

Therefore the resulting iterative projection method is called nonlinear Arnoldi
method
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Iterative projection methods

Nonlinear Arnoldi Method

1: start with initial basis V , V HV = I; set k = m = 1
2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: while m ≤ number of wanted eigenvalues do
4: solve V HT (µ)Vy = 0 for (µ, y) and set u = Vy , rk = T (µ)u
5: if ‖rk‖/‖u‖ < ε then
6: Accept eigenpair λm = µ, xm = u,
7: if m == number of wanted eigenvalues then STOP end if
8: m = m + 1
9: if (k > 1) & (‖rk−1‖/‖rk‖ > tol) then

10: choose new pole σ, determine preconditioner M ≈ T (σ)−1

11: end if
12: restart if necessary
13: Choose approximations µ and u to next eigenvalue and eigenvector
14: determine r = T (µ)u and set k = 0
15: end if
16: v = Mr , k = k + 1
17: v = v − VV Hv ,ṽ = v/‖v‖, V = [V , ṽ ] and reorthogonalize if necessary
18: end while
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Iterative projection methods

Second Way out: Jacobi–Davidson

Solve (approxemately) the correction equation

(I − T ′(θ)xxT

xT T ′(θ)x
)T (θ)(I − xxT )t = −r , t⊥x

where (x , θ) is the current Ritz pair and r = T (θ)x .

If the correction equation is solved exactly, then

T (θ)t − αT ′(θ)x = −r

where α is chosen such that t ⊥ x . Solving for t yields

t = −x + αT (θ)−1T ′(θ)x .

Since x = Vy for some y , and t is orthogonalized against V the expansion by
t is equivalent to the expansion by inverse iteration.
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Iterative projection methods

Solving correction equation

The correction equation is solved approximately by a few steps of an iterative
solver (GMRES or BiCGStab).

The operator T (σ) is restricted to map the subspace x⊥ into itself. Hence, if
M ≈ T (σ) is a preconditioner of T (σ), σ ≈ θ, then a preconditioner for an
iterativ solver of the correction equation should be modified correspondingly to

M̃ := (I − T ′(θ)uuH

xHT (θ)u
)M(I − uuH

uHu
).

Taking into account the projectors in the preconditioner, i.e. using M̃ instead of
M, raises the cost of the preconditioned Krylov solver only slightly (cf.
Sleijpen, van der Vorst). Only one additional linear solve with system matrix M
is required.
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Iterative projection methods

Variant of Hwang, Lin, Wang, Wang (2004)

Solve (
I − T ′(θ)uuH

uHT ′(θ)u

)
T (θ)

(
I − uuH

uHu

)
t = −r , t ⊥ u

approximately

M

by computing

t = M−1r + αM−1T ′(θ)u with α :=
uHM−1r

uHM−1T ′(θ)u

where M is a preconditioner of T (θ).

Method combines preconditioned Arnoldi method (M−1r ) and simplified
inverse iteration (M−1T ′(θ)u)

TUHH Heinrich Voss Iterative projection methods New Orleans 2005 17 / 33



Iterative projection methods

Variant of Hwang, Lin, Wang, Wang (2004)

Solve (
I − T ′(θ)uuH

uHT ′(θ)u

)
T (θ)

(
I − uuH

uHu

)
t = −r , t ⊥ u

approximately

M

by computing

t = M−1r + αM−1T ′(θ)u with α :=
uHM−1r

uHM−1T ′(θ)u

where M is a preconditioner of T (θ).

Method combines preconditioned Arnoldi method (M−1r ) and simplified
inverse iteration (M−1T ′(θ)u)

TUHH Heinrich Voss Iterative projection methods New Orleans 2005 17 / 33



Iterative projection methods

Variant of Hwang, Lin, Wang, Wang (2004)

Solve (
I − T ′(θ)uuH

uHT ′(θ)u

)
T (θ)

(
I − uuH

uHu

)
t = −r , t ⊥ u

approximately

M

by computing

t = M−1r + αM−1T ′(θ)u with α :=
uHM−1r

uHM−1T ′(θ)u

where M is a preconditioner of T (θ).

Method combines preconditioned Arnoldi method (M−1r ) and simplified
inverse iteration (M−1T ′(θ)u)
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Iterative projection methods

Primal-Dual JD Update: Schwetlick (2005)

Given: triplet (u, v , θ), s.t. ‖u‖ = ‖v‖ = 1, vHT (θ)u = 0

Step: (u, v , θ) 7→ (u+, v+, θ+)

solve (I − vvH)T (θ)(I − uuH)s = −T (θ)u, uHs = 0

solve (I − uuH)T (θ)H(I − vvH)t = −T (θ)Hv , vH t = 0

set u+ = (u + s)/‖u + s‖, v+ = (v + t)/‖v + t‖
determine θ+ from vH

+ T (θ+)u+ = 0

Experience of Schwetlick: If Standard JD works, then it is faster than P-D JD;
if vHT ′(θ)u is small then P-D JD is more robust than Standard JD
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Iterative projection methods

Primal-Dual JD

Given orthogonal bases V and U of left and right search spaces, and left and
right approximate eigenvectors v ∈ span(V ) and u ∈ span(U), and
approximate eigenvalue θ s.t. vHT (θ)u = 0

Solve (approximately)

(I − vvH)T (θ)(I − uuH)s = −T (θ)u, s ⊥ u

(I − uuH)T (θ)H(I − vvH)t = −T (θ)Hv , t ⊥ v

Expand search spaces V ← [V , t ], U ← [U, s]

Solve
V HT (θ)Us = 0 and UHT (θ)HVt = 0 for (s, t , θ)

and set
u = Us and v = Vt .
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Minmax characterization

Locking of converged eigenvectors

A major problem with iterative projection methods for nonlinear eigenproblems
when approximating more than one eigenvalue is to inhibit the method from
converging to an eigenpair which was detected already previously.

linear problems: (incomplete) Schur decomposition

quadratic problems: Meerbergen (2001) based on linearization and
Schur form of linearized problem (lock 2 vectors in each step)

cubic problem: Hwang, Lin, Liu, Wang (2005) based on linearization

Approach of Hwang et al. can be generalized directly to general problems
if all eigenvalues of projected problems are determined

for Hermitean problems one can often take advantage of a variational
characterization of eigenvalues
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Minmax characterization

Nonlinear minmax theory

Let T (λ) ∈ Cn×n, T (λ) = T (λ)H , λ ∈ J ⊂ R an open interval. Assume that

f :

{
J × Cn → R
(λ, x) 7→ xHT (λ)x

is continuously differentiable, and that for every fixed x ∈ Cn, x 6= 0 the real
equation

f (λ, x) = 0

has at most one solution λ =: p(x) in J.

Then equation f (λ, x) = 0 implicitly defines a functional p on some subset D
of Cn which we call the Rayleigh functional. If D = Cn \ {0} then T (λ)x = 0 is
called overdamped.

Suppose that
xHT ′(p(x))x > 0 for every x ∈ D.

which generalizes the definiteness condition for linear eigenproblems.
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Minmax characterization

Enumeration of eigenvalues

If λ ∈ J is an eigenvalue of T (·) then θ = 0 is an eigenvalue of the linear
problem T (λ)y = θy , and therefore there exists ` ∈ N such that

0 = max
V∈H`

min
v∈V\{0}

vHT (λ)v
‖v‖2

where H` denotes the set of all `–dimensional subspaces of Rn.

In this case λ is called an `-th eigenvalue of T (·).
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Minmax characterization

Minmax characterization

Under the conditions given above it holds:

(i) For every ` ∈ N there is at most one `-th eigenvalue of T (·) which can be
characterized by

λ` = min
V∈H`

V∩D 6=∅

sup
v∈V∩D

p(v). (∗)

The set of eigenvalues of T (·) in J is at most countable.

(ii) If
λ` := inf

V∈H`
V∩D 6=∅

sup
v∈V∩D

p(v) ∈ J

for some ` ∈ N then λ` is the `-th eigenvalue of T (·) in J, and (*) holds.

(iii) If for µ < ν there exist a µ-th and a ν-th eigenvalue of T (·) in J, then for
` = µ, µ + 1, . . . , ν there is an `-th eigenvalue λ` ∈ J, and
λµ ≤ λµ+1 ≤ · · · ≤ λν .
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Minmax characterization

Safeguarded iteration

The minimum in
λ` = min

V∈H`
V∩D 6=∅

sup
v∈V∩D

p(v)

is attained by the invariant subspace of T (λ`) corresponding to the ` largest
eigenvalues, and the maximum by every eigenvector corresponding to the
eigenvalue 0. This suggests

Safeguarded iteration
1: Start with an approximation µ1 to the `-th eigenvalue of T (λ)x = 0
2: for k = 1, 2, . . . until convergence do
3: determine eigenvector u corresponding to the `-largest eigenvalue of

T (µk )
4: evaluate µk+1 = p(u)
5: end for

Convergence quadratic; global to the first eigenvalue, local to further
eigenvalues.
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Minmax characterization

Computing several eigenvalues

If T (λ) is a family of Hermitean matrices allowing a minmax characterization
of its eigenvalues in an open interval J, and if the columns of V ∈ Cn×k form a
basis of the current search space V, then the projeceted problem

TV (λ)y := V HT (λ)Vy = 0

inherits this property.

If J contains a first eigenvalue λ1 = minx∈D p(x) and V ∩ D 6= ∅ then the
safeguarded iterations converges globally to the first eigenvalue of the
projected problem.

Usually, while computing the m-th eigenvalue λm the algorithm gathers
enough information in the search space V about the next eigenvector to
compute λm+1 safely, and the eigenvalues in J can be computed one after the
other without determining the same eigenvalue repeatedly.
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Numerical example

Numerical example

pyramidal quantum dot: baselength: 12.4 nm, height: 6.2 nm
cubic matrix: 24.8× 24.8× 18.6 nm3

Parameters (Hwang, Lin, Wang, Wang 2004)
P1 = 0.8503, g1 = 0.42, δ1 = 0.48, V1 = 0.0
P2 = 0.8878, g2 = 1.52, δ2 = 0.34, V1 = 0.7

Discretization by FEM or FVM yields rational eigenproblem

T (λ)x = λMx − 1
m1(λ)

A1x − 1
m2(λ)

A2x − Bx = 0

where T (λ) is symmetric and satisfies conditions of minmax characterization
for λ ≥ 0

All timings for MATLAB 7.0.4 on AMD Opteron Processor 248× 860_64 with
2.2 GHz and 4 GB RAM
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Numerical example

Numerical example ct.

FVM: Hwang, Lin, Wang, Wang (2004)

dim λ1 λ2/3 λ4 λ5 CPU time
2′475 0.41195 0.58350 0.67945 0.70478 0.7 s

22′103 0.40166 0.57668 0.68418 0.69922 8.1 s
186′543 0.39878 0.57477 0.68516 0.69767 150.9 s

1′532′255 0.39804 0.57427 0.68539 0.69727 4017.7 s
12′419′775 0.39785 0.57415 overnight

FEM: Cubic Lagrangian elements on tetrahedal grid

dimension: 96’640 ((DofQD, Dofmat, Dofinterf) = (43′615, 43′897, 9′128)

dim λ1 λ2 λ3 λ4 λ5 CPU time
96′640 0.39779 0.57411 0.57411 0.68547 0.69714
Arnoldi 44 it. 29 it. 29 it. 24 it. 21 it. 188.8 s

JD 15 it. 9 it. 1 it. 7 it. 7 it. 204.4 s
HLWW 45 it. 49 it. 5 it. 24 it. 21 it. 226.7 s
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Numerical example

Convergence history
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Numerical example

Preconditioning

incomplete LU with cut-off threshold τ

τ JD Arnoldi HLWW precond.
0.1 261.4 1084.1 1212.4 3.4

0.01 132.7 117.1 155.7 71.7
0.001 118.9 61.2 96.0 246.6

0.0001 155.6 46.6 71.1 665.6

Eigenfunctions
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Numerical example

Example 2: Damped vibrations of a solid

Using a viscoelastic constitutive relation to describe the material behaviour in
the equations of motion yields a rational eigenvalue problem in the case of
free vibrations.

Discretizing by finite elements yields

T (ω)x :=
(
ω2M + K −

k∑
j=1

1
1 + bjω

∆Kj

)
x = 0

where M is the consistent mass matrix, K is the stiffness matrix with the
instantaneous elastic material parameters used in Hooke’s law, and ∆Kj

collects the contributions of damping from elements with relaxation parameter
bj .
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Numerical example

Nonproportional damping

FE model of feeder clamp
linear Lagrangean elements on tetrahedal
grid

dimension 193′617
nnz(K) 7′670′533
nnz(M) 2′557′851

Determine 30 eigenvalues with maximal neg-
ative imaginary part.
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Numerical example

Nonproportional damping ct.

Iterative projection methods

τ JD Arnoldi HLWW precond.
0.01 3276.6 no conv. no conv. 49.0

0.001 2077.5 5240.4 5559.9 141.4
0.0001 2067.5 945.4 1452.7 356.3
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Conclusions

Conclusions

Iterative projection methods of Arnoldi or Jacobi–Davidson type are
efficient for solving large nonlinear eigenproblems

Particular care is necessary to prevent the method from converging to the
same eigenvalue repeatedly

Taking advantage of symmetry properties and the minmax
characterization of its eigenvalues the projected eigenproblems of small
dimension can be solved efficiently by safeguarded iteration.

The Arnoldi method seems to be faster than the Jacobi–Davidson
method, if accurat preconditioners are available.

The Jacobi–Davidson method seems to be more robust concerning only
coarse preconditioners
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