
Solving Nonlinear Eigenvalue Problems in 
Electronic Structure Calculations

Chao Yang    Juan Meza    Lin-wang Wang
Computational Research Division
Lawrence Berkeley National Lab



Quantum Many-Body Problems

• contains all the information 
of the system;

• probability density of 
finding electrons at a certain 
state i.

• quantized energy of the 
system.

• 3N-coordinate space
• Manageable N

—< 3 for analytic calculations 
(e.g. H, He, etc.)

—O(10) for configuration 
interaction simulations

—O(100) for quantum Monte 
Carlo simulations

• N ≤ 100 for an atom or crystal; 
for nano-structures ~ (103 - 106)
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Reducing many-body problem to a (nonlinear) 
single-particle problem (Density Functional Theory)

• single particle wave functions

• n – real space grid size, e.g. 
323~32000

• k – number of occupied states, 
1-10% of n

• Charge density
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Etotal(X) = Ekinetic + Eionic + EHartree + Exc

The ground state density of an atomistic system can be 
found by minimizing a total energy functional with respect 
to single particle wave functions (Hohenberg, Kohn, Sham)
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Constrained Optimization

• Solve

• First order necessary (KKT) condition
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Nonlinear Eigenvalue Problem

• KKT condition (Kohn-Sham equation)

• The solution is not unique (look for an invariant 
subspace)
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The Self Consistent Field Iteration

• Input: initial guess       and
• Output: 

• Major steps

o For i=1,2,…,until converged 

1) Form

2) Compute k smallest eigpairs of 
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SCF Iteration

• Most widely used
• Does not always converge

—The objective Etotal(X(i)) does not always 
decrease

• Little convergence theory
— Fixed point iteration?

• Must solve a large-scale eigenvalue problem at 
each iteration
— Dense eigensolver (very expensive)
— Iterative solver: preconditioned conjugate 

gradient (accuracy, stopping criterion)
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Optimization Point of View

• True objective

• Gradient:

• Surrogate model

• Gradient:

• Ekinetic =

• Eionic =

• EHartree=

• Exc =
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SCF  minimizes a sequence of surrogate models



Geometry

SCF works SCF fails



Improving SCF

• Better Surrogate Model?
—Can’t afford to use local quadratic 

approximation (Hessian too expensive)

—Charge mixing or DIIS (H is a function of the 
charge density)

• Use Trust Region?
—TRSCF by Thogersen, Olsen, Yeager & 

Jorgensen (2004)
—Globally convergent trust-region by Francisco, 

J. Martinez & L. Martinez (2004)
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Direct Minimization

• Minimize the total energy directly
• Maintain the orthonormality constraint
• Search direction

—Gradient, conjugate gradient based approach
• Brendt & Zunger (1982)
• Gillan (1989)
• Payne, Teter, Allen, Arias & Jaoannopoulos (1992)
• Kresse & Furthmuller (1996)

—Quasi-Newton
• Edelman, Arias & Smith (1998)
• Voorhis & Head-Gordon (2002)

• Line search
—Re-parametrize
—Move along geodesic
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New Approach

• Conjugate Gradient-like scheme (no Hessian 
approximation)

• Block (“all band”) method
• Determine search direction and “step length” 

simultaneously
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Minimization within a Subspace

• Let 
• Solve

• Equivalent to solving
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DCM Algorithm
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For i=1,2,… until convergence
1. Form
2. Compute

3. If (i>1) then
• set

4. else
• set

5. Solve

6. Set 
7. If (i>1) then

• set
8. else

• set
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Solving the projected problem

• Use SCF
—No guarantee of convergence
—But full convergence may not be necessary, all 

we need is sufficient decrease in Etotal(YG)
• Constrained Quasi-Newton

—May be feasible due to the much smaller size 
of the problem

—Optimization on Grassman manifold (Edelman 
et al 1998, Van Vooris & Head-Gordon 2002)



Estimated Computational Complexity

• Outer iteration:
—Gradient calculation

• Inner iteration
—Update the Hamiltonian

• Overall:

• Outer iteration:
—Update the Hamiltonian

• Inner iteration:
—Gradient calculation

• Overall:

DCM SCF

k MATVECs/iter
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Numerical Example

• Atomistic system: SiH4
• Discretization: spectral method with plane wave 

basis: n=323 in real space, N=2103 (# of basis 
functions) in frequency space

• Number of occupied states: k = 4
• PETOT version of SCF uses 10 PCG steps (inner 

iterations) per outer iteration
• DCM: 3 inner iterations
• Compare the change of the objective function 

with respect to the number of MATVECs
performed & timing

• Parallelized using MPI on 16 IBM Power3 CPUS



Performance     
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Conclusion

• Nonlinear eigenvalue problem in electronic 
structure calculation should be solved as an 
optimization problem

• No need to solve linear eigenvalue problems to 
full accuracy in SCF

• SCF can be further improved (better surrogate 
model, trust region)

• DCM competitive with SCF (Reduced a large-
scale nonlinear minimization problem to a 
sequence of much smaller problems)

• Further research required to solve the small 
nonlinear problem efficiently
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