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What do electronic structure calculations, the design of MEMS devices, vibrational analysis of high-speed railways, and simulation of the
electromagnetic field of a particle accelerator have in common? Answer: All require the solution of large-scale nonlinear eigenvalue problems.
In fact, these are just a handful of areas in which accurate, efficient solutions of nonlinear eigenvalue problems are playing an increasingly
prominent role.

Recognizing the importance of this class of problems, the organizers of the 2005 SIAM Annual Meeting included an invited minisymposium
on nonlinear eigenvalue problems in the program. The two-part (eight-talk) minisymposium brought together numerical analysts and applica-
tion scientists; together, the sessions featured cutting-edge results from both communities, along with discussions of ongoing challenges.

Electronic Structure Calculations

The first three speakers discussed a nonlinear eigenvalue problem that arises in electronic structure calculations. In problems of this type, the
matrix Hamiltonian H depends, in a nontrivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigen-
vectors minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints.

The most widely used method for tackling the electronic structure problem is the self-consistent field (SCF) iteration. The method solves a
sequence of linear eigenvalue problems associated with the fixed Hamiltonian H(Xi), where Xi is the approximation to X obtained in the previ-
ous iteration. At convergence, the difference be-tween H(Xi) and H(Xi–1) is negligible, i.e., the eigenvectors associated with the desired eigen-
values of H(Xi) have become self-consistent. Convergence is not guaranteed, however, and, in fact, for many systems the SCF iteration fails to
converge.

Chao Yang, a staff scientist at Lawrence Berkeley National Laboratory, presented an alternative approach that he has developed with LBNL
colleagues Juan Meza and Ling-wang Wang. Their approach obtains the desired eigenvectors (see Figure 1) through a direct minimization of
the total energy function. The algorithm they use projects the total energy function into a sequence of subspaces of small dimensions. By min-
imizing the total energy function within each of these subspaces, they are able to avoid solving a
sequence of large linear eigenvalue problems. Minimizing the total energy function directly also
prevents some of the convergence problems encountered in SCF.

Robert Harrison, a computational chemist at Oak Ridge National Laboratory and the University
of Tennessee, Knoxville, and one of the original developers of the widely used chemistry package
NWChem, presented another novel approach to electronic structure calculation. The approach,
developed in collaboration with Gregory Beylkin of the University of Colorado, Boulder, and
George Fann of ORNL, reformulates the problem as an integral equation and avoids many of the
difficult numerical issues associated with the differential operator. In particular, the smallest eigen-
values of the differential operator become the largest eigenvalues of the integral operator (which
still depends nonlinearly on the eigenvectors to be computed). These eigenvalues tend to converge
more rapidly. Furthermore, because of the smooth and rapid decay of the Green’s function associ-
ated with the bound-state Helmholtz equation used in this formulation, the integral kernel can be
represented by a multi-wavelet basis. As a result, the convolution computation can be carried out
efficiently with special multi-resolution techniques.

For certain types of nanoscale structures, such as semiconductor pyramid quantum dots in
which the carriers are confined in all three dimensions, the electronic structure calculation can be
simplified to a rational eigenvalue problem in which the matrix Hamiltonian is a rational function
of the eigenvalues to be computed. Heinrich Voss of the Hamburg University of Technology, in
Germany, discussed new methods for solving such problems. In particular, he presented a nonlin-
ear Arnoldi algorithm, the Jacobi–Davidson (JD) algorithm, and a modified version of the JD algorithm. He compared the performance of these
approaches, and pointed out the need to take advantage of the minimax characterization of the nonlinear eigenvalue problem when symmetry is
present in the problem. Elaborating on Voss’s discussion of the JD algorithm in the solution of general nonlinear eigenvalue problems, Henk
Van der Vorst of Utrecht University, in the Netherlands, provided theoretical background as well as numerical examples in which the JD algo-
rithm was used to solve polynomial eigenvalue problems.

MEMS Devices

David Bindel, a graduate student at the University of California, Berkeley, presented a new approach for solving a complex symmetric quad-
ratic eigenvalue problem arising in the simulation of resonance in microelectronic mechanical systems (MEMS). High-frequency electro-
mechanical resonators are important components of modern communication systems, such as radiofrequency ID tags and cell phones. With
recent progress in surface micromachining technology, it is possible that, in the near future, we will have “Dick Tracy” phones that are smaller
and require less power than today’s cell phones.

From Self-Consistency to SOAR:
Solving Large-Scale Nonlinear Eigenvalue Problems

Figure 1. Isosurface rendering of an eigen-
vector associated with an eigenvalue in the
conducting band of a silicon quantum dot.
The larger and darker balls in the figure cor-
respond to silicon atoms. The smaller and
lighter balls correspond to hydrogen atoms.
Image courtesy of Lin-wang Wang of LBNL.



For these designs to work, it is necessary to minimize the amount of damping in the resonating
components. While engineers have several tools for estimating the resonant frequencies of these
devices, they have far fewer tools for estimating
damping. Calculations of the damped resonances
of such coupled-domain devices typically in-
volve nonlinear eigenvalue problems with a vari-
ety of special structures. (See Figure 2.)

Preserving Special Matrix Structures

In the second session, Christian Mehl of
Technical University of Berlin, Germany, des-
cribed numerical techniques for solving a special
type of polynomial eigenvalue problem arising in
the vibration analysis of rail tracks excited by
high-speed trains. This problem—also highlight-
ed in the invited talk given at the meeting by
Volker Mehrmann, also of TU Berlin—was des-
cribed in the article “Accurate Eigenvalues for Fast Trains” by Ilse Ipsen in the November 2004 issue of SIAM News.

Yangfeng Su of Fudan University, China, presented a structure-preserving method for computing eigenvalues of skew-Hamilton-ian/
Hamiltonian (SHH) pencils. Eigenvalue problems of this type arise in the passivity analysis of VLSI circuits and from complex gyroscopic quad-
ratic eigenvalue problems. Lie-quan Lee, a computational scientist at the Stanford Linear Accelerator Center, discussed nonlinear eigenvalue
problems encountered by designers of accelerator cavities; this project is funded by the U.S. Department of Energy’s Scientific Dis-
covery through Advanced Computing program.

These three talks had a common theme: Many nonlinear eigenvalue problems possess special matrix structures and spectral properties. The
polynomial eigenvalue problems that come up in the rail track vibrational analysis, for example, are known as palindromic eigenvalue problems
because of the symmetric pattern of the polynomial. As a result, eigenvalues appear in a reciprocal pair, i.e., if λ is an eigenvalue, so is λ–1.

Although some of these problems can be reduced or transformed into equivalent linear eigenvalue problems, applying the standard algorithm
to the linear problem often destroys the special properties of the eigenvalues associated with the
original nonlinear problem. There is thus a need for numerical algorithms that can preserve the
structures of the original problems and desired eigenvalues. Mehl discussed a combination of a
Jacobi-like algorithm and a technique developed for computing the Hamiltonian–Schur form to
solve palindromic eigenvalue problems. Su presented a novel method that projects the eigenprob-
lem of SHH pencils onto a special pair of subspaces in order to preserve the SHH pencil structure.

Lee described the use of SLAC’s Omega3P package for simulating the design of an accelerator
cavity with external coupling. The package solves a quadratic eigenvalue problem by a second-
order Arnoldi (SOAR) method, recently proposed by Zhaojun Bai and Yangfeng Su (SIAM Jour-
nal on Matrix Analysis and Applications, Vol. 26, No. 3, 2005), and the fully nonlinear problem
by self-consistent iteration (SCI). The case of a single external coupling is illustrated by the Linac
Coherent Light Source RF-gun cavity (Figure 3). The Omega3P computation requires two hours
on 256 CPUs of an IBM SP3 computer at the National Energy Research Scientific Computing
Center. The computation requires 400 gigabytes of memory, and the quadratic eigenvalue problem
has about 3.2 million degrees of freedom. Lee presented simulation results for the international
linear collider (Figure 4) with waveguide coupling of two types. To improve the solver efficiency,
he pointed out, more research is needed to clarify the underlying structure of onlinear eigenvalue
problems of this type.

The minisymposium on nonlinear eigenvalue
problems elicited great interest and enthusiasm
among both numerical analysts and application
scientists at the SIAM meeting. It was evident
from the talks that the rapid growth in computing
power and the advances in numerical algorithms
have enabled application scientists and industrial

practitioners to introduce additional complexity in their computational models to account for more complex and nonlinear phenomena.
As computational tools for solving linear eigenvalue problems become mature, the research focus of the eigenvalue computation community

is gradually shifting toward the development of methodologies for dealing with nonlinearity. Among the challenges confronting numerical ana-
lysts are not only standard convergence issues, but also the need for new algorithms that are capable of preserving structures of the eigenvalue
problems.

Zhaojun Bai, a professor in the Departments of Computer Science and Mathematics at the University of California, Davis, and Chao Yang,
a staff scientist in the Computational Research Division at Lawrence Berkeley National Laboratory, organized the two-part minisymposium on
nonlinear eigenvalue problems. The presentations can be found at http://www.cs.ucdavis.edu/~bai/SIAMAN05.

Figure 2. Cutaway schematic (left) and SEM picture (right) of a micromachined disk resonator.
Through modulated electrostatic attraction between a disk and a surrounding ring of elec-
trodes, the disk is driven into mechanical resonance. Because the disk is anchored to a silicon
wafer, energy leaks from the disk to the substrate, from which it radiates away as elastic
waves. To study this energy loss, David Bindel has constructed finite element models in which
the substrate is modeled by a perfectly matched absorbing layer. Resonance poles are approx-
imated by eigenvalues of a large, sparse complex-symmetric matrix pencil. For more details,
see D.S. Bindel and S. Govindjee, “Anchor Loss Simulation in Resonators,” International
Journal for Numerical Methods in Engineering, Vol. 64, No. 6, 2005. Resonator micrograph
courtesy of Emmanuel Quevy.

Figure 3. Omega3P model of the Linac
Coherent Light Source radiofrequency cavity.
Courtesy of the Advanced Computation
Department, SLAC.

Figure 4. Partitioned mesh of the International Linear Collider superstructure, which consists
of two accelerator cavities with power and higher-order-mode couplers. Courtesy of the
Advanced Computation Department, SLAC.


