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Abstract—Some scientific and engineering applications need
to compute a large number of eigenpairs of a large Hermitian
matrix. Though the Lanczos method is effective for computing a
few eigenvalues, it can be expensive for computing a large number
of eigenpairs (e.g., in terms of computation and communication).
To improve the performance of the method, in this paper,
we study an s-step variant of thick-restart Lanczos (TRLan)
combined with an explicit external deflation (EED). The s-step
method generates a set of s basis vectors at a time and reduces
the communication costs of generating the basis vectors. We then
design a specialized matrix powers kernel (MPK) that reduces
both the communication and computational costs by taking
advantage of the special properties of the deflation matrix. We
conducted numerical experiments of the new TRLan eigensolver
using synthetic matrices and matrices from electronic structure
calculations. The performance results on the Cori supercomputer
at the National Energy Research Scientific Computing Center
(NERSC) demonstrate the potential of the specialized MPK to
significantly reduce the execution time of the TRLan eigensolver.
The speedups of up to 3.1× and 5.3× were obtained in our
sequential and parallel runs, respectively.

I. INTRODUCTION

The Lanczos method [1] is based on the Krylov subspace
projection and is effective for computing a few exterior
eigenvalues and their corresponding eigenvectors of a large
Hermitian matrix. However, the computational cost of the
method grows quickly with the number of the eigenvalues to
be computed. As a result, when a large number of eigenvalues
is needed, the method could become expensive. Moreover, in
order to maintain the numerical stability of computing many
eigenvalues, the method must be carefully implemented.

To improve the performance of the Lanczos method for
computing a large number of eigenpairs, in this paper, we first
combine thick-restart Lanczos (TRLan) [14] with the explicit
external deflation (EED) [2]. We show that EED provides
additional flexibility to the solver and may greatly improve
the solver performance for computing the eigenpairs to a user-
specified accuracy.

We then develop an s-step variant [3], [4] of TRLan
combined with EED to improve the performance of its main
computational kernel (the generation of the projection sub-
space). The s-step variant uses the matrix powers kernel
(MPK) that generates a set of s basis vectors at a time by
multiplying an input vector with a sparse matrix plus a low-
rank matrix s times. Thus, MPK has the potential to reduce
the communication cost of generating the basis vectors by
a factor of s. We also design a specialized MPK that takes

advantage of the special properties of our low-rank matrix
(i.e., they consist of the computed eigenvectors) and reduces
both the communication and computational costs of generating
the basis vectors, while maintaining the numerical stability
under certain assumptions. On modern computers, the com-
munication cost, which includes moving the data between the
parallel processing units as well as between the levels of the
local memory hierarchy, has become significantly more expen-
sive compared with the computation. Consequently, reducing
communication could significantly improve the performance.

The main contributions of the paper are: (1) we show the
flexibility of EED to improve the performance of the Lanczos
method while maintaining its numerical stability, (2) for the
s-step variant to generate the set of basis vectors, we describe
three different MPK algorithms (standard, blocking cover,
and specialized), where the second algorithm reduces the
communication cost of the standard MPK, while the third
algorithm reduces both the communication and computational
costs, and (3) we compare the performance and numerical
stability of the three MPKs on the Cori supercomputer at
the National Energy Scientific Computing Center (NERSC).
The performance results demonstrate the potential of the s-
step variant to significantly reduce the execution time of the
TRLan eigensolver. The speedups of up to 3.1× and 5.3×
were obtained in our sequential and parallel runs, respec-
tively. Since EED can be easily integrated into many of the
existing eigensolvers (including those for general eigenvalue
problems), the current paper may have broader impacts beyond
the Lanczos method.

The rest of the paper is organized as follows. After sur-
veying the related work in Section II, we outline TRLan
and EED in Sections III and IV, respectively. We then in
Section V describe an s-step variant of TRLan combined with
EED (s-step TRLan+EED). Finally, in Section VII, we study
the performance of s-step TRLan+EED. Final remarks are in
Section VIII. Throughout this paper, we denote the jth column
of a matrix A by aj , while Aj1:j2 is the submatrix consisting
of the j1th through the j2th columns of A, and Ai1:i2,j1:j2 is
the submatrix consisting of the i1th through the i2th rows and
the j1th through the j2th columns of A. The superscript H
indicates the conjugate transpose.

II. RELATED WORK

To compute a large number of eigenpairs of a sparse
matrix, there are several other techniques including contour



integral [5], [6], and spectral slicing or polynomial filtering [7],
[8]. Though we plan to compare the performance of our
implementation with these techniques, the focus of the current
paper is to demonstrate the effectiveness of the Lanczos
method combined with EED to compute a large number of
eigenvalues, and to improve its performance using the s-step
variant.

Communication-avoiding kernels have been integrated into
s-step Lanczos method to improve the performance of the
eigensolver [3], [9]. These s-step variants aim to generate
a set of s basis vectors at a time, potentially reducing the
communication latency cost by a factor of s [4]. The MPK
for a general sparse-plus-low-rank matrix vector operation can
be derived from the blocking cover algorithm [10], [11]. We
compare the performance and stability of our implementation
with those of the blocking cover algorithm. To the best of our
knowledge, this is the first performance study and practical
use of the MPK based on the blocking cover algorithm.

III. THICK-RESTART LANCZOS (TRLAN)

The Lanczos method [1] is a Krylov subspace projection
method for computing a few eigenvalues λ̄j and their corre-
sponding eigenvectors ūj of a Hermitian matrix A:

Aūj = λ̄jūj ,

where λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄n. Given a properly chosen
starting vector q, the method computes the orthonormal basis
vectors q1,q2, . . . ,qj+1 of a Krylov subspace Kj+1(A,q) ≡
span{q, Aq, . . . , Ajq}. These basis vectors satisfy the relation

AQj = QjTj + βjqj+1e
H
j , (1)

where Qj = [q1,q2, . . . ,qj ], βj = qHj+1Aqj , ej is the
jth column of the j-dimensional identity matrix, and Tj =
QHj AQj is the j × j Rayleigh-Ritz projection of A onto
Kj(A,q).

An approximate eigenpair (λ,u := Qjx), referred to as a
Ritz value and a Ritz vector, of A can be computed from an
eigenpair (λ,x) of Tj . Its residual norm satisfies

‖Au− λu‖2 = |βj | · |x(j)|. (2)

It is well known that Ritz values converge to exterior eigen-
values of A with a subspace dimension j that is much smaller
than the dimension n of A [2], [12].

In the Lanczos method, the projected matrix Tj in (1) is
symmetric tridiagonal of the form

Tj =


α1 β1

β1
. . . . . .
. . . αj−1 βj−1

βj−1 αj

 .

Hence, in exact arithmetic, the new basis vector qj+1 can
be computed by orthonormalizing the vector Aqj against two
preceding basis vectors, qj−1 and qj :

βjqj+1 = Aqj − αjqj − βj−1qj−1. (3)

This feature is commonly known as the three-term recurrence.
However, in finite precision arithmetics, when the new basis

vector qj+1 is computed by (3), orthogonality among the basis
vectors is lost even after a small number of iterations. To
maintain the orthogonality, we reorthogonalize the new basis
vector qj+1 against all the previous vectors q1,q2, . . . ,qj
using the classical Gram-Schmidt (CGS) procedure [12],

β̂jqj+1 := qj+1 −Qj(QHj qj+1). (4)

As the subspace dimension j grows, this procedure becomes
expensive in terms of both computation and storage. To reduce
the costs of computing a large subspace, we restart the iteration
after a fixed number m of basis vectors are computed.

To maintain the convergence rate of the Ritz pairs after
the restart, we explicitly keep some of the Ritz vectors
computed at restart. For instance, when computing the smallest
eigenvalues of A in our experiments, we keep the smallest
converged Ritz values and one largest Ritz value (using the
default restarting scheme 1 of TRLan [13]). To distinguish
the basis vectors computed before and after the restart, we
use Q̂k to denote the restarted basis vectors

Q̂k = Qm[x1,x2, . . . ,x`,xm],

where xi is the eigenvector corresponding to the ith smallest
eigenvalue of Tm, and ` is the number of converged Ritz
values, hence k = `+ 1.

Then, to recover the three-term recurrence, we set the last
Ritz vector qm+1 as the new (k + 1)th basis vector q̂k+1,
and compute the (k + 2)th basis vector q̂k+2 by explicitly
orthonormalizing Aq̂k+1 against the previous k + 1 basis
vectors. Hence, at the jth iteration after the restart, the new
basis vector q̂k+j+1 satisfies the relation:

AQ̂k+j = Q̂k+j T̂k+j + β̂k+jq̂k+j+1e
H
k+j , (5)

where T̂k+j = Q̂Hk+jAQ̂k+j is of the form

T̂k+j =



Dk βms

βmsH α̂k+1 β̂k+1

β̂k+1 α̂k+2
. . .

. . . . . . β̂k+j−1

β̂k+j−1 α̂k+j

 ,

(6)
with Dk being the k × k diagonal matrix consisting of the
kept Ritz values, and s = [x1, . . . ,x`,xm]Hem. A detailed
description of TRLan can be found in [14].

IV. EXPLICIT EXTERNAL DEFLATION (EED)

In order to maintain the numerical robustness of computing
a large number of eigenpairs, TRLan implements a tech-
nique called internal deflation or locking [2]. Specifically,
when a Ritz pair has converged to a small residual norm
‖Au − λu‖2 < ε‖A‖2, TRLan assumes that the Ritz pair
has converged to the machine precision and set its residual
norm to be zero. Then, TRLan deflates these Ritz pairs by
orthogonalizing the new basis vector against the locked Ritz
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Fig. 1. Relative residual norms ‖Au − λu‖2/‖A‖2 of the computed
eigenpairs. We used TRLan+EED to compute 100 eigenpairs of SiH4 matrix
(n = 5041) at a time (see Section VII for experiment setups).

vectors so that TRLan will not start computing these locked
Ritz vectors again.

EED [2] provides an additional flexibility over locking for
computing many eigenpairs. To integrate EED into TRLan,
we incrementally compute a fixed number of Ritz pairs by
running TRLan with the following shifted matrix:

Ad := A+ αUdU
H
d ,

where Ud contains the d converged Ritz vectors and α is a
properly chosen shift. Hence, the converged eigenvalues are
shifted away from the zero, and the next set of the desired
eigenvalues becomes the exterior eigenvalues of the matrix Ad.
It has been argued that even though the deflated Ritz pairs are
computed only to a specified accuracy, EED can compute all
the Ritz pairs to the specified accuracy [15]. Figure 1 shows
that the relative residual norms of the eigenpairs computed by
TRLan combined with EED (TRLan+EED) are kept below the
specified threshold.

While TRLan only internally deflates the Ritz pairs that
have converged to the machine precision, EED provides an
additional flexibility to deflate the Ritz pairs as soon as they
have converged to the desired accuracy. Thus, TRLan+EED
may require a fewer number of iterations to compute all
the Ritz pairs to a specified accuracy, while TRLan may
unnecessarily compute some of the Ritz pairs to much higher
accuracies. In addition, compared with TRLan+EED, TRLan
often requires a much larger projection subspace to compute
the eigenpairs.

Since the convergence behavior of TRLan and TRLan+EED
depend greatly on the projection subspace dimension, it is
difficult to conduct a fair comparison. To provide some idea of
their performance, Figure 2 compares the two algorithms using
different schemes to adjust the subspace dimension. It shows
that under such setups, TRLan either performs more iterations
using about the same amount of memory (m = d + 200), or
requires much larger projection subspaces in order to obtain
a convergence rate similar to TRLan+EED. Section VII-A
describes our experimental setups in more details.

#restart #ops # locked time (s)
TRLan, fixed m = 1400 5 3,936 695 33.5
TRLan, adapt m = 2(d+ 100) 38 11,327 656 52.0
TRLan, adapt m = d+ 200 >86 >100,932 – > 515.1
TRLan+EED, m = 200 122 12,257 556 25.8

(a) SiH4 matrix (n = 5, 041).

#restart #ops # locked time (s)
TRLan, fixed m = 1400 14 10,233 614 2,136.0
TRLan, adapt m = 2(d+ 100) 77 22,356 613 3,158.7
TRLan, adapt m = d+ 200 – – – >7,200.0
TRLan+EED, m = 200 264 26,896 552 2,114.1

(b) Si34H36 matrix (n = 97, 569).

Fig. 2. Performance comparison of TRLan and TRLan+EED for computing
700 eigenpairs of SiH4 matrix with n = 5041. With TRLan+EED, we
computed 100 eigenpairs at a time with the projection subspace dimension set
to be m = 200. With TRLan, we tested three different approaches to adjust
the projection subspace: 1) we use a fixed projection dimension of m = 1400
for computing 700 eigenpairs at once; 2) we increase the projection dimension
to m = 2(d + 100) as the set of 100 eigenpairs have converged, where d
is the number of converged eigenvalues; and 3) we increase the projection
dimension to m = d + 200 as the set of 100 eigenpairs have converged.
The last approach for TRLan requires about the same amount of memory as
TRLan+EED, while the first two use larger projection subspaces to improve
the convergence.

V. s-STEP TRLAN COMBINED WITH EED

The s-step variant [3] was developed to improve the per-
formance of the classical Lanczos method by reducing its
communication cost. In this paper, we develop s-step variants
of TRLan+EED.

The s-step TRLan+EED relies on three main kernels:

1) Matrix powers kernel generates a set of s Krylov
basis vectors by multiplying the sparse-plus-low-rank
matrix A + αUdU

H
d with a starting vector qi, i.e.,

pi+j := (A+ αUdU
H
d )qi+j−1 for j = 1, 2, . . . , s.

2) Block orthogonalization (blockOrtho) kernel orthogo-
nalizes the set of the new basis vectors generated
by MPK against the previously-generated orthonormal
basis vectors q1,q2, . . . ,qi. In our experiments, we
used the block variant of the classical Gram-Schmidt
procedure [12].

3) Tall-skinny QR (TSQR) factorization orthonormalizes
the new basis vectors pi+1,pi+2, . . . ,pi+s by comput-
ing its QR factorization. For our experiments, we use
the Cholesky QR (CholQR) factorization [16].

Figure 3 shows the pseudocode of the resulting algorithm.
To maintain the orthogonality among the basis vectors, we
perform reorthogonalization as needed.

Compared with the standard TRLan+EED, the s-step variant
has the potential to reduce the communication cost by a factor
of s. For instance, on each process, blockOrtho and TSQR
can orthogonalize the set of s vectors using level 3 BLAS
operations to perform most of its local computation. On a
distributed-memory computer, we distribute the matrix among
the processes in 1D block row fashion. Then, both blockOrtho
and TSQR only require one single global-reduce among the
processes (see Figure 4 for an illustration of TSQR). In
contrast, the standard algorithm orthogonalizes one vector at



set q1 = q/‖q‖2, k = 0.
for j = 1, 2, 3, . . .

1. Initialization.
a. p := (A+ αUdU

H
d )qk+1

b. αk+1 := qH
k+1p

c. p := p− αk+1qk+1 −
∑k

i=1 βiqi

d. βk+1 := ‖p‖2
e. qk+2 := p/βk+1

2. The j-th restart-loop.
for i = k + 2 : s : m
a. Starting vector pi = qi.
b. Matrix Powers Kernel:

for ` = i, i+ 1, . . . , i+ s− 1
p`+1 := (A+ αUdU

H
d )p`

end for
c. Block three-term orthogonalization:

Ri−s:i, i+1:i+s := QH
i−s:iPi+1:i+s

Pi+1:i+s := Pi+1:i+s −Qi−s:iRi−s:i, i+1:i+s

d. Tall-skinny Cholesky QR factorization:
B := PH

i+1:i+sPi+1:i+s

Ri+1:i+s, i+1:i+s := chol(B)

Qi+1:i+s := Pi+1:i+sR
−1
i+1:i+s,i+1:i+s

e. Reorthogonalize Qi+1:i+s if necessary:
Classical Gram Schmidt followed by Cholesky QR.

f. Update the projected matrix Tm:
see, e.g., [4, Sec. 4.2.2].

end for
3. The j-th restart.

a. compute all eigenpairs of Tm and the corresponding
residual norms for Ritz pairs by (2).

b. if stopping criteria is satisfied then
c. compute desired Ritz vectors and exit.
d. else restart:
e. update k (see [14], [13]).
f. select k Ritz values λ1, . . . , λk of interest, and

compute their Ritz vectors {q1, . . . ,qk}.
g. set αi = λi and βi = ‖Aqi − λiqi‖2 by (2),

for i = 1, . . . , k,
h. set qk+1 = qm+1.
i. end if

end for

Fig. 3. Pseudocode of s-step TRLan + EED.

Fig. 4. Illustration of Cholesky QR factorization.

a time using level 2 BLAS local computation and two global-
reduces.

VI. MATRIX POWERS KERNELS FOR s-STEP TRLAN+EED

Now we describe our main contribution of the paper,
designing the MPK to apply s sparse-plus-low-rank matrix
operations on a starting vector p0. Namely, for j = 1, 2, . . . , s,
MPK generates the vectors

pj := (A+ αUdU
H
d )jp0. (7)

The standard MPK computes the s basis vectors by the
straightforward recursion

pj := Apj−1 + αUd(U
H
d pj−1).

1. dot-products
b0 := αUH

d p0

2. local computation
for j = 1, 2, . . . , s− 1 do

bj := Wj−1b0

end for

3. local matrix-matrix multiplication
[c0, c1, . . . , cs−1] := Ud[b0,b1, . . . ,bs−1]

4. MPK with a sparse matrix A
for j = 1, 2, . . . , s do

pj := Apj−1 + cj−1

end for

Fig. 5. Specialized MPK to generate the s basis vectors pj for j = 1, 2, . . . , s
in (7), using Wj = (Λd + αI)j and assuming (8).

This requires a global-reduce at each step of MPK.

A. Specialized MPK

To reduce the computational and communication costs of
the standard MPK, we assume the following properties of the
Ritz vectors Ud,

AUd = UdΛd and UHd Ud = I, (8)

where Λd = diag(λ1, λ2, . . . , λd) has the computed d eigen-
values on the diagonal, and Ud = [u1,u2, . . . ,ud] consists of
the corresponding eigenvectors.

By (8), we have

UHd (A+ αUdU
H
d )j = (Λd + αI)jUHd . (9)

As a result, the jth vector pj of (7) satisfies

pj ≡ (A+ αUdU
H
d )jp0

= (A+ αUdU
H
d )(A+ αUdU

H
d )j−1p0

= A(A+ αUdU
H
d )j−1p0

+αUd[U
H
d (A+ αUdU

H
d )j−1]p0

= Apj−1 + αUd(Λd + αI)j−1UHd p0. (10)

This recursion allows us to design a specialized MPK to
compute p1,p2, . . . ,ps as illustrated in Figure 5.

Generating the monomial basis vectors based on (10) with-
out orthogonalization can be numerically unstable because
the generated basis vectors converge to the eigenvector cor-
responding to the dominant eigenvalue of A. To improve the
numerical stability, we generate the Newton basis such that

pj := [(A− λjI) + UdU
H
d ]pj−1,

where we use the Ritz values of the matrix A in a Leja ordering
as the shifts λj [17]. Given a starting vector p0 and a set of
shifts λ1, λ2, . . . , λs, the specialized MPK algorithm can be
extended to generate the Newton basis. Namely, we can extend
(9) such that

UHd

j∏
k=1

[(A+ λkI) + αUdU
H
d ] =

j∏
k=1

[Λd + (α+ λk)I]UHd .
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Fig. 6. Illustration of MPK for SpMV with a tridiagonal matrix. The blue
circles show the local elements of the process to be computed, while the
red circles are the ghost entries to be redundantly computed among the
neighboring processes.

and hence, we have

pj := (A+ λjI)pj−1 + αUdWj−1U
H
d p0, (11)

where

Wj−1 =

j−1∏
k=1

[Λd + (α+ λk)I]. (12)

Given a new set of shifts at each restart, it requires only a small
amount of computation to generate the auxiliary diagonal
matrices Wj−1.

At the last step of MPK in Figure 5, the standard sparse-
matrix vector multiplication (SpMV) requires a point-to-point
communication to gather the required elements of each input
vector pj−1 from the neighboring processes. It is possible
to design an MPK that applies s SpMVs with a single
communication latency cost [18]. Namely, each process first
gathers the s-level ghost entries of the starting vector q0

from the neighboring processes (i.e., the nonlocal entries that
are s edges away from the local entries in the adjacency
graph of A). After this round of point-to-point communication,
each process may independently apply SpMV s times without
further communication (see Figure 6 for an illustration).

Though MPK reduces the communication latency to gen-
erate the s basis vectors by a factor of s, each jth step of
MPK applies SpMV to the (s − j + 1)-level ghost elements.
This requires extra computation. In addition, depending on the
surface-to-volume ratio of the matrix partitioning, the total
communication volume may increase [18]. In many cases,
this point-to-point communication is less significant compared
with the all-reduce communication required for the deflation
and orthogonalization (as we will show in Section VII).

It is also possible to implement an MPK with a local sparse
matrix, which loads the local matrix into a fast memory only
once without any overhead. However, its implementation needs
to be carefully tuned on each hardware architecture. Thus, in
this paper, we focus on reducing the communication associated
with the orthogonalization and deflation, while using the
standard algorithm for SpMV. A similar approach was used
in our previous task-based implementations of the s-step and
pipelined solvers [19].

computation communication, intra inter
flop count volume latency

1 s · nnz(A) + 2nds s · nnz(A) + 2nds s+ s
2 (2s− 1) · nnz(A) + 2nds (2s− 1) · nnz(A) + 2nd 2 + 1
3 s · nnz(A) + nd · (s+ 1) s · nnz(A) + 2nd 1 + 1

Fig. 7. Cost of three different MPK to generate a set of s basis vectors:
1) standard, 2) blocking cover, and 3) specialized. For communication of
specialized and blocking cover algorithms, we assume Ud needs to be read
into fast memory once for each GEMM operation for 2) and 3), while it needs
to be read into fast memory for each GEMV operation for 1). We need one
GEMV and one GEMM for 3). For inter-process latency, we assume one point-
to-point communication for the set of s SpMVs, but in our implementation
we perform 2s− 1 and s communications for 1) and 2), respectively.

B. Communication and Computation Costs
To generate the set of s basis vectors, the specialized MPK

accesses Ud only twice. The standard MPK would access Ud
once for generating each vector pj . On a distributed-memory
computer, we distribute all the matrices (e.g., A, Qj , and Ud)
among the processes in a 1D block row format. Hence, the
specialized MPK needs only one all-reduce to compute b0,
while the standard MPK requires one all-reduce for generating
each basis vector (Thus a total of s all-reduces for generating
the s basis vectors).

In addition to reducing the communication cost, the special-
ized MPK takes advantage of the condition (8) and reduces the
computational cost for applying the deflation. Specifically, this
specialized algorithm requires only O(s(nnz(A) + n) + (s +
1)nd+(s−1)d) floating-point operations (FLOPs), compared
with O(s(nnz(A)+n)+2nds) FLOPs needed by the standard
algorithm. Figure 7 summarizes the costs of the three MPK
algorithms studied in this paper (the blocking cover algorithm
will be discussed in Section VI-D).

C. Numerical Stability
The specialized MPK is derived based on the conditions (8)

that assume the deflation eigenpairs are exact. In practice, the
eigenpairs (Λd, Ud) are computed only to a specified accuracy,
so that

AUd = UdΛd + E and UHd Ud = I + F, (13)

where E consists of the residual vectors of the computed
eigenpairs, and F is the error in orthogonalization due to
rounding error. The magnitude of E is determined by the
stopping criteria in TRLan, and, assuming the orthogonality
among the basis vectors are maintained, we have ‖F‖2 = O(ε)
where ε is the machine precision.

Due to conditions (13), the equality (9) now becomes

UHd (A+ αUdU
H
d )j = (Λd + αI)jUHd + Ej ,

where E0 = 0, and, for j ≥ 1,

Ej =

j−1∑
i=0

(Λd+αI)i(E+αUdF )H(A+αUdU
H
d )j−1−i. (14)

As a result, the jth vector pj in (10) now satisfies

pj ≡ (A+ αUdU
H
d )jp0

= Apj−1 + αUd(Λd + αI)j−1UHd p0 + αUdEj−1p0.



In comparison, the jth vector by the specialized MPK, denoted
by p̃j , satisfies

p̃j ≡ Ap̃j−1 + αUd(Λd + αI)j−1UHd p0,

with p̃0 = p0.
We thus obtain

dj = Adj−1 + αUdEj−1p0 with dj = pj − p̃j .

Hence, the difference in the jth vectors between the standard
and specialized MPK satisfies

dj = α

j−2∑
i=0

AiUdEj−i−1p0.

By reasonably assuming |α| ≤ ‖A‖2 and ‖Ud‖2 ≤ 2, we have

‖dj‖2 ≤ 2α

(
j−2∑
i=0

‖A‖i2‖Ej−i−1‖2

)
≤ 3j(j − 1)α(‖A‖2 + α)j−2 · η +O(η2), (15)

where
η = max{‖E‖2, ‖A‖2‖F‖2},

due to the facts that Ei is given by (14), and ‖αF‖2 ≤
‖A‖2‖F‖2 ≤ η and ‖Λd‖2 ≤ ‖A‖2 +O(η) by (13).

We would like the error (15) in the specialized MPK to be
in the order of O(εn(‖A‖2+α)j); namely, the round-off errors
in evaluating pj by the standard MPK (7). This requires

η ≤ O
(
ε n α−1(‖A‖2 + α)2

)
.

Such a condition can hold if the relative residual norms of the
approximate eigenpairs satisfy

‖E‖2
‖A‖2

≤ τ ≤ ε n(‖A‖2 + α)2

α‖A‖2
, (16)

where τ is the tolerance used for the residual norm of the
computed eigenpairs. As we will show in our experiments,
these requirements can be met in most of the practical cases.

D. Blocking Cover

The blocking cover algorithm [10], [11] can be adapted to
implement the MPK that generates the basis vectors by multi-
plying a general sparse-plus-low-rank matrix A+ αUdU

H
d to

a starting vector s times, where Ud is an n×d general matrix.
Figure 8 shows the pseudocode of the algorithm. Similar to our
specialized MPK in Section VI-A, this blocking cover MPK
generates the s basis vectors through one all-reduce (Step 2
of Figure 8). However, to reduce the communication cost,
this algorithm requires 2s − 1 SpMVs with the matrix A for
generating the s basis vectors (Steps 1 and 5). In contrast, the
standard and specialized MPK algorithms require s SpMVs.
Figure 7 compares the costs of this algorithm with those of
the standard and specialized MPK algorithms.

In addition, the blocking cover MPK algorithm requires s−1
sparse-matrix matrix multiplications (SpMMs) to compute the
auxiliary matrices Xj := UHd A

j−1Ud for j = 1, . . . , s − 1.
Since the columns of Ud are the Ritz vectors of A, for the

1. MPK with a sparse matrix A
for j = 1, 2, . . . , s− 1 do

pj := Apj−1

end for

2. Block dot-product
B := UH

d · [p0,p1, . . . ,ps−1]

3. local computation, O(ds2) flops
for j = 1, 2, . . . , s do

cj := bj

for i = 1, 2, . . . , j − 1 do
cj := cj +Xicj−i

end for
cj := αcj

end for

4. generate low-rank correction
Y := Ud · [c1, c2, . . . , cs]

5. MPK with A to integrate low-rank correction
for j = 1, 2, . . . , s do

pj := Apj−1 + yj

end for

Fig. 8. Blocking cover MPK to compute pj := (A + αUdU
H
d )jp0 with

general sparse and dense matrices A and Ud, respectively, for j = 1, 2, . . . , s,
where Xj := UH

d Aj−1Ud.

algorithm setup in our experiments, we avoided these extra
SpMVs using the following assumption:

Xj := UHd A
j−1Ud = Λj−1

d . (17)

In our experiments, we did not see significant numerical effects
by making this assumption.

The assumption (17) is milder than that in (8). In particular,
for the Ritz pairs computed by Lanczos, we have

AUd = UdΛd + qtH + E,

where q is numerically orthonormal to Ud (i.e., ‖q‖2 ≈ 1
and UHd q ≈ 0), and E is the numerical error in Lanczos
satisfying ‖E‖2 = O(‖A‖2ε); see, e.g., [20]. Assuming
full reorthogonalization is applied in the computation such
that ‖UHd Ud − I‖2 = O(ε) and ‖UHd q‖2 = O(ε), and
the eigenpairs are computed to at least half machine preci-
sion, i.e., ‖t‖2 ≤ O(

√
ε‖A‖2), we can derive by induction

that ‖UHd Aj−1q‖2 ≤ O(
√
ε‖A‖j−1

2 ) and ‖UHd Aj−1Ud −
Λj−1
d ‖2 = O(ε‖A‖j−1

2 ). Hence, the error ‖Xj − Λj−1
d ‖2

is of the same order as the numerical error for evaluating
Xj := UHd A

j−1Ud, explicitly. The stability of the blocking
cover MPK, in comparison with the specialized MPK, will be
illustrated in Section VII-C.

VII. EXPERIMENTAL RESULTS

We now study the performance of s-step TRLan+EED.
After describing our experimental setups in Section VII-A,
we first present in Section VII-B the performance of the main
BLAS kernel used to implement our orthogonalization and
deflation procedures. We then compare the sequential per-
formance of the s-step TRLan-EED using the three different
MPKs on one process, for synthetic matrices and for matrices



from electronic structure calculations. in Sections VII-C and
VII-D, respectively. Finally, in Section VII-E, we examine the
distributed-memory performance of the s-step TRLan-EED.

A. Experimental Setups

We conducted all of our experiments on the Haswell nodes
of the Cori supercomputer at NERSC. A Haswell node has
two 16-core Intel Xeon E5-2698 v3 Haswell CPUs at 2.3 GHz,
and 128 GB of main memory with 40 MB of Smart Cache.
The nodes are connected through the Cray Aries interconnect
with Dragonfly topology. We compiled our code using Cori’s
compiler wrapper cc for the Intel C compiler icc version
18.0.1 20171018.

For all of our experiments, unless specified otherwise, we
performed CholQR twice to maintain the orthogonality of the
basis vectors, and considered the computed eigenpairs to have
converged when their relative residual norms became less than
τ = 10−11. In addition, we computed 100 eigenpairs at a time
and set the shift α for EED using the computed eigenvalues
from the previous run of TRLan as α = λd + λn−λd

2 , where
λd is the largest eigenvalue among the smallest converged
eigenvalues and λn is the largest converged eigenvalue (see
Figure 9 for an illustration).

Fig. 9. Illustration of converged eigenvalues λj and the shift α for EED.

B. Kernel Performance

The s-step TRLan+EED reduces the computational and
communication costs of two main kernels: the CGS orthog-
onalization in (4) and the deflation operation in (7). The
standard TRLan+EED uses level 2 BLAS matrix-vector mul-
tiply GEMV on each process and generates one basis vector
at a time. The s-step TRLan+EED aims to orthonormalize
and deflate a set of s basis vectors at a time, replacing
the GEMV operations with the level 3 BLAS matrix-matrix
multiply GEMM operations on each process. The level 2 BLAS
performance is typically limited by the memory bandwidth on
the process because the matrix elements in the fast memory
cannot be reused during the consecutive GEMV operations (i.e.,
2 FLOPs per data read). On a distributed-memory computer,
the level 2 BLAS operation QHj qj+1 or UHd p0 require a
global-reduce among all the processes. The level 3 BLAS
increases the data reuse (i.e., 2s FLOPs per data read). In
addition, on a distributed-memory computer, each BLAS-3
operation needs only one global-reduce, potentially reducing
the communication latency cost by a factor of s.

Figures 10 and 11 show the performance of these BLAS
kernels, where we multiply an m-by-60 matrix U60 with a
set of s basis vectors P . We see that higher performance is
obtained using s basis vectors at a time.
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Fig. 10. Sequential performance of dgemm with n = 60.

process count
m 1 16 32 64 128

2× 105 19.9 128.4 458.4 480.4 868.3
4× 105 19.9 127.5 465.7 486.2 937.7
6× 105 19.9 239.0 468.4 495.2 967.9

Fig. 11. Parallel performance (gigaFLOP/s) of dgemm with n = 60 and
s = 10.

C. Synthetic Diagonal Matrices

We now study the performance of s-step TRLan+EED using
the synthetic diagonal matrices A2 = diag(12, 22, . . . , n2)
(which were previously used to study the performance of
TRLan [9]). In Figure 12, we examine the effects of the
residual norms of the computed eigenpairs on the stability
of the specialized and blocking cover (marked as “general”
in figures) MPKs. The s-step TRLan+EED failed using the
specialized MPK with τ > 10−8 (where εn‖A+ αUUH‖2 ≈
5.6·10−8 for (16)) while the blocking cover MPK continues to
converge with a larger value of τ . Namely, the solid and dashed
lines overlap on each other for τ = 10−9 and 10−8 (blue and
red), while only the dashed line converged for τ = 10−7 and
10−6 (green and black). We note that with n = 1000, the
requested accuracy τ = 10−8 for the relative residual norm is
relatively low (i.e., ‖Au− λu‖2 ≤ 10−2).

In Figure 13, we compare the performance of s-step TR-
Lan+EED using the standard, specialized, and blocking cover
MPKs to generate the Krylov vectors. For computing the first
set of eigenpairs, the blocking cover and specialized MPKs
already reduced the execution time by replacing the standard
orthogonalization kernel with blockOrtho and TSQR. For
computing the additional eigenpairs, since this is a diagonal
matrix, “MatOp” in the figure is dominated by the time for
the deflation. We can see that the deflation operation becomes
more expensive and dominates the iteration time as more
eigenpairs are computed. The blocking cover MPK can reduce
the time needed for the deflation by avoiding some data
movement, while the specialized MPK can further reduce the
execution time by taking advantage of the special properties
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Fig. 12. Convergence history of s-step TRLan+EED to compute the five
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diag(12, 22, . . . , n2) with n = 1000, m = 30, α = 50002, s = 5, and
different values of τ .
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Fig. 13. Performance of s-step TRLan+EED for A2 = diag(12, 22, . . . , n2)
to compute 100, 200, . . . , 700 eigenpairs. The left, middle, and right bars
show the time needed to compute the next 100 eigenpairs using the standard,
blocking cover and specialized MPKs, respectively. The numbers on top of
the left bar show the number of restarts and the number of matrix operations
needed for the convergence using the standard MPK, while the numbers on top
of the middle and right bars show the differences in the restart and operation
counts using the blocking cover and specialized MPKs, compared with the
standard MPK, respectively. We used n = 10000, m = 200, α = 50002,
and s = 10, and computed 100 eigenpairs at a time.

of the matrices and avoiding some computation.
In Figure 14, we study the effect of the step size s on the

performance of s-step TRLan+EED with the specialized MPK.
A larger value of s improves the performance, but increases
the potential of numerical instability. For the rest of the paper,
we use s = 5 unless otherwise specified.

D. Matrices for Density Functional Theory Calculation

We now study the performance of s-step TRLan+EED using
the matrices from the density functional theory for electronic
structure calculations. These matrices are from the PARSEC
matrix collection downloaded from the SuiteSparse Matrix
Collection. As shown in the left plot of Figure 15, the eigenval-
ues of the PARSEC matrices are closely clustered. In order to
avoid missing the eigenvalues, we generated the Newton basis
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Fig. 14. Performance of s-step TRLan+EED combined with specialized MPK
for A2 = diag(12, 22, . . . , n2) with n = 100000, m = 30, and different
values of s = 1, 5, or 10 (left, middle, and right bars, respectively).
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Fig. 15. Computed eigenvalues of Si34H36 matrix from PARSEC collection
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1258/12

-1/0
-1/0

1826/18

+9/0

-82/-1

1904/19

-85/0

0/0

1844/18

-176/0

+2/0

1754/17

-176/0

-171/-2

1850/18

-86/-1

+24/-2

1821/20

+133/0

+100/0

1.3x 1.5x 1.4x 1.8x 1.3x 1.5x 1.4x 1.6x 1.3x 1.7x 1.2x 1.7x 1.0x 1.4x

100 200 300 400 500 600 700

# of eigenpairs

0

1

2

3

4

5

6

ti
m

e
 (

s
)

Deflate

SpMV

ReOrtho

Restart

Fig. 16. Performance of TRLan+EED with the standard, blocking cover, and
specialized MPKs (left, middle, and right bars in each set) for SiH4 matrix
from PARSEC collection (i.e., n = 5, 041, nnz/n ≈ 34, and s = 5).

using the Ritz values from the first restart (the first restart loop
is based on the standard TRLan), and performed CholQR three
times. The s-step TRLan+EED missed some eigenvalues with
monomial basis.
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Fig. 17. Performance of s-step TRLan+EED with the standard, blocking
cover, and specialized MPKs (left, middle, and right bars in each set) for
Si34H36 matrix from PARSEC collection (i.e., n = 97, 569, nnz/n ≈ 53,
and s = 5).

Figures 16 and 17 compare the performance of s-step
TRLan+EED using three different MPKs. We can see that the
performance is improved by avoiding both the computation
and communication, especially for large matrices. For large
matrices, the performance was improved more by avoid-
ing data movement (i.e., the blocking cover MPK obtained
significant improvement over the standard MPK, while the
specialized MPK obtained only a small improvement over the
blocking cover MPK). On the other hand, for small matrices
the performance was improved more by avoiding computation
(i.e., the improvement by the blocking cover MPK was often
smaller than that by the specialized MPK). For instance, when
the matrix is small enough for all the data to fit in the
fast cache, the effects of reducing the data traffic among the
local memory hierarchy becomes less significant. Overall, the
specialized MPK obtained the speedups of up to 2.3×, and the
speedups were increased as more eigenvalues were computed.

E. Parallel Performance

We now compare the performance of our distributed-
memory implementation of s-step TRLan+EED using the stan-
dard and specialized MPK. Figure 18 shows the strong parallel
scaling results with the Si87H76 matrix from the PARSEC
matrix collection. Though the specialized MPK improved the
performance of s-step TRLan+EED, its speedup lowered as
we increased the process count. One reason is that, using the
specialized MPK, the sequential parts of the algorithm (e.g.,
restart and the sequential part of MPK) become significant,
since the iteration time was reduced by optimizing the main
computational kernel. We observed similar trends with the
synthetic diagonal matrix in Figure 19.

To verify the numerical stability of our implementation,
Figure 20 shows the relative residual norms of the computed
eigenpairs. They were all below the specified threshold, but
those by the specialized MPK seem to have larger values.
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Fig. 18. Strong-parallel scaling of s-step TRLan+EED to compute 100
eigenvalues of Si87H76 at a time using standard and specialized MPK with
n = 240, 369, m = 200, s = 5.
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Fig. 19. Performance of s-step TRLan+EED to compute 100 eigenvalues of
A1 = diag(1, 2, . . . , n) at a time using standard and specialized MPK with
n = 320, 000, m = 200, s = 5.

VIII. CONCLUSION

The thick-restart Lanczos combined with the explicit ex-
ternal deflation (TRLan+EED) is an efficient method for
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Fig. 20. Relative residual norms ‖Au−λu‖2/‖A‖2 of the computed eigen-
pairs for Si87H76 using the tolerance of τ = 10−11, where ‖A‖2 ≈ 42.9.

computing a large number of eigenvalues of a Hermitian
matrix. To improve the performance of TRLan+EED, in this
paper, we studied an s-step variant that aims to reduce both
the communication and computational costs of its main com-
putational kernel (i.e., generation of the subspace projection
basis). Our experimental results on the Cori supercomputer
at NERSC demonstrated the potential of these techniques.
We are conducting experiments with larger matrices, where
the inter-process communication can become more significant
than our current sequential bottleneck on a larger number of
processes, thus increasing the benefit of avoiding the inter-
process communication.

Both the standard and s-step variants of TRLan+EED
have the potential of missing eigenpairs, especially when the
eigenvalues are closely clustered. We are looking at strategies
to avoid missing eigenvalues (e.g., computing the extra eigen-
values at each run, then using the eigenvectors associated with
the extra eigenvalues as the starting vectors for the next run).

We are also looking at the potential numerical issues. One
source of instability comes from TRLan and s-step Lanczos
themselves. The numerical behavior of TRLan has been stud-
ied in [14], while stability analysis in [21] has shown the
s-step methods have a similar behavior to that of classical
Lanczos (assuming a bound on the condition number of the s-
step Krylov subspace). Both results indicate that orthogonality
of the basis vectors is crucial. Though we did not encounter
such issues in this paper, we are looking to integrate other
orthogonalization procedures including the singular value and
tall-skinny QR factorization [16], [22].

Another source of instability is due to EED using inexact
eigenvectors Ud. When Ud is a single vector, Parlett [2,
Chap. 5.1] shows that the change in a distant eigenpair caused
by deflation of Ud is the same as the error of Ud along that
eigenvector, and it will not be significant. Although this result
does not immediately extend to deflating multiple vectors, the
similar numerical behavior was observed in practice [15]. We
would like to conduct further theoretical analysis to understand
such behavior.
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