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Abstract Linear response eigenvalue problems arise from the calculation of exci-
tation states of many-particle systems in computational materials science. In this
paper, from the point of view of numerical linear algebra and matrix computations,
we review the progress of linear response eigenvalue problems in theory and
algorithms since 2012.

1 Introduction

The standard Linear Response Eigenvalue Problem (LREP) is the following eigen-
value problem

�
A B

�B �A

� �
u
v

�
D �

�
u
v

�
; (1)

where A and B are n � n real symmetric matrices such that the symmetric matrix�
A B
B A

�
is positive definite. Such an eigenvalue problem arises from computing

excitation states (energies) of physical systems in the study of collective motion of
many particle systems, ranging from silicon nanoparticles and nanoscale materials
to the analysis of interstellar clouds (see, for example, [12, 27, 33, 34, 38, 50] and
references therein). In computational quantum chemistry and physics, the excitation
states and absorption spectra for molecules or surface of solids are described by
the Random Phase Approximation (RPA) or the Bethe-Salpeter (BS) equation. For
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this reason, the LREP (1) is also called the RPA eigenvalue problem [17], or the
BS eigenvalue problem [5, 6, 42]. There are immense recent interest in developing
new theory, efficient numerical algorithms of the LREP (1) and the associated
excitation response calculations of molecules for materials design in energy science
[16, 28, 40, 41].

In this article, we survey recent progress in the LREP research from numerical
linear algebra and matrix computations perspective. We focus on recent work since
2012. A survey of previous algorithmic work prior to 2012 can be found in [2, 51]
and references therein. The rest of this paper is organized as follows. In Sect. 2, we
survey the recent theoretical studies on the properties of the LREP and minimization
principles. In Sect. 3, we briefly describe algorithmic advances for solving the LREP.
In Sect. 4, we state recent results on perturbation and backward error analysis of the
LREP. In Sect. 5, we remark on several related researches spawn from the LREP (1),
including a generalized LREP.

2 Theory

Define the symmetric orthogonal matrix

J D 1p
2

�
In In
In �In

�
: (2)

It can be verified that JTJ D J2 D I2n and

JT
�

A B
�B �A

�
J D

�
0 A � B

A C B 0

�
: (3)

This means that the LREP (1) is orthogonally similar to

Hz WD
�

0 K
M 0

� �
y
x

�
D �

�
y
x

�
DW �z; (4)

where K D A � B and M D A C B. Both eigenvalue problems (1) and (4) have the
same eigenvalues with corresponding eigenvectors related by

�
y
x

�
D JT

�
u
v

�
and

�
u
v

�
D J

�
y
x

�
: (5)

Furthermore, the positive definiteness of the matrix

�
A B
B A

�
is translated into that

both K andM are positive definite since

JT
�
A B
B A

�
J D

�
A C B 0

0 A � B

�
D

�
M 0

0 K

�
: (6)
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Because of the equivalence of the eigenvalue problems (1) and (4), we still refer
to (4) as an LREP which will be one to be studied from now on, unless otherwise
explicitly stated differently.

2.1 Basic Eigen-Properties

It is straightforward to verify that

H

�
y
x

�
D �

�
y
x

�
) H

�
y

�x

�
D ��

�
y

�x

�
: (7)

This implies that the eigenvalues of H come in pair f�; ��g and their associated
eigenvectors enjoy a simple relationship. In fact, as shown in [1], there exists a
nonsingular ˚ 2 R

n�n such that

K D ��2�T and M D ˚˚T; (8a)

where � D diag.�1; �2; : : : ; �n/ and � D ˚� T. In particular

H

�
�� ��

˚ �˚

�
D

�
�� ��

˚ �˚

� �
� 0

0 ��

�
: (8b)

Thus H is diagonalizable and has the eigen-decomposition (8b).
The notion of invariant subspace (aka eigenspace) is an important concept for

the standard matrix eigenvalue problem not only in theory but also in numerical
computation. In the context of LREP (4), with consideration of its eigen-properties
as revealed by (7) and (8b), in [1, 2] we introduced a pair of deflating subspaces of
fK;Mg, by which we mean a pair fU ;V g of two k-dimensional subspacesU � R

n

and V � R
n such that

KU � V and MV � U : (9)

Let U 2 R
n�k and V 2 R

n�k be the basis matrices of U and V , respectively.
Then (9) can be restated as that there exist KR 2 R

k�k andMR 2 R
k�k such that

KU D VKR and MV D UMR; (10)

and vice versa, or equivalently,

H

�
V 0

0 U

�
D

�
V 0

0 U

�
HR with HR WD

�
0 KR

MR 0

�
;
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i.e., V ˚U is an invariant subspace of H [1, Theorem 2.4]. We call fU;V;KR;MRg
an eigen-quaternary of fK;Mg [57].

Given a pair of deflating subspaces fU ;V g D fR.U/;R.V/g, a part of the
eigenpairs of H can be obtained via solving the smaller eigenvalue problem [1,
Theorem 2.5]. Specifically, if

HROz WD
�

0 KR

MR 0

� �Oy
Ox
�

D �

�Oy
Ox
�

DW �Oz; (11)

then .�;

�
V Oy
UOx

�
/ is an eigenpair of H. The matrix HR is the restriction of H onto

V ˚ U with respect to the basis matrices V ˚ U. Moreover, the eigenvalues of HR

are uniquely determined by the pair of deflating subspaces fU ;V g [2].
There are infinitely many choices of fKR;MRg in (10). The most important one

introduced in [57] is the Rayleigh quotient pair, denoted by fKRQ;MRQg, of the
LREP (4) associated with fR.U/;R.V/g:

KRQ WD .UTV/�1UTKU and MRQ WD .VTU/�1VTMV; (12)

and accordingly,

HRQ D
�

0 KRQ

MRQ 0

�
:

Note that HRQ so defined is not of the LREP type because KRQ and MRQ are not
symmetric unless UTV D Ik. To circumvent this, we factorize W WD UTV as W D
WT

1 W2, whereWi 2 R
k�k are nonsingular, and define

HSR WD
�

0 W�T
1 UTKUW�1

1

W�T
2 VTMVW�1

2 0

�
D ŒW2 ˚ W1�HRQŒW2 ˚ W1��1:

(13)

Thus HRQ is similar to HSR. The latter is of the LREP type and has played an
important role in [1, 2] for the LREP, much the same role as played by the Rayleigh
quotient matrix in the symmetric eigenvalue problem [36].

Up to this point, our discussion is under the assumption that fR.U/;R.V/g is a
pair of deflating subspaces. But as far as the construction of HRQ is concerned, this
is not necessary, so long as UTV is nonsingular. The same statement also goes for
HSR. In fact, a key component in [2, 58] on eigenvalue approximations for the LREP
is the use of the eigenvalues of HSR to approximate part of the eigenvalues of H.
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2.2 Thouless’ Minimization Principle

Back to 1961, Thouless [49] showed that the smallest positive eigenvalue �1 of the
LREP (1) admits the following minimization principle:

�1 D min
u;v

�t.u; v/; (14)

where �t.u; v/ is defined by

�t.u; v/ D

�
u
v

�T �
A B
B A

� �
u
v

�

juTu � vTvj : (15)

The minimization in (14) is taken among all vectors u; v such that uTu � vTv ¤ 0.
By the similarity transformation (3) and using the relationships in (5), we have

�t.u; v/ � �.x; y/ WD xTKx C yTMy

2jxTyj ; (16)

and thus equivalently

�1 D min
x;y

�.x; y/: (17)

The minimization here is taken among all vectors x; y such that xTy ¤ 0 [53].
We will refer to both �t.u; v/ and �.x; y/ as the Thouless functionals but in

different forms. Although �t.u; v/ � �.x; y/ under (5), in this paper we primarily
work with �.x; y/ to state extensions of (17) and efficient numerical methods.

2.3 New Minimization Principles and Cauchy Interlacing
Inequalities

In [1], we have systematically studied eigenvalue minimization principles for the
LREP to mirror those for the standard symmetric eigenvalue problems [7, 36]. We
proved the following subspace version of the minimization principle (14):

kX
iD1

�i D 1

2
min

UTVDIk
trace.UTKU C VTMV/; (18)

among all U;V 2 R
n�k. Moreover if �k < �kC1, then for any U and V that attain

the minimum, fR.U/;R.V/g is a pair of deflating subspaces of fK;Mg and the
correspondingHRQ has eigenvalues ˙�i (1 � i � k).



292 Z. Bai and R.-C. Li

Equation (18) suggests that

1

2
trace.UTKU C VTMV/ subject to UTV D Ik (19)

is a proper subspace version of the Thouless functional in the form of �.�; �/.
Exploiting the close relation through (5) between the two different forms of the
Thouless functionals �t.�; �/ and �.�; �/, we see that

1

2
trace.

�
U
V

�T �
A B
B A

� �
U
V

�
/ subject to UTU � VTV D 2Ik; UTV D VTU (20)

is a proper subspace version of the Thouless functional in the form of �t.�; �/. Also
as a consequence of (18), we have

kX
iD1

�i D 1

2
min

UTU�VTVD2Ik
UTVDVTU

trace.

�
U
V

�T �
A B
B A

� �
U
V

�
/ (21)

among all U;V 2 R
n�k.

In [1], we also derived the Cauchy-type interlacing inequalities. Specifically, let
U;V 2 R

n�k such that UTV is nonsingular, and denote by ˙�i (1 � i � k) the
eigenvalues of1 HRQ, where 0 � �1 � � � � � �k. Then

�i � �i � � �iCn�k for 1 � i � k; (22)

where � D p
minf	.K/; 	.M/g=cos†.U ;V /, U D R.U/ and V D R.V/.

Furthermore, if �k < �kC1 and �i D �i for 1 � i � k, then fU ;V g is a pair
of deflating subspaces of fK;Mg corresponding to the eigenvalues ˙�i (1 � i � k)
of H when both K andM are definite.

2.4 Bounds on Eigenvalue Approximations

Let U; V 2 R
n�k and UTV D Ik. fR.U/;R.V/g is a pair of approximate deflating

subspaces intended to approximate fR.˚1/;R.�1/g, where ˚1 D ˚.W;1Wk/ and �1 D
�.W;1Wk/. Construct HSR as in (13). We see HSR D HRQ since UTV D Ik. Denote the
eigenvalues of HSR by

��k � � � � � ��1 � �1 � � � � � �k:

1In [1], it was stated in terms of the eigenvalues of HSR which is similar to HRQ and thus both have
the same eigenvalues.
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We are interested in bounding

1. the errors in �i as approximations to �i in terms of the error in fR.U/;R.V/g as
an approximation to fR.˚1/;R.�1/g, and conversely

2. the error in fR.U/;R.V/g as an approximation to fR.˚1/;R.�1/g in terms of
the errors in �i as approximations to �i.

To these goals, define

ık WD
kX

iD1

.�2
i � �2

i /: (23)

We know 0 < �i � �i by (22); so ık defines an error measurement in all �i as
approximations to �i for 1 � i � k. Suppose �k < �kC1. It is proved in [58] that

.�2
kC1 � �2

k/k sin
M�1 .U; ˚1/k2
F � ık �

kX
iD1

�2
i � tan2 �M�1 .U;MV/

C �2
n � �2

1

cos2 �M�1 .U;MV/
k sin
M�1 .U; ˚1/k2

F;

(24a)

.�2
kC1 � �2

k/k sin
K�1 .V; �1/k2
F � ık �

kX
iD1

�2
i � tan2 �K�1 .V;KU/

C �2
n � �2

1

cos2 �K�1 .V;KU/
k sin
K�1 .V; �1/k2

F;

(24b)

where 
M�1 .U; ˚1/ is the diagonal matrix of the canonical angles between sub-
spaces R.U/ and R.˚/ in the M�1-inner product, the largest of which is denoted
by �M�1 .U; ˚1/, and similarly for �M�1 .U;MV/, 
K�1 .V; �1/, and �K�1 .V;KU/

(see, e.g., [58] for precise definitions). As a result,

k sin
M�1 .U; ˚1/kF �
s

ık

�2
kC1 � �2

k

; (25a)

k sin
K�1 .V; �1/kF �
s

ık

�2
kC1 � �2

k

: (25b)

The inequalities in (24) address item 1 above, while item 2 is answered by these
in (25).
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3 Numerical Algorithms

In [2], we reviewed a list of algorithms for solving the small dense and large sparse
LREPs up to 2012. In the recent work [42] for solving dense complex and real
LREP, authors established the equivalence between the eigenvalue problem and real
Hamiltonian eigenvalue problem. Consequently, a structure preserving algorithm
is proposed and implemented using ScaLAPACK [10] on distributed memory
computer systems. In this section, we will review recently proposed algorithms for
solving large sparse LREPs.

3.1 Deflation

Whether already known or computed eigenpairs can be effectively deflated away
to avoid being recomputed is crucial to numerical efficiency in the process of
computing more eigenpairs while avoiding the known ones. In [4], we developed
a shifting deflation technique by a low-rank update to either K or M and thus the
resulting K or M performs at about comparable cost as the original K or M when it
comes to do matrix-vector multiplication operations. This deflation strategy is made
possible by the following result.

Let J D fij W 1 � j � kg � f1; 2; : : : ; ng, and let V 2 R
n�k with rank.V/ D k

satisfying R.V/ D R.�.W;J//, or equivalently V D �.W;J/Q for some nonsingular
Q 2 R

k�k. Let � > 0, and define

H D
�

0 K
M 0

�
WD

�
0 K C �VVT

M 0

�
: (26)

Then H and H share the same eigenvalues ˙�i for i 62 J and the corresponding
eigenvectors, and the rest of eigenvalues ofH are the square roots of the eigenvalues
of �2

1 C �QQT, where �1 D diag.�i1 ; : : : ; �ik/. There is a version of this result for
updatingM only, too.

3.2 CG Type Algorithms

One of the most important numerical implications of the eigenvalue minimization
principles such as the ones presented in Sect. 2.2 is the possibility of using
optimization approaches such as the steepest descent (SD) method, conjugate
gradient (CG) type methods, and their improvements. A key component in these
approaches is the line search. But in our case, it turns out that the 4D search is a
more natural approach to take. Consider the Thouless functional �.x; y/. Given a
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search direction

�
q
p

�
from the current position

�
y
x

�
, the basic idea of the line search

[27, 29] is to look for the best possible scalar argument t to minimize �:

min
t

�.x C tp; y C tq/ (27)

on the line

��
y
x

�
C t

�
q
p

�
W t 2 R

�
: While (27) does have an explicit solution

through calculus, it is cumbersome. Another related search idea is the so-called
dual-channel search [13] through solving the minimization problem

min
s;t

�.x C sp; y C tq/; (28)

where the search directions p and q are selected as the partial gradients rx� and
ry� to be given in (31). The minimization problem (28) is then solved iteratively
by freezing one of s and t and minimizing the functional � over the other in an
alternative manner.

In [2] we proposed to look for four scalars ˛, ˇ, s, and t for the minimization
problem

inf
˛;ˇ;s;t

�.˛x C sp; ˇy C tq/ D min
u2R.U/; v2R.V/

�.u; v/; (29)

where U D Œx; p� and V D Œy; q�. This no longer performs a line search (27) but
a 4-dimensional subspace search (4D search for short) within the 4-dimensional
subspace:

��
ˇy C tq
˛x C sp

�
for all scalars ˛; ˇ; s; and t

�
: (30)

There are several advantages of this 4D search over the line search (27) and dual-
channel search (28): (1) the right-hand side of (29) can be solved by the LREP
for the 4 � 4 HSR constructed with U D Œx; p� and V D Œy; q�, provided UTV is
nonsingular; (2) the 4D search yields a better approximation because of the larger
search subspace; (3) most importantly, it paves the way for a block version to
simultaneously approximate several interested eigenpairs.

The partial gradients of the Thouless functional �.x; y/ with respect to x and y
will be needed for various minimization approaches. Let x and y be perturbed to
x C p and y C q, respectively, where p and q are assumed to be small in magnitude.
Assuming xTy ¤ 0, up to the first order in p and q, we have [2]

�.x C p; y C q/ D �.x; y/ C 1

xTy
pT ŒKx � �.x; y/ y� C 1

xTy
qT ŒMy � �.x; y/ x�
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to give the partial gradients of �.x; y/ with respect to x and y

rx� D 1

xTy
ŒKx � �.x; y/ y� ; ry� D 1

xTy
ŒMy � �.x; y/ x� : (31)

With the partial gradients (31) and the 4D-search, extensions of the SD method
and nonlinear CG method for the LREP are straightforward. But more efficient
approaches lie in their block versions. In [39], a block 4D SD algorithm is
presented and validated for excitation energies calculations of simple molecules in
time-dependent density functional theory. Most recently, borrowing many proven
techniques in the symmetric eigenvalue problem such as LOBPCG [19] and
augmented projection subspace approaches [15, 18, 23, 37, 55], we developed an
extended locally optimal block preconditioned 4-D CG algorithm (ELOBP4dCG)
in [4]. The key idea for its iterative step is as follows. Consider the eigenvalue
problem for

A � �B �
�
M 0

0 K

�
� �

�
0 I
I 0

�
(32)

which is equivalent to the LREP for H in (26). This is a positive semidefinite pencil
in the sense that A � �0B 	 0 for �0 D 0 [25, 26]. Now at the beginning of the
.i C 1/st iterative step, we have approximate eigenvectors

z.i/
j WD

"
y.i/
j

x.i/
j

#
; z.i�1/

j WD
"
y.i�1/
j

x.i�1/
j

#
for 1 � j � nb;

where nb is the block size, the superscripts .i�1/ and .i/ indicate that they are for the

.i � 1/st and ith iterative steps, respectively. We then compute a basis matrix

�
V1

U1

�

of

nb[
jD1

Km.˘ŒA � �.x.i/
j ; y.i/

j /B�; z.i/
j /; (33)

where ˘ is some preconditioner such as A�1 and Km.˘ŒA � �.x.i/
j ; y.i/

j /B�; z.i/
j / is

the mth Krylov subspace, and then compute two basis matrices V and U for the
subspaces

V D R.V1/ C span
˚
y.i�1/
j ; for 1 � j � nb

�
; (34a)

U D R.U1/ C span
˚
x.i�1/
j ; for 1 � j � nb

�
; (34b)
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respectively, and finally solve the projected eigenvalue problem for

�
U 0

0 V

�T

.H � �I/

�
V 0

0 U

�
D

�
0 UTKU

VTMV 0

�
� �

�
UTV

VTU

�
(35)

to construct new approximations z.iC1/
j for 1 � j � nb. When m D 2 in (33), it gives

the LOBP4dCG of [1].
As an illustrative example to display the convergence behavior of ELOBP4dCG,

Fig. 1, first presented in [4], shows iterative history plots of LOBP4dCG and
ELOBP4dCG on an LREP arising from a time-dependent density-functional theory
simulation of a Na2 sodium in QUANTUM EXPRESSO [39]. At each iteration i,
there are 4 normalized residuals kHz � �zk1=..kHk1 C �/kzk1/ which move down
as i goes. As soon as one reaches 10�8, the corresponding eigenpair .�; z/ is deflated
and locked away, and a new residual shows up at the top.We see dramatic reductions
in the numbers of iterations required in going from from m D 2 to m D 3, and
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LOB4dCG with deflation (no preconditioner, m= 2 )
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iteration i

ELOB4dCG with deflation (no preconditioner m= 3 )

iteration i

0 10 20 30 40 50 60 70 80 90 100
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ELOBP4dCG with deflation (m= 3 )

Fig. 1 Top row: convergence of LOB4dCG (i.e., m D 2) without preconditioning (left) and with
deflation (right). Bottom row: convergence of extended LOB4dCG (ELOB4dCG) with m D 3

without preconditioning (left) and with deflation (right)
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in going from “without preconditioning” to “with preconditioning”. The powers
of using a preconditioner and extending the searching subspace are in display
prominently. More detail can be found in [4].

3.3 Other Methods

There is a natural extension of Lanczos method based on the following decompo-
sitions. Given 0 ¤ v0 2 R

n and 0 ¤ u0 2 R
n such that Mv0 D u0, there exist

nonsingular U; V 2 R
n�n such that Ve1 D ˛v0 and Ue1 D ˇu0 for some ˛; ˇ 2 R,

and

UTKU D T; VTMV D D; (36)

where T is tridiagonal, D is diagonal and UTV D In. Partially realizing (36) leads
to the first Lanczos process in [46]. A similar Lanczos process is also studied in
[11] for estimating absorption spectrum with the linear response time-dependent
density functional theory. There is an early work by Tsiper [52, 53] on a Lanczos-
type process to reduce both K and M to tridiagonal. Generically, Tsiper’s Lanczos
process converges at only half the speed of the Lanczos process based on (36).

Recently, Xu and Zhong [56] proposed a Golub-Kahan-Lanczos type process that
partially realize the factorizations:

KX D YG; MY D XGT;

where G is bidiagonal, XTKX D In and YTMY D In. The basic idea is to
use the singular values of the partially realized G to approximate some positive
eigenvalues of H. Numerical results there suggest that the Golub-Kahan-Lanczos
process performs slightly better than the Lanczos process based on (36).

The equations in (8a) implies KM D ˚�2˚�1. Noticing �2
i for 1 � i � k lie

in low end of the spectrum of KM, in [48] the authors devised a block Chebyshev-
Davidson approach to build subspaces through suppress components of vectors in
the direction of eigenvectors associated with �2

i for i > k C 1. Numerical results
there show that the approach can work quite well.

Most recently, structurally inverse-based iterative solvers for very large scale
BS eigenvalue problem using the reduced basis approach via low-rank tensor
factorizations are presented in [5, 6]. In [21], an indefinite variant of LOBPCG is
also proposed.
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4 Perturbation and Error Analysis

First we consider the perturbation of the LREP (4). Recall the eigen-decompositions
in (8), and let

Z D
�

��1=2 ��1=2

�˚��1=2 ˚��1=2

�
: (37)

Suppose H is perturbed to eH with correspondingly positive definite eK and eM.
The same decompositions as in (8) for eH exist. Adopt the same notations for the
perturbed LREP for eH as those for H except with a tilde on each symbol. It was
proved in [57] that

max
1�i�n

je�i � �ij � kZk2keZk2 maxfkeM � Mk2; keK � Kk2g; (38a)

vuut nX
iD1

je�i � �ij2 � 1p
2

kZk2keZk2

q
keM � Mk2

F C keK � Kk2
F: (38b)

These inequalities involve the norms kZk2 and keZk2 which are not known a priori.
But they can be bounded in terms of the norms of K, M, their inverses, and bounds
on �1 and �n.

Previously in Sect. 2.1, we note that for an exact pair fU ;V g of deflating
subspaces we have (10). In particular, KU D VKRQ and MV D UMRQ, where
U 2 R

n�k and V 2 R
n�k are the basis matrices for U and V , respectively.

When fU ;V g is only an approximate pair, it would be interesting to seek backward
perturbations K and M to K andM, respectively, such that

.K C K/U D VKRQ and .M C M/V D UMRQ: (39)

In the other word, fU ;V g is an exact pair for fK C K;M C Mg. Since K and
M are symmetric, we further restrict K and M to be symmetric, too. The first
and foremost question is, naturally, if such perturbations K and M exist, i.e., if
the set

B WD ˚
.K; M/ W KT D K; MT D M 2 R

n�n satisfying (39)
�
; (40)

is not empty. Indeed B ¤ ¿ [57]. Next we are interested in knowing

�.U;V/ WD min
.K;M/2B.kKk C kMk/; (41)
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where k � k is some matrix norm. Without loss of generality, we assume UTU D
VTV D Ik. It is obtained in [57] that

�F.U;V/ D
q

2kRK.KRQ/k2
F � kUTRK.KRQ/k2

F

C
q

2kRM.MRQ/k2
F � kVTRM.MRQ/k2

F; (42)

�2.U;V/ D kRK.KRQ/k2 C kRM.MRQ/k2; (43)

where �F and �2 are the ones of (41) with the Frobenius and spectral norms, respec-
tively, andRK.KRQ/ WD KU�VKRQ andRM.MRQ/ WD MV�UMRQ. An immediate
consequence of such backward error analysis is bounds on approximation errors by
the eigenvalues of HRQ to some of those of H.

There are a couple of recent work [47, 54] on the perturbation of partitioned
LREP. Let K andM be partitioned as

K D
� k n�k

k K1 KT
21

n�k K21 K2

�
and M D

� k n�k

k M1 MT
21

n�k M21 M2

�
: (44)

If K21 D M21 D 0, then fU0;V0g is a pair of deflating subspaces, whereU0 D V0 D
R.

�
Ik
0

�
/. But what if K21 ¤ 0 and/orM21 ¤ 0 but tiny in magnitude? Then fU0;V0g

can only be regarded as a pair of approximate deflating subspaces, and likely there
would exist an exact pair f eU ; eV g of deflating subspaces nearby. Specifically, we
may seek

eU D R.eU/; eV D R.eV/ with eU D
�
Ik
P

�
; eV D

�
Ik
Q

�

for some P and Q. It resembles the well-known Stewart’s perturbation analysis for
the standard and generalized eigenvalue problems [43–45]. The study along this line
for the LREP has been recently conducted in [54].

Alternatively, if K21 D M21 D 0 in (44), then eig.H/ D eig.H1/ [ eig.H2/,

where Hi D
�

0 Ki

Mi 0

�
for i D 1; 2, and eig.H/ is the set of eigenvalues of H and

similarly for eig.Hi/. Again what if K21 ¤ 0 and/orM21 ¤ 0 but tiny in magnitude?
They may be treated as tiny perturbations. It would be interesting to know the effect
on the eigenvalues from resetting them to 0, as conceivably to decouple H into two
smaller LREPs. It is shown that such an action brings changes to the eigenvalues
of H at most proportional to kK21k2

2 C kM21k2
2 and reciprocally proportional to the

gaps between eig.H1/ and eig.H2/ [47].
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5 Concluding Remarks

Throughout, we have focused on recent studies of the standard LREP (4) with the
assumption that K and M are real and symmetric as deduced from the original
LREP (1). There are several directions to expand these studies by relaxing the
assumption on K andM and, for that matter, accordingly on A and B.

An immediate expansion is to allow K and M to be complex but Hermitian and
still positive definite. All surveyed results with a minor modification (by changing
all transposes to conjugate transposes) hold. Most of the theoretical results in
Sects. 2.2 and 2.3 are still valid when only one of K andM is positive and the other
is semidefinite, after changing “min” in (17) and (14) to “inf”.

Although oftenK andM are definite, there are cases that one of them is indefinite
while the other is still definite [35]. In such cases, all theoretical results in Sects. 2.2–
2.4 no longer hold. But some of the numerical methods mentioned in Sect. 3.3,
namely, the Lanczos type methods in [46] and the Chebyshev-Davidson approach
[48], still work. Recently in [24], a symmetric structure-preserving � QR algorithm
is developed for LREPs in the form of (1) without any definiteness assumption.

The following generalized linear response eigenvalue problem (GLREP)
[14, 32, 33]

�
A B

�B �A

� �
u
v

�
D �

�
˙ 

 ˙

� �
u
v

�
(45)

was studied in [3], where A and B are the same as the ones in (1), and and ˙ and
 are also n � n with ˙ being symmetric while  skew-symmetric (i.e., T D
�) such that

�
˙ 

 ˙

�
is nonsingular. Performing the same orthogonal similarity

transformation, we can transform GLREP (45) equivalently to

�
0 K
M 0

� �
y
x

�
D �

�
EC 0

0 E�

� �
y
x

�
; (46)

where ETC D E� is nonsingular. Many results parallel to what we surveyed so far
for the LREP (4) are obtained in [3].

Both (4) and (46) are equivalent to the generalized eigenvalue problem for

A � �B with A D
�
M 0

0 K

�
; B D

�
0 In
In 0

�
or

�
0 E�
EC 0

�
:

Since A � 0 � B D A is positive definite, A � �B falls into the category of the so-
called positive semi-definite matrix pencils (positive definite if both K and M are
positive definite). Numerous eigenvalue min-max principles, as generalizations of
the classical ones, are obtained in [8, 9, 20, 22, 30, 31] and, more recently, [25, 26].
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