
Automated Backward Error Analysis for Numerical Code

Zhoulai Fu Zhaojun Bai Zhendong Su
Department of Computer Science, University of California, Davis, USA

{zlfu, zbai, su}@ucdavis.edu

Abstract
Numerical code uses floating-point arithmetic and necessarily
suffers from roundoff and truncation errors. Error analysis is
the process to quantify such uncertainty. Forward error anal-
ysis and backward error analysis are two popular paradigms
of error analysis. Forward error analysis is intuitive, and has
been explored and automated by the programming languages
(PL) community. In contrast, although backward error analy-
sis is fundamental for numerical stability and is preferred by
numerical analysts, it is less known and unexplored by the
PL community.

To fill this gap, this paper presents an automated backward
error analysis for numerical code to empower both numerical
analysts and application developers. In addition, we use the
computed backward error results to compute the condition
number, an important quantity recognized by numerical
analysts for measuring a function’s sensitivity to errors in
the input and finite precision arithmetic. Experimental results
on Intel x87 FPU instructions and widely-used GNU C
Library functions demonstrate that our analysis is effective at
analyzing the accuracy of floating-point programs.

Categories and Subject Descriptors D.1.2 [Automatic pro-
gramming]: Programming transformation; G.1.0 [General]:
Error analysis, Conditioning; G.4 [Mathematical Software]:
Algorithm design and analysis

General Terms Reliability, Algorithm

Keywords Floating point, backward error, condition num-
ber, mathematical optimization

1. Introduction
Floating point computation is by nature inexact, and it is not
difficult to misuse it so that the computed answers consist
almost entirely of “noise”.

— D. Knuth, The Art of Computer Programming, [31]

Numerical error is inherent in machine computation. This
is particularly true when we talk about floating-point pro-
grams. Admittedly, the goal of floating-point programs is
rarely to compute the exact answer, but a result that is suf-
ficiently accurate. The ability to measure the accuracy of
numerical programs is, therefore, essential.

There are two ways to measure numerical accuracy. One
is called forward error analysis, which is to directly measure
the difference between the computed solution on a finite-
precision arithmetic and the exact solution (usually simulated
by a high-precision arithmetic, or an oracle solution). The for-
ward error analysis has been extensively studied and drawn on
almost all modern PL techniques, such as static analysis [10],
formal deduction [11], and symbolic execution [8].

For numerical analysts, a more appealing paradigm for
analyzing numerical code is to use backward error analysis
(BEA). BEA has been successfully applied to manually
analyze many fundamental algorithms [26]. However, BEA
is much less known in the PL community. It seems that
“numerical analysts failed to influence computer software and
hardware in the way they should” according to the Turing
lecture delivered by J. H. Wilkinson [45].

In this work, our goal is two-fold. First, we introduce BEA
from applied mathematicians and numerical analysts to the
PL community. Second, at the technical level, we present
novel techniques to automate BEA to benefit both numerical
analysts — who perform BEA largely on paper-and-pencil
— and application developers — who will now understand
the accuracy and stability of their numerical code via au
automated approach.

Backward Error. Consider the problem to be solved by a
mathematical function f that maps the input data x to the
solution f (x). Let f̂ be the numerical code that implements f .
The result of the implementation, f̂ (x), will usually deviate
from the mathematical f (x). A primary concern in using f̂ (x)
as an implementation of f is to estimate the relative forward

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...$15.00

http://dx.doi.org/10.1145/2814270.2814317

639

Figure 1: Illustration of backward error.

error, denoted by F :

F ,

∣∣∣∣ f̂ (x)− f (x)
f (x)

∣∣∣∣ . (1)

Rather than computing F, the BEA approach attempts to view
f̂ (x) as the result of f with a slightly perturbed data at x, i.e.,

f̂ (x)' f (x+∆x). (2)

We call such ∆x backward error (Fig. 1).
Why do we need to concern with backward error? A major

benefit is that it allows for a simple yet very useful separation
of concerns in understanding numerical accuracy. Let

δ = ∆x/x (3)

denote the relative perturbation of ∆x with respect to x.
Assuming that f is smooth in a neighborhood of x and δ

is small, then by (1) and Taylor expansion, we have

F =

∣∣∣∣ f (x+δ · x)− f (x)
f (x)

∣∣∣∣
≈ |δ | ·

∣∣∣∣x · f ′(x)
f (x)

∣∣∣∣+O(δ 2). (4)

Then we can divide the question of forward error estimation
into two:

• Backward error B = |δ | that is implementation-dependent
(B depends on f̂), and

• Condition number C =
∣∣∣ x· f ′(x)

f (x)

∣∣∣, which is inherent in the
mathematical problem to solve and independent of the
implementation f̂ .

Thus, we can summarize the power of BEA as

F ≈ B×C. (5)

The knowledge of backward error allows us to track down the
inaccuracy, i.e., large forward error, to either B or C. If C is
large, the problem is called ill-conditioned, and theoretically
it is very difficult to cure the inaccuracy. If C is relatively
small, we should have a large backward error causing the
inaccuracy. In the latter case, efforts should be made to seek
a better implementation.

Table 1: Understanding forward error via backward error.

F B Analysis

Small Large Accuracy insensitive to implementation
Small Small Good implementation
Large Small Ill-conditioned problem
Large Large Reducing backward error may help

Along the same line, using backward error also allows
us to optimize the program. Let us consider the case when
the forward error is already small, but the backward error
is large. We must have a subtle condition number. In this
case, the forward error is insensitive to the implementation,
and there is little benefit to devise a fine-tuned or highly
precise numerical code; in other words, we may use a simpler
numerical implementation without sacrificing much accuracy.

Tab. 1 shows the different configurations and their conclu-
sions drawn from a backward error analysis.

Condition Number. Another utility of computing backward
error is to estimate the condition number. If we simultane-
ously simulate F and B, the condition number C can be ob-
tained immediately as F/B.

Estimating the condition number is very important in un-
derstanding the accuracy of floating point programs. Rewrite
(1) to the following equation:

logF = logB+ logC. (6)

Consider logF as the inaccuracy measured in terms of its
significant digits. Eq. (6) means that we may lose up to logC
digits of accuracy on top of what would be lost due to loss
of precision from arithmetic methods (a rule of significance
arithmetic [22]). Thus, if the magnitude of B reflects how
bad our implementation is, an estimation of C allows us to
quantify the inaccuracy that is “born with” the problem that
we want to solve. In Sect. 2 and 4, we show the technique of
condition number estimation to analyze an inaccuracy issue
posed on the fsin instruction of Intel.

Note that computing condition number is commonly re-
garded as a more difficult problem than solving the origi-
nal problem1, e.g., the condition number for a linear system
AX = B involves computing the inverse of A, which is known
to be a harder problem than solving AX = B. As Higham put
it [26] (p.29): “The issue of conditioning and stability play
a role in all discipline in which finite precision computation
is performed, but the understanding of these issues is less
well developed in some disciplines than others.” In the field
of programming languages, the theory of condition number
is unfamiliar. We give a practical and systematic way to esti-

1 Computing condition number is generally more difficult unless certain
necessary quantities are already pre-calculated, for example if the LU
factorization of a matrix has been computed, then the condition number
estimator is an order less than computing the LU factorization. See [26],
Chap. 15.

640

mate condition number that should benefit a wide range of
researchers and application developers.

Contributions. This paper describes the design and imple-
mentation of an automated BEA framework for floating-point
programs. We develop two techniques to approach backward
error analysis. One is to focus on how to understand the de-
tailed characteristics of numerical code at a single point and
within a range of points of interest, called local BEA; an-
other one is to estimate the backward error across an input
range, called global BEA. The BEA techniques not only pro-
vide us an insight into numerical implementation, but also
contributes to another, less explored body of research — esti-
mating condition numbers, which is a key to understand the
inaccuracy inherent in the underlying mathematical problem.
Our contributions follow:

• This is the first work to successfully automate the pro-
cess of computing backward error. We introduce novel
techniques to make the analysis systematic and effective.

• Using the computed backward error, we estimate the
condition number and show how it helps understand the
source of floating-point inaccuracy in some well-known
examples.

Outline. We begin by describing an overview of our ap-
proach in Sect. 2. The core algorithms for computing back-
ward error are introduced in Sect. 3. Then, we explain some
important implementation details, experimental design and
present the evaluation in Sect. 4. Finally, we discuss related
work in Sect. 5 and conclude in Sect. 6.

Notation. The set of real and integer numbers are denoted
by R and Z respectively. For two real numbers a and b, the
usage “aEb” means a∗10b. A function can be expressed as a
lambda expression, e.g., λx.x∗ x for the square function.

Given X ⊆ R, called search space, and E : X → R, called
objective function (or energy function), we call x∗ a local
minimal point, if there exists a neighborhood of x∗, namely
{x∈ X | |x−x∗| ≤ d} for some d > 0, such that for all x in the
neighborhood, E (x∗) ≤ E (x). The value of E (x∗) is called
local minimum. If E (x∗) ≤ E (x) for all x ∈ X , we call x∗ a
global minimum point and E (x∗) the global minimum.

2. Overview and Two Examples
We let f̂ denote a numerical program with scalar input and
output. The mathematical function that f̂ attempts to compute
is denoted by f .

Unlike previous efforts that study backward error à la
pencil-and-paper, our approach attempts to compute back-
ward error fully automatically. The kernel of our approach is
structured into the following components (Fig. 2):

• Local BEA determines the backward error at single inputs.
Because f is only conceptional, we lift f̂ to higher preci-
sion to simulate f . This first step involves a source-level

Figure 2: Overview of our approach. f̂ : numerical code
under analysis, f : the transformed program of a higher
precision than f̂ , B: backward error, F: forward error. The
two shadowed parts represent local BEA and global BEA.

transformation commonly used in floating-point program
analysis [7, 9, 13]. We shall then regard f as the exact
solution. The essence of solving local BEA is to, for a
given input x, find the smallest |δ | such that the perturbed
x+ δ · x applied on f comes close to f̂ (x). The derived
mapping that associates input x with the obtained smallest
|δ | defines the backward error function B(x).

• Global BEA uses B(x) as a black-box function and es-
timates the maximal backward error for a given search
space. We use global BEA results to quantify the worst-
case inaccuracy of the implementation over the search
space. We employ classic Monte Carlo Markov Chain
(MCMC) techniques for solving global BEA.

• As an application, we apply our BEA techniques to
estimate condition numbers of numerical problems, using

C(x),
F(x)
B(x)

(7)

where F is the forward error as defined in (1). Similar to
our global BEA approach, we use the MCMC engine to
estimate the largest condition number for a given range.

Below, we give two examples. Our goal is to study two
different causes of inaccuracy. The first example shows an
implementation problem due to large backward error, whereas
the second exhibits inaccuracy from the result of a large
condition number. Through the examples, we show that some
inaccuracy issues can be easily fixed, and some may not, and
an appropriate way to understand the difference is through
backward error analysis.

Example 1. Suppose we want to compute

f (x) =
√

x+1−1 (8)

641

1.00E-17

1.00E-16

1.00E-15

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.0
0E

-01

1.0
0E

-02

1.0
0E

-03

1.0
0E

-04

1.0
0E

-05

1.0
0E

-06

1.0
0E

-07

1.0
0E

-08

y1

y2

Figure 3: Backward error for y1 and y2 at x = 1E-i where
i = 1 . . .8.

with a small input x > 0. Below is how most people would
likely implement (8)

double y1 (double x)
{return sqrt(x + 1) - 1;}

However, for small x close to 0, this implementation suffers
from cancellation error when performing the subtraction.

Consider, for example, input x = 2E-15. We have y1/(x) =
8.8817E-16,2 yet the correct answer should be f(x)=1.000E-
15. The forward error is |(f (x)−y1(x))/ f (x)| ' 0.12. Given
the forward error alone, however, we do not know the reason
for it or whether it can be avoided. The inaccuracy can be
attributed to either bad implementation or ill-conditioned
problem. BEA allows us to make this distinction.

If we compute the backward error, i.e., the smallest |δ |
such that √

(x+δ · x)+1−1 = y1(x), (9)

then we can obtain the backward error 0.112.
As discussed in Sect. 1, large backward error indicates

the possibility in improving the implementation. In fact,
the backward error of y1 can be reduced by using the
algebraically equivalent y2 below:

double y2 (double x)
{return x / (sqrt(x + 1) + 1);}

We use our approach to compute the backward errors of y1
and y2. In Fig. 3, we illustrate the large backward error of
y1 versus the much smaller backward of y2. With a sequence
of input x closer and closer to 0, the backward error of y1
quickly goes above machine epsilon, while y2 is much more
stable with backward errors in the order of 1E-17 to 1E-16.

Example 2. This is an ill-conditioned problem from Intel
FPU, where both forward and backward errors are large, and
finding accurate alternative is much harder due to the inherent
large condition number.

In a recent blog, Google engineer B. Dawson pointed
out [2] some accuracy issues regarding how the fsin instruc-
tion is described in Intel’s documentation [27]. Intel acknowl-
edged the problem and announced [3] that they would clarify
and improve the documentation.

2 Evaluated on an x86_64 OS, with the default optimization options of LLVM
5.1 (clang-503.0.40).

1.00E+00
1.00E+02
1.00E+04
1.00E+06
1.00E+08
1.00E+10
1.00E+12
1.00E+14

3 3.1

3.1

4

3.1
41

3.1
41

5

3.1
41

59

3.1
41

59
2

3.1
41

59
26

3.1
41

59
26

5

3.1
41

59
26

53

3.1
41

59
26

53
5

3.1
41

59
26

53
58

3.1
41

59
26

53
58

9

3.1
41

59
26

53
58

97

3.1
41

59
26

53
58

97
9

Figure 4: Condition number of fsin near π (corresponding
to our experimental results reported in Tab. 7).

Dawson attempted to approximate π by sin(π̂)+ π̂ , where
π̂ is an initial estimate of π . The rationale behind this
approach should be clear: If π̂ = π + d where d is small,
by Taylor expansion we have

sin(π̂) =−sin(d) =−d +O(d3). (10)

Therefore, it is expected that

sin(π̂)+ π̂ = (−d +O(d3))+(π +d) = π +O(d3). (11)

The problem is that accurately computing sin(π̂) is dif-
ficult when π̂ is close to π . In fact, to approximate π by
sin(π̂)+ π̂ is theoretically possible but problematic in prac-
tice. To see this, we give the experimental results (Fig. 4) on
our estimated condition numbers for a sequence of inputs
increasingly close to π .

From the figure, it can be seen that the condition number
increases significantly when x comes closer and closer to π .
For example, if π̂ = 3.1415926535897, we have the condition
number on the order of 1E+13, meaning a precision loss
of 13 decimal digits intrinsic to the problem on top of the
inaccuracy from the implementation (see Eq. 6). Because
the condition number is large, we may not blame Intel for
their implementation of fsin, but the problem raised by
Dawson – his algorithm involves computing fsin near π ,
which is an ill-conditioned problem. That said, Intel now uses
glibc’s software implementation of sin rather than an FPU
instruction. The current glibc’s sin implementation relies on
a lookup table for computing certain values of sin.

Not only our approach can compute condition numbers for
given inputs, but it also can automatically detect input points
where the condition number is large. In fact, our experimental
results show that fsin has a large condition number for every
k ∗π , where k is a positive integer (Tab. 2).

Along the same line, using our approach we can find that
the condition number of fsin becomes large for large input x.
As a result, it is also difficult to compute accurately fsin with
large x. In fact, it has been reported that Intel’s fsin function
does not compute correctly for large input x [4]. Tab. 3 shows
our analysis for fsin 10k, where k ∈ [−4,5]∩Z.

642

Table 2: Analysis of fsin at [kπ−1,kπ +1]. x∗: maximum
point, C∗: maximum condition number, T : time in seconds.

Range x∗ C∗ T (s)

[π−1,π +1] 3.1415914E+00 4.7010279E+09 213.29
[2π−1,2π +1] 6.2831941E+00 3.0507019E+09 213.06
[3π−1,3π +1] 9.4247772E+00 1.9457442E+10 998.72
[4π−1,4π +1] 1.2566332E+01 2.5810622E+10 218.46

Table 3: Analysis of fsin for x = 10k, where k ∈ [−4,5]∩Z.

x F B C

0.0001 5.10E-17 5.10E-17 1.00E+00
0.001 5.67E-18 5.67E-18 1.00E+00
0.01 4.27E-17 4.27E-17 1.00E+00
0.1 3.09E-17 3.10E-17 9.97E-01
1 2.11E-18 3.29E-18 6.42E-01
10 7.16E-17 4.64E-18 1.54E+01
100 6.03E-18 3.54E-20 1.70E+02
1000 4.68E-17 6.88E-20 6.80E+02
10000 3.84E-17 1.23E-21 3.12E+04
100000 3.54E-15 1.27E-21 2.80E+06

3. Approach
This section presents the theoretical underpinning of our
approach, which will be formalized in a one-dimensional
context. We start by introducing two components that we
assume available to us.

Let f be a continuous function on interval [b,e]. Assume
that we have a procedure LM with the signature

LM(f ,b,e). (12)

The procedure attempts to find a local minimal point
x∗ ∈ (b,e), or its endpoints if no such minimal points can be
found in (b,e). We assume the following property on LM3

A1. Procedure LM always terminates and returns x∗ ∈ [b,e]
that is a local minimal point of f on [b,e].

Another component is the root-finding procedure with the
following signature

RF(f ,b,e) (13)

where f holds opposite signs at the interval endpoints, i.e.,
f (b) ∗ f (e) < 0. In numerical analysis, we call such proce-
dure a “bracket root-finding procedure”. Under the condition
that f is continuous on [b,e], the root-finding procedure is
guaranteed to locate a zero in [b,e] within finite steps4. A

3 In calculus, the image of a continuous function on a bounded close set is
necessarily bounded and closed (or more generally, compactness is preserved
under a continuous map [38]).
4 The root exists because of the intermediate value theorem [38].

large number of implementations exist [36] for this root-
finding procedure. One of the simplest, for example, may
be the bisection root-finding procedure which tries to find a
new pair of endpoints [an,bn] such that |bn−an| is half of the
distance of the endpoints from the previous step. Thus, we
assume

A2. If f (b) ∗ f (e) < 0, then RF(f ,b,e) terminates and
f (RF(f ,b,e)) = 0.

3.1 Local BEA
We define relative backward error with two parameters of
tolerance xtol and ftol.

Definition 1. Given a numerical program f̂ , the correspond-
ing mathematical function f and input x ∈ dom(f̂), local
BEA is defined as the following mathematical optimization
(MO) [47] problem:

minimize |δ |
subject to | f (x+δ · x)− f̂ (x)| ≤ ftol

|δ | ≤ xtol

(14)

The mapping that associates input x and the solution to (14),
|δ ∗|, is denoted by the function

B(x) = |δ ∗| (15)

We call B(x) the relative backward error at x, or backward
error for short.

Compared to (14), the perturbation ∆x in (1) is expressed
by x multiplied by a perturbation factor δ , the closeness
parameterized by ftol, and the search space bounded by xtol.

We first present an outline of how we compute B(x). Fix
x, and let Φx denote the auxiliary function

Φx(δ),
∣∣ f (x+δ · x)− f̂ (x)

∣∣ . (16)

In a typical setting, we require that Φx is well-behaved5 in
the sense that

A3. Φx is continuous on [−xtol,xtol].
A4. Φx has a moderate number of minima on [−xtol,xtol]
(i.e., Φx should not oscillate a huge number of times).

Following the definition, if Φx(0)≤ ftol, we immediately
have B(x) = 0. Without loss of generality, we assume

Φx(0)> ftol (17)

Imagine that we draw Φx as the curve illustrated in Fig. 5.
The shadowed area denotes {(x,y) | |x| ≤ xtol,y ∈ [0, ftol]}.
Computing B(x) actually amounts to finding the intersection
of the Φx curve and the upper boundary of the shadowed area.

5 It is common practice in the numerical analysis literature to assume that
the function under study is well-behaved in some sense. The study on
pathological functions is a separate problem beyond the scope of this paper.

643

Figure 5: Illustration of the local BEA algorithm.

Lemma 1. If δ ∗ is the solution to the MO problem (14), then
Φx(δ

∗) = ftol.

To prove the lemma, we only need to exclude the possibil-
ity of Φx(δ

∗)< ftol. Following A3, if Φx(δ
∗)< ftol, we can

find δ̃ ∗ such that |δ̃ ∗|< |δ ∗| and Φx(δ̃ ∗)< ftol. This contra-
dicts the definition of backward error. As a direct corollary
of Lem. 1, we have

B(x) = min{|δ | |Φx(δ) = ftol, |δ | ≤ ftol} (18)

Our approach computes B(x) in three high-level steps:

S1. Compute the smallest root r+ > 0 s.t. Φx(r+) = ftol.
S2. Compute the largest root r− < 0 s.t. Φx(r−) = ftol.
S3. Return min(|r+|, |r−|) as B(x).

Now let us focus on S1. Although formulated as a root-
finding step, traditional root-finding procedure is not enough
here, which stops whenever an arbitrary root is found. We
handle S1 with two sub-steps:

S1a. First, we compute the smallest local minimal point
lm+ ∈ [0,xtol] s.t. Φx(lm+)≤ ftol.

S1b. Then, we compute r+ ∈ [0, lm+] s.t. Φx(r+) = ftol
using traditional root-finding procedure.

In Fig. 5, the desired results for S1a and S1b are marked
m2 and r+ respectively. We justify why S1 can be done with
the two sub-steps using the following lemma.

Lemma 2. Let lm+ be

min{m > 0 | m is a local minimal point of Φx,Φx(m)≤ ftol}.

Then, there exists a single r+ ∈ [0, lm+] such that Φx(r+) =
ftol.

Proof. The existence of r+ follows directly from A2, because
Φx(0)> ftol, Φx(lm+)≤ ftol and Φx is continuous (A1). We
conduct the proof by contradiction by assuming that

H: ∃r1,r2 s.t. 0 < r1 < r2 ≤ lm+ and Φx(r1) = Φx(r2) = ftol.

Since Φx is continuous on [r1,r2], we are guaranteed to
have a maximal point z ∈ [r1,r2] s.t. Φx(z) ≥ Φ(r) for all
r ∈ [r1,r2]. Because Φx(z)≥ ftol, we only have two cases to
consider: (1) If Φx(z) = ftol, then we have Φx(r) = ftol for all
r ∈ [r1,r2]. Therefore, each r in the range is a local minimal
point of Φx, contradicting with the definition of lm+; and

(2) If Φx(z)> ftol, we have a minimum bracket (o,r1,z), i.e.,
0 < r1 < z s.t. Φx(r1) < Φx(0) and Φx(r1) < Φx(z). Thus,
there must exist a local minimal point in [0,z]. Because z < r2
(otherwise Φx(r2) > ftol), and z2 ≤ lm+, we have actually
found a local minimal point that is strictly smaller than lm+,
contradicting with the definition of lm+. Combining cases (1)
and (2), we conclude that (H) is false.

Similarly, we achieve S2 by the two sub-steps below:

S2a. Compute lm−, i.e.

min{m < 0 | m is a local min. point of Φx,Φx(m)≤ ftol}.

S2b. Compute r− ∈ [lm−,0] s.t. Φx(r−) = ftol.

In Fig. 5, the desired results for S2a and S2b are m1 and
r− respectively.

Our approach is summarized in Algo. 1. In the beginning,
the algorithm returns 0 if already Φx(0) ≤ ftol (Lines 1-2).
The overall loop (Lines 3-17) implements S1 and S2. Line
18 corresponds to S3.

We initialize δ to the boundary of the search space, xtol
or −xtol (Line 4). Variable lm is used to return lm+ or lm−.

The loop at Lines 7-13 corresponds to S1a and S2a
(with loop index i = 1 or i = 2 respectively). At line 10,
lm is updated whenever we have a better, i.e., smaller δ s.t.
Φx(δ) ≤ ftol. At line 11, we use a contractor coefficient cc
for accelerating the procedure. If δn denotes δ obtained for
the n-th iteration, we have

δn+1 ≤ cc∗δn. (19)

Therefore, the program is guaranteed to terminate if cc is set
strictly smaller than 1. The loop continues unless the iteration
bound is reached, or the local minimization hits the boundary
of the search space (Line 13). Lines 14-17 correspond to steps
S1b and S2b.

3.2 Global BEA
Global backward error analysis aims at finding the maximum
of the backward error within a user-defined range. Global
BEA allows us to automatically detect implementation issues
quantified by backward error, as opposed to local BEA,
which computes backward locally, and confirms or refutes
the implementation issue at the given points. Note that the
local backward error computed earlier is now regarded as
a black-box function. In the one-dimensional case, we are
concerned with finding its maximum within an interval [b,e].
Global BEA attempts to give a tight estimate of

max
x∈[b,e]

B(x). (20)

We use Monte Carlo Markov Chain (MCMC) sampling [6]
to solve (20). MCMC is a random sampling technique used
to simulate a target distribution. For example, if we have
the target distribution of coin tossing, with 0.5 probability

644

Algorithm 1: Local BEA

Input:

x Input point
f̂ Numerical code
f Mathematical function

xtol Bound of the search space
ftol Tolerance controlling the closeness between f̂ and

f
cc Contraction coefficient (0 < cc≤ 1)

iter_local Maximum iteration times of LM
LM Local minimization procedure
RF Root-finding procedure

Output: An estimation of B(x)
1 Let Φx = λδ .| f (x+δ · x)− f̂ (x)|
2 if Φx(0)≤ ftol then return 0
3 for i ∈ {1,2} do

/* i = 1 (resp. i = 2) deals with the search space [0,xtol]
(resp. [−xtol,0]) */

4 Let δ =

{
xtol if i = 1
−xtol otherwise

5 Let lm = δ

6 Let iter = iter_local
7 repeat

/* Loop Invariant: Φx(lm)≤ ftol */
8 Let δold = δ

9 Let δ =

{
LM(Φx,0,δ) if i == 1
LM(Φx,δ ,0) otherwise

10 if Φ(δ)≤ ftol then lm = δ

/* Contracting the search bound for termination */
11 Let δ = δ ∗ cc
12 Let iter = iter−1
13 until iter == 0 or δ == δold

14 if i == 1 then
/* lm is the smallest local minimal point

lm ∈ [0,xtol] such that Φx(lm)≤ ftol */
15 Let r+ = RF(λδ .Φx(δ)− ftol,0, lm)

16 else
/* lm is the largest local minimal point

lm ∈ [−xtol,0] such that Φx(lm)≤ ftol */
17 Let r− = RF(λδ .Φx(δ)− ftol, lm,0)

18 return min(|r+|, |r−|)

for having head or tail. An MCMC sampling is a sequence
of random variables x1,. . . , xn, such that the probability
of xn being “head”, denoted by Pn, converges to 0.5, i.e.,
limn→∞ Pn = 0.5. The fundamental fact regarding MCMC
sampling can be summarized as the theorem below [6]. For
brevity, we only consider discrete-valued probability.

Theorem 1. Let x be a random variable. Let A be an
enumerable set of the possible values of x. Given a target
distribution expressed by a density function P(x = a) for
a ∈ A. Let x1, . . . ,xn be an MCMC sampling sequence (which
is a Markov chain), and P(xi = a) be the density function
regarding each xi. We have

lim
i→+∞

P(xi = a) = P(x = a). (21)

In short, the MCMC sampling follows the target distribution
in the limit.

Why do we adopt MCMC approach for global BEA?
There are two advantages. First, the search space in our prob-
lem setting is a subset of floating-point values. Even in the
one-dimensional case, a very small interval contains a huge
number of floating-point numbers. The MCMC approach is
known as an effective technique in dealing with large search
spaces. Second, our objective function, B(x), is not smooth
or not even continuous. In fact, even if both the numerical
code f̂ and the mathematical function f are continuous, B(x)
as in Def. 1 may still be discontinuous. In addition, B(x) in
practice has a large number of fluctuations, which makes
many deterministic global optimization problems, such as
convex analysis, interval analysis, and linear/non-linear pro-
gramming [17], only effective when the objective functions
are well-behaved, inappropriate. That said, other stochastic
techniques, e.g., genetic programming, may also be used for
our problem setting. We have not experimented genetic pro-
gramming (which we leave for future work) mainly because
MCMC techniques have a stronger mathematical foundation.

Metropolis-Hasting is a commonly used and general
MCMC sampling technique. Let E (x) be an energy distribu-
tion and x the current sampled point. The next Metropolis-
Hasting sampling, denoted by

Metropolis-Hasting(E ,x) (22)

is processed in two steps. First, we randomly propose a new
sample x′ from the current sample x. The distribution of the
proposal has to meet some requirements,6 which we do not
detail here. A common choice of the proposed x′, for example,
is to choose x′ randomly following a Gaussian distribution
centered at x.

The second phase is to decide whether we should accept
x′ or not. Following Metropolis-Hasting algorithm, we use
E (x′)/E (x) as the acceptance ratio: If E (x′) > E (x), then
the proposed x′ will be accepted. Otherwise, x′ may still be
accepted, but only with the probability of E (x′)/E (x).

The pseudocode of the sampling process is shown in
Algo. 2, lines 12-20. To fit the MCMC sampling procedure
to our problem setting 20, it is necessary to transform the
problem of finding the global maximum from an initial point
x to the problem of finding the global maximum within a
range of [b,e]. One way to achieve this is to reject samples
outside the range when sampling. Another approach, which
we have adopted for its ease of implementation, is to intro-
duce a transformer Ψ that maps R to [b,e]. In this way, if
we find the minimal point of B ◦Ψ at x∗, we have found
the minimal point of B at Ψ(x∗). Using such a transformer
mapping allows us to apply a simple function transformation
before feeding the energy function to an MCMC procedure,
rather than modifying the MCMC internal, i.e., the aforemen-
tioned second phase of the sampling. The rationale of this
transformation can be summarized in the following lemma.

6 Namely, ergodicity, detailed-balance, and aperiodicity [6].

645

Lemma 3. Given f defined over an interval [b,e], and the
transformer Ψ defined over real numbers

Ψb,e(x), (b+ e+(e−b)∗ sin(x))/2. (23)

If f has a global minimal point x∗ ∈ [b,e], we have

x∗ = Ψb,e(argmin
x∈R

(f ◦Ψb,e)). (24)

As an example, if we want to find the minimal point of
x2 for x ∈ [−1,1], we apply the transformer Ψ−1,1, which
is λx.sin(x), and reduce the original optimization problem
to finding the minimal point of sin2(x) over x ∈ R. This
transformed problem is unconstrained as opposed to the
original problem which limits x within a range. After finding
the minimal point for the transformed problem, say, at x∗ = π ,
we have also obtained the minimal point of the original
problem, i.e., Ψ−1,1(x∗) = 0.

Algo. 2 shows our global BEA algorithm. We note that
MCMC procedure itself never knows whether a real global
optimum is found or not. Remind that the MCMC sampling
only follows the desired distribution. If the energy function
is expressed in the form of exp−E , the points of lower energy
will be sampled more frequently than the points of higher
energy. Practically, we use more than one starting point to
find the best global optimization. Lines 12-20 describe the
process. The number of starting points is n_start. For each
starting point, we generate a sequence of MCMC samples
to find the maximum. The returned value of Algo. 2 is the
largest obtained from all starting points.

4. Implementation and Evaluation
This section describes details of our implementation and
presents our empirical evaluation results.

4.1 Implementation
We have implemented our backward error analysis using
C++ and Python. Our implementation follows the high-level
structure illustrated in Fig. 2, with the following components:
(C1) A source transformer that lifts the numerical code f̂ , of
type double, to f , of higher precision, to simulate the exact
solution. We have prototyped a source to source transformer
that substitutes double with a higher precision type. For
example, we can lift y1 in Sect. 2 by changing its double to
a higher-precision type, say hp

hp y1bis (hp x) {return sqrt(x + 1) - 1;}

Here, we have used the Argument-Dependent Lookup (ADL)
feature of C++, assuming that the basic arithmetic operations
and built-in functions like sqrt can be overloaded to operate
on the high precision type hp. In our implementation, hp
can be cpp_dec_float <n> (n ∈ Z) of the Boost (v1.56.0)
Multiprecision library [1], or the built-in long double.
(C2) A backend of local BEA which, given f̂ , f and x, finds
the smallest |δ | so that f (x+δ · x)' f (x). As explained in

Algorithm 2: Global BEA

Input:

b Lower bound of the searched interval
e Higher bound of the searched interval

(e≥ b)
n_start Number of starting points

iter_global Iteration bound for the procedure of
Metropolis-Hasting

B Backward error computed in Algo. 1
Output: An MCMC estimation of max[b,e] B

1 Let Ψ = λx.(b+ e+(e−b)∗ sin(x))/2
2 Let the energy function be

E = λx.exp−B(Ψ(x)/T)

/* Find the optimal MCMC solution for a grid of evenly
spaced starting points */

3 for j = 0 to n_start−1 do
4 Let x = Ψ

−1
b,e(b+(e−b)/(n_start−1)∗ j)

5 Let xmax[j] = x
/* Loop Invariant: E (xmax[j])≥ E (x) */

6 for i = 1 to iter_global do
/* Generate the next MCMC sample */

7 Let x = Metropolis-Hasting(E ,x)
8 if E (x)> E (xmax[j]) then
9 xmax[j] = x

10 Let m be an index of the largest xmax[·], namely,
xmax[m]≥ xmax[m′] for all m′ ∈ [0,n_start−1]

11 return Ψb,e(xmax[m])

12 Procedure Metropolis-Hasting(E , x)
13 Let d be a random perturbation generated from a distribution

predefined in the MCMC procedure
14 if E (x)< E (x+d) then
15 Let accept = true

16 else
17 Let r be a number generated from a uniform distribution

U (0,1)
18 Let accept be the Boolean

r <
E (x+d)

E (x)

19 if accept then return x+d
20 else return x

Sect. 3, this step involves the reuse of a local minimizer LM
and a root-finder RF. We use Brent’s algorithm [12] for LM,
and the bisection algorithm [36] for RF. Both of them are
available from Boost.
(C3) A forward error simulator that simulates the forward
error as F(x) = |(f (x)− f̂ (x))/ f (x)| given f , f̂ , and x. Note
that f̂ is typed differently from f , implying an implicit type
conversion when computing F .
(C4) An MCMC engine that computes maxx∈S E (x), where
E (x) is a black-box energy function derived from either
backward error B(x) or condition number C(x) (Eq. 7),
and S refers to the search scope. We use the Basinhopping
algorithm [42] implemented in Scipy (v0.15.0) [5] as the
MCMC engine.

646

4.2 Empirical Results and Analysis
To demonstrate the effectiveness of our tool, we evaluate it on
classic floating-point functions, including the transcendental
functions of GNU C Library (glibc): sin, cos, log, exp,
sqrt and two special functions tgamma and erf of the Boost
library. The experiments were performed on a laptop with
a 2.6 GHz Intel Core i7 and 16GB RAM running MacOS
10.9.5. The running time in our evaluation is measured using
the C++ chrono library.

We find that the high precision type hp (Sect. 4.1) used
in the source transformation step is crucial for the accuracy
and efficiency of our assessment. Our evaluation studies three
variants of our tool, BEA1000, BEA100 and BEA_L, that
correspond to BEA with hp being cpp_dec_float <1000>,
cpp_dec_float <100>, and long double.

In Sect. A, we give the exact values of the major parame-
ters we have used in our experiments.

4.2.1 Assessment of Local BEA
Our goal of the first experiment is to find practical parameter
settings for local BEA. Recall that local BEA yields B(x)
(Fig. 2), and we use it as a black-box function for global
BEA and estimating the condition number. The performance
of the last two crucially depends on that of local BEA. The
setting of local BEA must, therefore, strike a balance between
precision and efficiency.

To measure the accuracy of local BEA is tricky, because
there have been no reported reference values of backward
error for our tested functions. A workaround is to rely on
the few classic functions, whose analytical form of condition
numbers have been studied and known. See Tab. 4 for these
condition numbers. Combined with a forward error F which
we can simulate with Eq. (1), we use F/C as the theoretical
value of backward error.

Tab. 5 reports the evaluation of local BEA. Each function
under test (Col. 1) is analyzed with seven input points, 100,
10, 1, 0.1, 0.01, 0.001, and 0.0001 (Col. 2). As explained
above, our evaluation adopts F/C as theoretical backward
error (Col. 3-5). For each BEA1000, BEA100, and BEA_L,
we give the local BEA results (Col. 6-8) and their running
times (Col. 9-11). Some table entries are marked “N/A”, i.e.
“Not Applicable”7.

We observe that, for transcendental functions of glbic,
BEA1000 computes exactly the same backward error values
as what are theoretically expected, namely, F/C. For this
reason, we choose BEA1000 as reference in our subsequent
comparison. Note that for special functions of Boost, F/C is
unavailable, in which case we use BEA1000 as the reference.

7 For example, we put N/A for sqrt (x) at x = 100 because its forward error
returns 0 (i.e.,

√
100 is to be exactly computed), and therefore, local BEA

returns 0 immediately (Algo. 1, Line 2); For tgamma or erf, no condition
number is available to us (Tab. 4), hence we put N/A in Col. 3-5 of these
functions in Tab. 5. Our metrics Ai and Si (i ∈ {1,2}) are meaningless for
these situations.

Table 4: Functions under test and their condition numbers in
analytical forms [25].

Function Condition number

glibc 2.21 cos xsin(x)/cos(x)
sin xcos(x)/sin(x)
exp x
log 1/ log(x)
sqrt 0.5

Boost 1.56 tgamma N/A
erf N/A

It can be seen that BEA100 reports almost the same back-
ward error as BEA1000, meaning that BEA1000 is probably
excessively precise. In terms of performance, BEA100 con-
sumes only 1E-3 time as BEA1000 does (Col. 9). Again,
this confirms that BEA1000 has only theoretical value (as a
“very precise” backward analyzer), but far less practical than
BEA100.

If we further relax the precision of the analyzer to long
double, we find that the computed backward errors some-
what deviate from F/C, but are still of the same magnitude.
The precision loss using BEA_L, however, is largely com-
pensated by the performance gain. Comparing Col. 11 and
9, the time spent by BEA_L is almost 1E-6 times less. The
gap between BEA_L and BEA1000 / BEA100 in terms of
execution time is probably due to the fact that long double
is implemented in hardware, while cpp_dec_float used in
BEA100 or BEA1000 is multiprecision software that comes
with a high performance penalty.

The metrics on the last four columns quantify the accuracy
and performance gain. The parameters A1, A2 (Col. 7, 8)
are the ratio between the backward error of BEA100 (resp.
BEA_L) and BEA1000

A1 , BBEA100/BBEA1000 A2 , BBEA_L/BBEA1000 (25)

The parameter S1 (resp. S2) quantifies the speed-up:

S1 , TBEA100/TBEA1000, S2 , TBEA_L/TBEA1000 (26)

The major conclusion we draw from this experiment is
about how to choose the high precision type when perform-
ing backward error analysis. For global BEA of the next
subsection, we will use long double due to its significant
performance gain from hardware. For the subsection of condi-
tion number estimation, we will use BEA100 for its balance
between precision and performance.

4.2.2 Assessment of Global BEA
This experiment evaluates the process of estimating maxi-
mum backward error for given intervals (Eq. 20). Because it
is generally impossible to verify whether the global optimum
has been reached unless the entire search scope is explored —
impossible because simply there are too many floating-point

647

Table 5: Local BEA evaluation results for BEA1000, BEA100 and BEA_L. Theoretical condition number C is computed from
the analytical form in Tab. 4, F is computed using Eq. (1). Accuracy Metrics include A1, A2 defined in Eq. 25. Performance
Metrics include S1, S2 defined in Eq. 26.

Function Characteristics Backward Error (B) Time (T, in second) Metrics
f̂ x C F F/C BBEA1000 BBEA100 BBEA_L TBEA1000 TBEA100 TBEA_L A1 A2 S1 S2

cos(x) 100 5.87E+01 7.85E-17 1.34E-18 1.34E-18 1.34E-18 1.31E-18 2.53E+01 2.77E-02 1.90E-05 100.0% 98.4% 1.09E-03 7.51E-07
10 6.48E+00 1.69E-17 2.60E-18 2.60E-18 2.60E-18 2.59E-18 2.48E+01 2.59E-02 1.00E-05 100.0% 99.6% 1.04E-03 4.03E-07
1 1.56E+00 8.81E-17 5.66E-17 5.66E-17 5.66E-17 5.66E-17 2.61E+01 2.65E-02 8.00E-06 100.0% 100.1% 1.02E-03 3.07E-07
0.1 1.00E-02 5.63E-17 5.61E-15 5.61E-15 5.61E-15 5.61E-15 2.39E+01 2.67E-02 9.00E-06 100.0% 100.0% 1.12E-03 3.77E-07
0.01 1.00E-04 1.44E-17 1.44E-13 1.44E-13 1.44E-13 1.38E-13 3.35E+01 2.73E-02 8.00E-06 100.0% 95.7% 8.15E-04 2.39E-07
0.001 1.00E-06 7.83E-18 7.83E-12 7.83E-12 7.83E-12 7.77E-12 3.24E+01 2.53E-02 8.00E-06 100.0% 99.2% 7.81E-04 2.47E-07
0.0001 1.00E-08 2.62E-17 2.62E-09 2.62E-09 2.62E-09 2.62E-09 2.71E+01 2.23E-02 7.00E-06 100.0% 100.0% 8.23E-04 2.58E-07

sin(x) 100 1.70E+02 6.03E-18 3.54E-20 3.54E-20 3.54E-20 1.80E-20 2.28E+01 1.65E-02 1.60E-05 100.0% 50.9% 7.24E-04 7.02E-07
10 1.54E+01 1.32E-16 8.59E-18 8.59E-18 8.59E-18 8.64E-18 2.34E+01 1.80E-02 9.00E-06 100.0% 100.5% 7.69E-04 3.85E-07
1 6.42E-01 2.11E-18 3.29E-18 3.29E-18 3.29E-18 3.28E-18 2.71E+01 1.95E-02 1.90E-05 100.0% 99.9% 7.20E-04 7.01E-07
0.1 9.97E-01 3.09E-17 3.10E-17 3.10E-17 3.10E-17 3.10E-17 4.97E+01 3.02E-02 7.00E-06 100.0% 100.1% 6.08E-04 1.41E-07
0.01 1.00E+00 4.27E-17 4.27E-17 4.27E-17 4.27E-17 4.28E-17 3.89E+01 2.33E-02 6.00E-06 100.0% 100.2% 5.99E-04 1.54E-07
0.001 1.00E+00 5.67E-18 5.67E-18 5.67E-18 5.67E-18 5.62E-18 3.14E+01 1.86E-02 6.00E-06 100.0% 99.1% 5.92E-04 1.91E-07
0.0001 1.00E+00 5.10E-17 5.10E-17 5.10E-17 5.10E-17 5.10E-17 2.41E+01 1.38E-02 6.00E-06 100.0% 100.0% 5.73E-04 2.49E-07

exp(x) 100 1.00E+02 5.99E-17 5.99E-19 5.99E-19 5.99E-19 6.37E-19 9.59E+00 1.25E-02 1.80E-05 100.0% 106.3% 1.30E-03 1.88E-06
10 1.00E+01 6.26E-17 6.26E-18 6.26E-18 6.26E-18 6.25E-18 9.38E+00 8.81E-03 9.00E-06 100.0% 99.9% 9.39E-04 9.59E-07
1 1.00E+00 5.32E-17 5.32E-17 5.32E-17 5.32E-17 5.32E-17 2.07E+01 1.61E-02 9.00E-06 100.0% 99.9% 7.78E-04 4.35E-07
0.1 1.00E-01 7.37E-17 7.37E-16 7.37E-16 7.37E-16 7.37E-16 1.38E+01 1.13E-02 9.00E-06 100.0% 99.9% 8.19E-04 6.52E-07
0.01 1.00E-02 1.08E-16 1.08E-14 1.08E-14 1.08E-14 1.08E-14 1.21E+01 8.69E-03 8.00E-06 100.0% 100.0% 7.18E-04 6.61E-07
0.001 1.00E-03 4.29E-17 4.29E-14 4.29E-14 4.29E-14 2.28E-14 8.88E+00 6.54E-03 8.00E-06 100.0% 53.2% 7.36E-04 9.01E-07
0.0001 1.00E-04 4.33E-17 4.33E-13 4.33E-13 4.33E-13 4.15E-13 7.55E+00 6.22E-03 8.00E-06 100.0% 95.9% 8.24E-04 1.06E-06

log(x) 100 2.17E-01 9.43E-17 4.34E-16 4.34E-16 4.34E-16 4.34E-16 3.21E+02 1.22E-01 2.00E-05 100.0% 100.0% 3.80E-04 6.23E-08
10 4.34E-01 9.43E-17 2.17E-16 2.17E-16 2.17E-16 2.17E-16 3.49E+02 1.34E-01 1.20E-05 100.0% 100.0% 3.84E-04 3.44E-08
1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.1 4.34E-01 7.45E-17 1.72E-16 1.72E-16 1.72E-16 1.71E-16 2.99E+02 1.12E-01 1.10E-05 100.0% 100.0% 3.75E-04 3.68E-08
0.01 2.17E-01 9.41E-17 4.33E-16 4.33E-16 4.33E-16 4.33E-16 3.73E+02 1.37E-01 1.10E-05 100.0% 99.9% 3.67E-04 2.95E-08
0.001 1.45E-01 3.13E-17 2.16E-16 2.16E-16 2.16E-16 2.17E-16 1.34E+02 5.19E-02 1.10E-05 100.0% 100.4% 3.87E-04 8.21E-08
0.0001 1.09E-01 9.34E-17 8.60E-16 8.60E-16 8.60E-16 8.60E-16 2.85E+02 1.06E-01 1.10E-05 100.0% 100.0% 3.72E-04 3.86E-08

sqrt(x) 100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
10 5.00E-01 6.03E-17 1.21E-16 1.21E-16 1.21E-16 1.21E-16 1.42E+00 6.35E-03 1.60E-05 100.0% 100.2% 4.47E-03 1.13E-05
1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.1 5.00E-01 2.53E-18 5.06E-18 5.06E-18 5.06E-18 5.06E-18 1.64E+00 7.46E-03 8.00E-06 100.0% 100.0% 4.55E-03 4.88E-06
0.01 5.00E-01 4.51E-17 9.02E-17 9.02E-17 9.02E-17 9.02E-17 1.42E+00 6.97E-03 7.00E-06 100.0% 100.0% 4.91E-03 4.93E-06
0.001 5.00E-01 7.30E-17 1.46E-16 1.46E-16 1.46E-16 1.46E-16 1.62E+00 7.78E-03 7.00E-06 100.0% 100.1% 4.80E-03 4.32E-06
0.0001 5.00E-01 3.14E-18 6.29E-18 6.29E-18 6.29E-18 6.28E-18 1.59E+00 7.34E-03 7.00E-06 100.0% 99.8% 4.62E-03 4.40E-06

tgamma 100 N/A N/A N/A 2.65E-18 2.65E-18 2.68E-18 3.30E+01 1.60E-01 2.10E-05 100.00% 101.28% 4.85E-03 6.36E-07
10 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.1 N/A N/A N/A 7.08E-17 7.08E-17 7.08E-17 3.35E+01 2.16E-01 1.00E-05 100.00% 99.90% 6.45E-03 2.99E-07
0.01 N/A N/A N/A 1.95E-18 1.95E-18 1.97E-18 3.35E+01 1.73E-01 1.70E-05 100.00% 101.33% 5.16E-03 5.07E-07
0.001 N/A N/A N/A 2.92E-17 2.92E-17 2.91E-17 3.35E+01 1.78E-01 9.00E-06 100.00% 99.81% 5.31E-03 2.69E-07
0.0001 N/A N/A N/A 2.16E-17 2.16E-17 2.16E-17 3.35E+01 1.75E-01 9.00E-06 100.00% 100.02% 5.22E-03 2.69E-07

erf 100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
10 N/A N/A N/A 1.00E-04 1.00E-04 0.00E+00 4.15E+01 3.86E-02 1.00E-06 100.00% 0.00% 9.30E-04 2.41E-08
1 N/A N/A N/A 2.08E-16 2.08E-16 2.08E-16 3.88E+01 2.08E-01 2.90E-05 100.00% 100.17% 5.36E-03 7.47E-07
0.1 N/A N/A N/A 8.28E-18 8.28E-18 8.38E-18 2.76E+00 1.82E-02 1.10E-05 100.00% 101.13% 6.59E-03 3.99E-06
0.01 N/A N/A N/A 9.32E-17 9.32E-17 9.31E-17 1.88E+00 1.24E-02 1.00E-05 100.00% 99.94% 6.60E-03 5.32E-06
0.001 N/A N/A N/A 6.99E-17 6.99E-17 6.98E-17 1.43E+00 9.84E-03 1.10E-05 100.00% 99.86% 6.88E-03 7.69E-06
0.0001 N/A N/A N/A 2.54E-16 2.54E-16 2.54E-16 1.17E+00 8.46E-03 1.00E-05 100.00% 99.98% 7.23E-03 8.55E-06

648

numbers — we content ourselves with the following consis-
tency check: If we have a decreasing sequence of intervals
I1⊇ I2 . . ., the computed maximal backward error must be
non-increasing

I1 ⊇ I2 =⇒ max
x∈I1

B(x)≥max
x∈I2

B(x) (27)

We evaluate global BEA on the same functions as in
local BEA, i.e., sin, cos, exp, log, sqrt, tgamma and erf.
For each, we estimate maxx∈I B(x) for I being [0.0001,100],
[0.0001,10], [0.0001, 1], [0.0001, 0.1], [0.0001, 0.01] and
[0.0001,0.001]. Usually, the number of sampling is crucial
for MCMC approaches. The sampling number of our global
BEA is controlled by the parameter iter_global (Algo. 2).
We evaluate the global BEA with iter_global = 100, 1000
and 10000. As mentioned earlier, we will use BEA_L in the
evaluation.

We observe that the results of our global BEA are overall
consistent. When iter_global = 1000 or 10000, the results are
consistent for all the tested functions. When iter_global =
100, for iter_global = 100, we have 6 out of 7 tested functions
that exhibit consistent results. The only exception is for exp
(Col. 4) for the interval [0.0001,1], when iter_global = 100.
The maximum backward error for exp (Col. 4) is found to be
9.64E-13 for the interval [0.0001,1], but then B(x∗) increases
to 1.00E-12 when the search interval is [0.0001, 0.1]. The
issue is due to the insufficient number of iterations. Note
that the inconsistency disappears when the iteration number
increases to 1000 (Col. 7).

The running time of global BEA is less than 2 seconds for
iter_global = 100, less than 20 seconds when iter_global
= 1000 (19.5s for tgamma of [0.0001,100]). The worst-
case running time is attained when iter_global = 10000, for
tgamma estimated over [0.0001, 1] (133 seconds).

In conclusion, for most tested functions and the decreasing
sequence of intervals, the magnitude of B(x∗) decreases or
remains the same, as expected. Because strong consistency
has already been obtained when iter_global = 1000, we use
iter_global = 1000 in practice.

4.2.3 Estimating the Condition Number
Sanity Check. As explained in Sect. 1, the condition num-
ber can be computed as C(x) = F(x)/B(x). An appealing
feature of condition number is that it does not depend on any
particular implementation, but the problem itself.

As a sanity check, we verify that using the two imple-
mentations of sin(x) discussed in Sect. 2, namely, glibc’s
sin and fsin instruction of Intel x87, we produce the same
condition number. Let F1(x) and B1(x) denote the forward
error and backward error of Intel fsin, and F2(x) and B2(x)
denote those of glibc sin. Then, the sanity check consists in
verifying

F1(x)/B1(x)' F2(x)/B2(x) (28)

for all input x. For most input x, our results show that F1(x)
is very close to F2(x) and B1(x) is very close to B2(x),

meaning that (28) trivially holds for those input. Nontrivial
cases can be observed when x is close to π , which we
present in Tab. 7. For a sequence of input points closer
and closer to π , we compute the condition numbers of sin
and fsin (Col. 2-4 and Col. 5-7 respectively). Observe that
F1(x) = F2(x) when x = 3,3.14,3.141 and 3.1415, and the
same holds for B1(x) and B2(x); then, after x = 3.14159,
F1(x) shrinks under machine epsilon, whereas B1(x) changes
very little. On the other hand, B2(x) decreases rather quickly
after x = 3.14159, while F2(x) remains stable. What remains
invariant is that F1(x)/B1(x) and F2(x)/B2(x) remain almost
equal throughout (compare Col. 4 and 7). We quantify their
difference by reporting C1/C2 in the last column, where
C1 = F1/B1 and C2 = F2/B2. It can be seen that C1/C2 is
almost 1 for all input points. This confirms Eq. (28).

Global Condition Estimation. If we feed C(x) into a
MCMC procedure, as what we have done for global BEA,
we can estimate the maximal condition number within an
interval. We call this process global condition estimation.
Such an example is shown in Sect. 2, Tab. 2. Next we will
study experimental results of global condition estimation.

Unlike global BEA that uses BEA_L which achieves a
high efficiency, we have to settle for the less efficient, but
more precise BEA100 for estimating the condition number
over a given interval. The reason is that BEA_L is unable
to detect backward error smaller than the machine epsilon
of long double, i.e., 10−19. Failing to estimate very small
backward errors does not cause an issue for global BEA
which aims at finding maximal backward error, but is prob-
lematic for estimating the condition number, F/B (where B
is the denominator).

Tab. 8 shows the experimental results. We have used the
same set of functions and intervals as in the global BEA
experiment (Col. 1, 2). With BEA100, we only evaluate our
analysis for iter_global = 100 (Col. 3-5) and 10000 (Col. 6-8).

Let us take a close look at the maximum condition num-
bers of the transcendental functions. Using their analytical
forms in Tab. 4, we can verify the correctness of our re-
sults. The analytical form of condition number for cos(x) is
x tan(x), which tends to infinity when x is close to (0.5+
k) ∗ π . We have obtained, for the interval [0.0001,100],
x*=7.07E+01,i.e., 22.50π . For the interval [0.001,10], we
obtain x*=4.71, which is 1.50*π . For intervals [0.0001, 1],
[0.0001,0.1], [0.0001,0.01] and [0.0001,001], we obtain the
largest condition number at 0.001 for all these ranges. This is
as expected, corresponding to the fact that x tan(x) mono-
tonically decreases when x ≤ 1. The sin(x) function has
the analytical condition number x/ tan(x). Hence, sin is ill-
conditioned, and its condition number peaks at x = kπ , and
is increasingly monotone for x ≤ 1. We have computed the
maximal point of the condition number being 9.74E+01=
31.00*π , and 9.42=3.00 *π for the ranges [0.0001,100] and
[0.001,10], respectively. The maximal point reaches the right
border of the ranges that are subsets of [0.0001,1], as ex-

649

Table 6: Global BEA assessment. x*: point where the maximal backward error is reached, and time used for the estimation T (in
seconds).

iter_global =100 iter_global = 1000 iter_global = 10000

f̂ [b,e] x∗ B(x∗) T (s) x∗ B(x∗) T (second) x∗ B(x∗) T (s)

cos [0.0001,100] 5.65E+01 1.00E-04 9.45E-01 8.80E+01 1.00E-04 2.82E-01 7.85E+01 1.00E-04 1.37E+00
[0.0001,10] 1.00E-04 5.04E-09 1.37E+00 9.42E+00 1.00E-04 3.34E+00 9.42E+00 1.00E-04 4.10E+00
[0.0001,1] 1.01E-04 5.21E-09 1.32E+00 1.01E-04 5.46E-09 1.35E+01 1.00E-04 5.53E-09 1.36E+02
[0.0001,0.1] 1.00E-04 5.40E-09 1.38E+00 1.00E-04 5.46E-09 1.36E+01 1.00E-04 5.51E-09 1.32E+02
[0.0001,0.01] 1.01E-04 5.43E-09 1.31E+00 1.00E-04 5.52E-09 1.35E+01 1.00E-04 5.55E-09 1.31E+02
[0.0001,0.001] 1.00E-04 5.49E-09 1.34E+00 1.00E-04 5.54E-09 1.35E+01 1.00E-04 5.55E-09 1.33E+02

sin [0.0001,100] 8.33E+01 1.00E-04 3.52E-01 4.87E+01 1.00E-04 2.85E-01 9.58E+01 1.00E-04 1.52E+00
[0.0001,10] 1.57E+00 1.95E-13 1.35E+00 7.85E+00 1.00E-04 5.04E+00 7.85E+00 1.00E-04 1.41E+00
[0.0001,1] 8.33E-01 2.62E-16 1.28E+00 8.01E-01 2.76E-16 1.37E+01 7.88E-01 2.81E-16 1.37E+02
[0.0001,0.1] 6.28E-02 1.08E-16 1.19E+00 6.27E-02 1.11E-16 1.28E+01 6.26E-02 1.12E-16 1.28E+02
[0.0001,0.01] 7.90E-03 1.10E-16 1.28E+00 3.92E-03 1.10E-16 1.30E+01 7.82E-03 1.11E-16 1.30E+02
[0.0001,0.001] 1.24E-04 1.09E-16 1.25E+00 9.77E-04 1.11E-16 1.29E+01 9.77E-04 1.11E-16 1.26E+02

exp [0.0001,100] 1.02E-04 8.61E-13 1.32E+00 1.00E-04 1.05E-12 1.33E+01 1.00E-04 1.10E-12 1.38E+02
[0.0001,10] 1.06E-04 8.51E-13 1.28E+00 1.00E-04 1.07E-12 1.34E+01 1.01E-04 1.10E-12 1.36E+02
[0.0001,1] 1.00E-04 9.63E-13 1.42E+00 1.00E-04 1.07E-12 1.37E+01 1.01E-04 1.10E-12 1.38E+02
[0.0001,0.1] 1.07E-04 1.00E-12 1.37E+00 1.01E-04 1.09E-12 1.38E+01 1.00E-04 1.11E-12 1.41E+02
[0.0001,0.01] 1.00E-04 1.10E-12 1.35E+00 1.00E-04 1.10E-12 1.33E+01 1.00E-04 1.11E-12 1.37E+02
[0.0001,0.001] 1.01E-04 1.10E-12 1.40E+00 1.00E-04 1.11E-12 1.32E+01 1.00E-04 1.11E-12 1.36E+02

log [0.0001,100] 1.00E-04 8.66E-16 1.43E+00 2.81E-04 8.80E-16 1.37E+01 3.18E-04 8.86E-16 1.34E+02
[0.0001,10] 2.44E-04 8.68E-16 1.49E+00 2.27E-04 8.87E-16 1.35E+01 2.48E-04 8.87E-16 1.34E+02
[0.0001,1] 1.78E-04 8.88E-16 1.47E+00 3.05E-04 8.88E-16 1.38E+01 3.03E-04 8.88E-16 1.34E+02
[0.0001,0.1] 1.20E-04 8.79E-16 1.45E+00 2.26E-04 8.87E-16 1.37E+01 1.11E-04 8.88E-16 1.33E+02
[0.0001,0.01] 3.16E-04 8.85E-16 1.51E+00 1.07E-04 8.88E-16 1.35E+01 2.76E-04 8.88E-16 1.32E+02
[0.0001,0.001] 1.00E-04 8.88E-16 1.43E+00 1.03E-04 8.88E-16 1.35E+01 1.01E-04 8.88E-16 1.32E+02

sqrt [0.0001,100] 6.41E+01 2.21E-16 1.31E+00 6.41E+01 2.21E-16 1.14E+01 4.01E+00 2.22E-16 1.18E+02
[0.0001,10] 4.18E+00 2.15E-16 1.20E+00 4.02E+00 2.21E-16 1.17E+01 4.01E+00 2.22E-16 1.15E+02
[0.0001,1] 6.35E-02 2.19E-16 1.23E+00 2.51E-01 2.21E-16 1.12E+01 2.50E-01 2.22E-16 1.17E+02
[0.0001,0.1] 1.60E-02 2.18E-16 1.17E+00 6.26E-02 2.21E-16 1.13E+01 1.56E-02 2.22E-16 1.17E+02
[0.0001,0.01] 3.93E-03 2.20E-16 1.16E+00 9.88E-04 2.20E-16 1.12E+01 9.79E-04 2.21E-16 1.20E+02
[0.0001,0.001] 9.78E-04 2.21E-16 1.23E+00 9.78E-04 2.22E-16 1.14E+01 9.77E-04 2.22E-16 1.18E+02

tgamma [0.0001,100] 1.46E+00 1.43E-05 2.07E+00 1.46E+00 1.61E-12 1.95E+01 1.46E+00 1.00E-04 1.18E+02
[0.0001,10] 1.46E+00 7.05E-14 1.47E+00 1.46E+00 5.94E-13 1.37E+01 1.46E+00 1.00E-04 6.93E+01
[0.0001,1] 9.98E-01 3.79E-16 1.42E+00 9.91E-01 4.11E-16 1.32E+01 1.00E+00 4.38E-16 1.33E+02
[0.0001,0.1] 5.99E-02 1.56E-16 1.41E+00 5.84E-02 1.60E-16 1.33E+01 1.55E-02 1.66E-16 1.32E+02
[0.0001,0.01] 7.56E-03 1.56E-16 1.37E+00 7.72E-03 1.64E-16 1.32E+01 1.21E-04 1.63E-16 1.29E+02
[0.0001,0.001] 9.73E-04 1.62E-16 1.37E+00 9.57E-04 1.62E-16 1.33E+01 9.75E-04 1.65E-16 1.31E+02

erf [0.0001,100] 6.41E+00 1.00E-04 2.30E-02 6.43E+00 1.00E-04 1.12E-01 6.34E+00 1.00E-04 1.09E+00
[0.0001,10] 6.41E+00 1.00E-04 1.47E-02 6.38E+00 1.00E-04 1.43E-01 6.16E+00 1.00E-04 1.40E+00
[0.0001,1] 4.76E-01 5.10E-16 1.55E+00 4.78E-01 6.05E-16 1.55E+01 4.73E-01 6.20E-16 1.53E+02
[0.0001,0.1] 2.91E-02 3.81E-16 1.24E+00 5.08E-03 4.04E-16 1.23E+01 3.18E-04 4.17E-16 1.22E+02
[0.0001,0.01] 1.40E-03 3.90E-16 1.24E+00 9.97E-03 3.94E-16 1.20E+01 1.00E-02 4.24E-16 1.19E+02
[0.0001,0.001] 1.62E-04 3.95E-16 1.30E+00 1.10E-04 4.00E-16 1.20E+01 4.40E-04 4.22E-16 1.21E+02

pected. The condition number for log(x) is 1/ log(x), which
has a singularity at x = 1 near which it is unbounded. Our
analysis captures the largest condition number for the search
interval [0.0001,1] and higher. For the other intervals, the
largest condition numbers are obtained at the right boundary
of the searched intervals, which is also as expected since
1/log(x) monotonically decreases when x < 1. The condition
number for exp(x) is simply x. Our analyzer returns e for the
searched interval [b,e]. The analytical condition number for
sqrt(x) is constant 0.5. The maximal point of the condition
number can, therefore, be any.

To sum up, our analysis yields a tight estimation of
maxx∈I C(x). The running time for each estimation of glibc’s
functions are within minutes. More time is needed for estimat-
ing the special functions (about 4.5 hours on [0.0001,0.01] for
tgamma). Since condition number estimation is notoriously a
hard problem, the time spent on them should be justified by
their benefits.

5. Related Work
This section surveys related research and further positions our
work. Miller presents a BEA algorithm [33] for straight-line

650

Table 7: Comparing Intel fsin and glibc (v 2.21) sin for a sequence of inputs close to pi. The columns of F , B, and C refer to
relative forward error, relative backward error and condition number, respectively.

Intel fsin glibc sin

Input F1 B1 C1(F1/B1) F2 B2 C2(F2/B2) C1/C2

3 6.0779970E-17 2.8879915E-18 2.1045758E+01 6.0779970E-17 2.8879915E-18 2.1045758E+01 1.0000000E+00
3.1 1.7095339E-17 2.2950026E-19 7.4489409E+01 1.7095339E-17 2.2950026E-19 7.4489409E+01 1.0000000E+00
3.14 1.8632376E-17 9.4506195E-21 1.9715507E+03 1.8632376E-17 9.4506195E-21 1.9715507E+03 1.0000000E+00
3.141 3.3602131E-17 6.3401546E-21 5.2998913E+03 3.3602131E-17 6.3401546E-21 5.2998913E+03 1.0000000E+00
3.1415 8.5276377E-17 2.5150923E-21 3.3905864E+04 8.5276377E-17 2.5150923E-21 3.3905864E+04 1.0000000E+00
3.14159 1.4829918E-15 1.2526307E-21 1.1839019E+06 1.1302151E-16 9.5465265E-23 1.1839019E+06 1.0000000E+00
3.141592 6.1079480E-15 1.2707228E-21 4.8066724E+06 4.7910788E-17 9.9675584E-24 4.8066724E+06 1.0000000E+00
3.1415926 7.5487357E-14 1.2876755E-21 5.8622966E+07 3.9055811E-17 6.6622032E-25 5.8622966E+07 1.0000000E+00
3.14159265 1.1266735E-12 1.2874122E-21 8.7514590E+08 7.0150194E-18 8.0158293E-27 8.7514580E+08 1.0000001E+00
3.141592653 6.8575431E-12 1.2874147E-21 5.3266001E+09 5.5711593E-17 1.0459128E-26 5.3266001E+09 1.0000000E+00
3.1415926535 4.5042756E-11 1.2874147E-21 3.4986983E+10 6.5502722E-17 1.8722026E-27 3.4986984E+10 9.9999999E-01
3.14159265358 4.1299490E-10 1.2874147E-21 3.2079400E+11 5.9303635E-17 1.8486478E-28 3.2079466E+11 9.9999794E-01
3.141592653589 5.0985843E-09 1.2874147E-21 3.9603279E+12 3.1608549E-17 7.9813198E-30 3.9603160E+12 1.0000030E+00
3.1415926535897 4.3312066E-08 1.2874147E-21 3.3642669E+13 1.8158747E-18 5.3975347E-32 3.3642668E+13 1.0000000E+00
3.14159265358979 1.2517567E-06 1.2874147E-21 9.7230266E+14 5.2480308E-17 5.3921925E-32 9.7326474E+14 9.9901150E-01

programs that have no control flow. Gáti attempts to relieve
this limit but in the price of high overhead. Gáti generates a
straight-line program per a single program input, and then
apply Miller’s algorithm as a black-box [20]. In contrast, our
approach comes with a BEA formulation with mathematical
optimization, which, combined with MCMC sampling, deals
with general floating-point programs.

Backward Error Analysis. Wilkinson’s work on the foun-
dation of backward error analysis has its root in Error Anal-
ysis in Floating Point Arithmetic [44], and his research on
floating-point program error analysis, culminating in his influ-
ential paper Rounding Errors in Algebraic Process [43] and
Turing Award in 1970. BEA has been continued [18, 29] and
becomes a Swiss army knife for dealing with many different
types of uncertainty computations [28, 41]. The technical
details of BEA are summarized in [21], [26], [35].

The idea of automated error analysis goes back to the
dawn of scientific computing, for example, see [46] for a
running error analysis technique where an error bound is
computed concurrently with the solution. Over years, various
techniques of automated error analysis have been developed.
Most techniques target specific mathematical quantities that
measure the accuracy or stability of numerical computation,
such as direct search optimization techniques for studying
the growth factor of Gaussian elimination and condition
number of a matrix. In contrast, our approach presented in
this paper targets generic numerical code. Our automated
BEA benefits both developers and numerical analysts, and
complements other program analysis approaches for floating-
point programs.

Static Analysis. Static analysis of a floating-point program
consists in automatically deriving the possible values of pro-
gram variables during its execution [24, 34]. Such analyses
allow the detection of a large class of bugs or for proving

their absence [10], and form the basis of more sophisticated
analyses [23] and program transformations [32]. The prob-
lem of finding the exact set of values is known to be unde-
cidable, and approximate solutions have been extensively
studied, especially in the framework of abstract interpreta-
tion [14, 15], which provides a mathematical foundation for
reasoning about approximations and their computation.

Static approaches are attractive because of their soundness
guarantees. Usually, however, such soundness information
is too conservative to be useful. Another disadvantage is the
limited language features supported by most static analyzers.
For example, few static analyzers can precisely deal with
programs with pointers. Note that this limitation can be
theoretical [19]: classic static numerical analysis has to
be extended with pointer-aware abstract domains, but the
extended analyzers unavoidably lose precision, in particular,
when handling numerical operations on the heap.

Compared with static approaches, our BEA technique
requires program execution, produces quantitative answers,
and has no theoretical limitation for the kind of programs
under analysis.

Runtime Techniques. A number of dynamic or symbolic
approaches exist for analyzing floating-point programs. We
discuss a few recent, representative efforts. Barr et al. [8] use
symbolic execution [16, 30] to discover program inputs that
trigger runtime floating-point exceptions. Tang et al. [40] dis-
cover potential instability issues by systematically altering the
intermediate values or expressions of numerical computation.

Benz et al. [9], in contrary, try to assess numerical accu-
racy by a side-by-side runtime monitoring of computational
precision. Bao and Zhang [7] propose a technique to reduce
the cost of such runtime detection by not explicitly computing
the precise error, but rather marking and tracking potentially
inaccurate values. Chiang et al. [13] develop a heuristic algo-
rithm to find inputs that lead to large forward error.

651

Table 8: Estimate of maximal condition number within a
search interval. The maximal point x∗, maximal condition
number C(x∗) and the consumed time T are measured in for
iteration iter_global = 100 and iter_global = 1000.

iter_global = 100 iter_global = 1000
f [b,e] x∗ C(x∗) T (s) x∗ C(x∗) T (s)

cos [0.0001,100] 9.27E+01 1.06E+04 46.02 7.07E+01 1.43E+06 733.42
[0.0001,10] 7.85E+00 1.92E+04 56.01 4.71E+00 4.31E+05 820.70
[0.0001,1] 1.00E+00 1.56E+00 55.24 1.00E+00 1.56E+00 738.51
[0.0001,0.1] 1.00E-01 1.00E-02 85.15 1.00E-01 1.00E-02 763.73
[0.0001,0.01] 1.00E-02 1.00E-04 67.83 1.00E-02 1.00E-04 478.61
[0.0001,0.001] 1.00E-03 1.00E-06 51.26 1.00E-03 1.00E-06 395.46

sin [0.0001,100] 9.11E+01 1.43E+05 47.10 9.74E+01 3.38E+05 736.20
[0.0001,10] 9.43E+00 1.26E+04 56.43 9.42E+00 1.71E+05 829.29
[0.0001,1] 1.00E-04 1.00E+00 57.18 1.00E-04 1.00E+00 753.19
[0.0001,0.1] 1.00E-04 1.00E+00 80.44 1.00E-04 1.00E+00 711.33
[0.0001,0.01] 1.00E-04 1.00E+00 67.63 1.00E-04 1.00E+00 464.98
[0.0001,0.001] 1.00E-04 1.00E+00 48.04 1.00E-04 1.00E+00 404.15

exp [0.0001,100] 1.00E+02 1.00E+02 24.92 1.00E+02 1.00E+02 441.57
[0.0001,10] 1.00E+01 1.00E+01 24.81 1.00E+01 1.00E+01 461.60
[0.0001,1] 1.00E+00 1.00E+00 34.12 1.00E+00 1.00E+00 575.59
[0.0001,0.1] 1.00E-01 1.00E-01 25.15 1.00E-01 1.00E-01 420.89
[0.0001,0.01] 1.00E-02 1.00E-02 20.33 1.00E-02 1.00E-02 345.76
[0.0001,0.001] 1.00E-03 1.00E-03 17.66 1.00E-03 1.00E-03 293.57

log [0.0001,100] 1.01E+00 1.40E+02 205.43 9.99E-01 1.47E+03 3282.17
[0.0001,10] 9.96E-01 2.22E+02 194.73 1.00E+00 6.49E+03 1962.48
[0.0001,1] 1.00E+00 1.06E+07 145.93 1.00E+00 5.28E+09 748.40
[0.0001,0.1] 1.00E-01 4.34E-01 294.70 1.00E-01 4.34E-01 3681.57
[0.0001,0.01] 1.00E-02 2.17E-01 220.50 1.00E-02 2.17E-01 2201.92
[0.0001,0.001] 1.00E-03 1.45E-01 177.97 1.00E-03 1.45E-01 1699.71

sqrt [0.0001,100] 3.29E+01 5.00E-01 13.95 3.96E+01 5.00E-01 144.63
[0.0001,10] 8.28E+00 5.00E-01 15.83 1.64E+00 5.00E-01 155.57
[0.0001,1] 9.53E-01 5.00E-01 16.03 6.53E-01 5.00E-01 157.12
[0.0001,0.1] 8.39E-02 5.00E-01 15.78 7.36E-04 5.00E-01 158.95
[0.0001,0.01] 8.80E-03 5.00E-01 15.51 2.97E-03 5.00E-01 155.76
[0.0001,0.001] 1.10E-04 5.00E-01 17.85 7.84E-04 5.00E-01 151.64

tgamma [0.0001,100] 1.00E+02 4.60E+02 599.24 1.00E+02 4.60E+02 5235.82
[0.0001,10] 1.00E+01 2.25E+01 1104.69 1.00E+01 2.25E+01 5559.69
[0.0001,1] 2.16E-01 1.06E+00 1173.08 2.16E-01 1.06E+00 5631.08
[0.0001,0.1] 1.00E-01 1.04E+00 824.38 1.00E-01 1.04E+00 5605.60
[0.0001,0.01] 1.00E-02 1.01E+00 678.19 1.00E-02 1.01E+00 16060.74
[0.0001,0.001] 1.00E-03 1.00E+00 609.94 1.00E-03 1.00E+00 5637.66

erf [0.0001,100] 1.00E-04 1.00E+00 821.89 1.00E-04 1.00E+00 10663.07
[0.0001,10] 1.00E-04 1.00E+00 1589.78 1.00E-04 1.00E+00 9685.16
[0.0001,1] 1.00E-04 1.00E+00 537.75 1.00E-04 1.00E+00 2919.77
[0.0001,0.1] 1.00E-04 1.00E+00 130.62 1.00E-04 1.00E+00 647.44
[0.0001,0.01] 1.00E-04 1.00E+00 84.58 1.00E-04 1.00E+00 489.99
[0.0001,0.001] 1.00E-04 1.00E+00 60.17 1.00E-04 1.00E+00 422.12

Rubio-Gonzalez et al. [37] aim to enhance performance
of floating-point programs by tuning the types of floating-
point variables. Schkufza et al. [39] propose a technique to
automatically tune the precision of floating-point code for
compiler optimization to allow an acceptable loss of precision.
Zou et al. [48] use fitness functions and genetic algorithms
to generate inputs of floating point programs. These inputs
are then used to trigger inaccuracies in the programs.

While the exploration of run-time properties allows dy-
namic approaches to carry out a fine-grained analysis of
floating-point programs, these approaches focus on forward
error, i.e. the difference between the expected and the real
output, which has been recognized by numerical analysts as
less powerful than performing error analysis à la backward.

6. Conclusion
We have presented an automated backward error analysis
(abbreviated as BEA in the paper) for analyzing floating-
point programs. We have considered both local and global
backward error analysis. The local analysis focuses on un-
derstanding detailed characteristics of a numerical program
at a single point. It not only provides insight into program
behavior for a single point and its neighborhood, but also
supports the global analysis, i.e., the estimation of backward
error bounds across a whole input range.

As application, we have also studied condition number
estimation, and applied it to some well-known inaccuracy
issues of Intel FPU fsin instruction. Our experimental results
validate the effectiveness of our approach and demonstrate
its utility in understanding floating-point programs.

While the theory of this work is presented under the one-
dimensional context, BEA as we have presented should be
generally applicable to functions of higher dimensions. We
plan to extend our analysis scope to Rn in order to handle
functions that operate on vectors and matrices. In addition
to this, we also plan to apply BEA to find and understand
unknown issues in legacy numerical code.

Acknowledgments
We thank the anonymous reviewers for their useful comments
on earlier versions of this paper. Our special thanks go to
Hanfei Wang for his initial participation on this project and
for his thoughtful feedback. We also gratefully acknowledge
Mehrdad Afshari for his help in setting up our experiment
evaluation with the GNU C Library (glibc).

This work was supported in part by NSF Grant No.
1349528. The information presented here does not necessarily
reflect the position or the policy of the Government and no
official endorsement should be inferred.

References
[1] Boost multi-precision package. http://www.boost.org/

doc/libs/1_57_0/libs/multiprecision/doc/html/
index.html. Retrieved: 25 Mar 2015.

[2] Intel underestimates error bounds by 1.3 quintillion.
https://randomascii.wordpress.com/2014/10/
09/intel-underestimates-error-bounds-by-1-3-
quintillion/. Retrieved: 25 Mar 2015.

[3] https://software.intel.com/blogs/2014/10/09/
fsin-documentation-improvements-in-the-intel-
64-and-ia-32-architectures-software. Retrieved: 25
Mar 2015.

[4] https://sourceware.org/bugzilla/show_bug.cgi?
id=13658. Retrieved: 25 Mar 2015.

[5] Scipy optimization package. http://docs.scipy.org/
doc/scipy-dev/reference/optimize.html#module-
scipy.optimize. Retrieved: 25 Mar 2015.

652

http://www.boost.org/doc/libs/1_57_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_57_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_57_0/libs/multiprecision/doc/html/index.html
https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
https://software.intel.com/blogs/2014/10/09/fsin-documentation-improvements-in-the-intel-64-and-ia-32-architectures-software
https://software.intel.com/blogs/2014/10/09/fsin-documentation-improvements-in-the-intel-64-and-ia-32-architectures-software
https://software.intel.com/blogs/2014/10/09/fsin-documentation-improvements-in-the-intel-64-and-ia-32-architectures-software
https://sourceware.org/bugzilla/show_bug.cgi?id=13658
https://sourceware.org/bugzilla/show_bug.cgi?id=13658
http://docs.scipy.org/doc/scipy-dev/reference/optimize.html#module-scipy.optimize
http://docs.scipy.org/doc/scipy-dev/reference/optimize.html#module-scipy.optimize
http://docs.scipy.org/doc/scipy-dev/reference/optimize.html#module-scipy.optimize

[6] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan.
An introduction to MCMC for machine learning. Machine
Learning, 50(1-2):5–43, 2003.

[7] T. Bao and X. Zhang. On-the-fly detection of instability
problems in floating-point program execution. In OOPSLA,
pages 817–832, 2013.

[8] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of
floating-point exceptions. In POPL, pages 549–560, 2013.

[9] F. Benz, A. Hildebrandt, and S. Hack. A dynamic program
analysis to find floating-point accuracy problems. In PLDI,
pages 453–462, 2012.

[10] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In PLDI, pages 196–207, 2003.

[11] S. Boldo and J.-C. Filliâtre. Formal verification of floating-
point programs. In IEEE ARITH, pages 187–194, 2007.

[12] R. P. Brent. Algorithms for Minimization without derivatives.
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[13] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and
A. Solovyev. Efficient search for inputs causing high floating-
point errors. In PPOPP, pages 43–52, 2014.

[14] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In POPL, pages 269–282, 1979.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, pages
84–96, 1978.

[16] D. Dunbar, C. Cadar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[17] I. A. Espírito-Santo, L. A. Costa, A. M. A. C. Rocha, M. A. K.
Azad, and E. M. G. P. Fernandes. On challenging techniques for
constrained global optimization. In Handbook of Optimization,
pages 641–671, 2013.

[18] P. Fitzpatrick. Extending backward error assertions to tolerance
of large errors in floating point computations. IEEE Trans.
Computers, 46(4):505–510, 1997.

[19] Z. Fu. Modularly combining numeric abstract domains with
points-to analysis, and a scalable static numeric analyzer for
Java. In VMCAI, pages 282–301, 2014.

[20] A. Gáti. Miller analyzer for Matlab: A Matlab package for
automatic roundoff analysis. Computing and Informatics, 31
(4):713–726, 2012.

[21] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM CSUR, 23(1):5–48, 1991.

[22] M. Goldstein. Significance arithmetic on a digital computer.
Commun. ACM, 6(3):111–117, 1963.

[23] E. Goubault. Static analyses of the precision of floating-point
operations. In SAS, pages 234–259, 2001.

[24] E. Goubault and S. Putot. Static analysis of numerical algo-
rithms. In SAS, pages 18–34, 2006.

[25] J. Harrison. Decimal transcendentals via binary. In IEEE
ARITH, pages 187–194, 2009.

[26] N. J. Higham. Accuracy and stability of numerical algorithms.
SIAM, 2nd edition, 2002.

[27] Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, March 2012.

[28] D. Jiang and N. F. Stewart. Backward error analysis in
computational geometry. In ICCSA, pages 50–59, 2006.

[29] T. Kaneko and B. Liu. On local roundoff errors in floating-point
arithmetic. J. ACM, 20(3):391–398, 1973.

[30] J. C. King. Symbolic execution and program testing. Commu-
nications of the ACM, 19(7), 1976.

[31] D. E. Knuth. Art of Computer Programming, Volume 2:
Seminumerical Algorithms (3rd Edition). Addison-Wesley
Professional, 3 edition, Nov. 1997. ISBN 0201896842.

[32] M. Martel. Semantics-based transformation of arithmetic
expressions. In SAS, pages 298–314, 2007.

[33] W. Miller and D. L. Spooner. Algorithm 532: Software for
roundoff analysis [Z]. ACM TOMS, 4(4):388–390, 1978.

[34] A. Miné. Weakly Relational Numerical Abstract Domains.
PhD thesis, École Polytechnique, Palaiseau, France, 2004.

[35] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.
Handbook of Floating-Point Arithmetic. 2010.

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 2nd edition, 1992.

[37] C. Rubio-González, C. N. 0001, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough.
Precimonious: tuning assistant for floating-point precision. In
SC, page 27, 2013.

[38] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill,
New York, third edition, 1976.

[39] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization
of floating-point programs with tunable precision. In PLDI,
pages 53–64, 2014.

[40] E. Tang, E. Barr, X. Li, and Z. Su. Perturbing numerical
calculations for statistical analysis of floating-point program
(in)stability. In ISSTA, pages 131–142, 2010.

[41] N. H. Tuan, P. H. Quan, D. D. Trong, and L. M. Triet. On
a backward heat problem with time-dependent coefficient:
Regularization and error estimates. Applied Mathematics and
Computation, 219(11):6066–6073, 2013.

[42] D. J. Wales and J. P. K. Doye. Global Optimization by Basin-
Hopping and the Lowest Energy Structures of Lennard-Jones
Clusters Containing up to 110 Atoms. The Journal of Physical
Chemistry A, 101(28):5111–5116, Mar. 1998.

[43] J. H. Wilkinson. Rounding errors in algebraic processes. In
IFIP Congress, pages 44–53, 1959.

[44] J. H. Wilkinson. Error analysis of floating-point computation.
Numerische Mathematik, 2(1):319–340, 1960.

[45] J. H. Wilkinson. Some comments from a numerical analyst. J.
ACM, 18(2):137–147, 1971.

[46] J. H. Wilkinson. Error analysis revisited. IMA Bulletin, 22
(11/12):192–200, 1986.

[47] I. Zelinka, V. Snsel, and A. Abraham. Handbook of Opti-
mization: From Classical to Modern Approach. Springer Pub-
lishing Company, Incorporated, 2012. ISBN 3642305032,
9783642305030.

653

[48] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei.
A genetic algorithm for detecting significant floating-point
inaccuracies. In The 37th International Conference on Software
Engineering, Firenze, Italy, 2015.

A. Parameters Used in Our Experiments
In this section, we give details on the parameters we have used
in our experiments. The objective is to facilitate researchers
and developers to reproduce our results. Note, however, that
our algorithms are based on a Monte-Carlo process, and it
is unlikely to obtain the exact same experimental results as
presented in Sect. 4.

Algo. 1 and 2 as implemented in our experiments have
several important parameters that are set as follows:

Parameters Values set in our experiments

ftol Φx(0)*1E-3 where Φx is defined in Eq. (16)
xtol 1E-4
cc 0.9
iter_local 100
iter_global 100, 1000 or 10000
n_start 100

Some parameters are more sensitive than others. In particular,
to set ftol appropriately can be difficult. Recall that, given
f , f̂ ,x, the backward error B(x) is defined as the smallest |δ |
so that the formula

| f (x+δ · x)− f̂ (x)| ≤ f tol (29)

holds. If ftol is set larger than | f (x)− f̂ (x)|, formula (29)
holds for δ = 0, leading to B(x) = 0. If ftol is too small,
formula (29) is unsatisfiable, and B(X) will be undefined
because the search space of the mathematical optimization
problem (14) becomes empty in this case. To avoid these
issues, in our experiments we set ftol strictly smaller than
| f (x)− f̂ (x)|. This way, the case B(x) = 0 above can be
avoided. Further, to avoid the mentioned case of an undefined
B(x), we can set ftol to be proportional to | f (x)− f̂ (x)| as
specified in the table above.

654

	Introduction
	Overview and Two Examples
	Approach
	Local BEA
	Global BEA

	Implementation and Evaluation
	Implementation
	Empirical Results and Analysis
	Assessment of Local BEA
	Assessment of Global BEA
	Estimating the Condition Number

	Related Work
	Conclusion
	Parameters Used in Our Experiments

