
A Fast Selected Inversion Algorithm for Green’s Function Calculation
in Many-body Quantum Monte Carlo Simulations

Chengming Jiang

Dept. of Computer Science
University of California, Davis

Davis, CA USA
cmjiang@ucdavis.edu

Zhaojun Bai

Dept. of Computer Science
University of California, Davis

Davis, CA USA
bai@cs.ucdavis.edu

Richard Scalettar

Dept. of Physics
University of California, Davis

Davis, CA USA
scalettar@physics.ucdavis.edu

Abstract—The Hubbard Hamiltonian provides a theoretical
framework for describing electron interactions of quantum
many-body systems in condensed matter physics. Determinant
Quantum Monte Carlo (DQMC) simulations of the Hubbard
Hamiltonian have contributed greatly to understanding im-
portant properties of materials. Physical measurements such
as superconductivity and magnetic susceptibility are based
on selected entries of a large set of Green’s functions. The
computations of Green’s functions are equivalent to computing
selected blocks of the inverses of large p-cyclic matrices.
The performance of the state-of-art algorithm for computing
Green’s functions is around 100 Gflops on a 12-core Intel “Ivy
Bridge” processor.

In this paper, we describe a fast selected inversion (FSI) algo-
rithm for computing selected entries of Green’s functions and
present a parallel implementation using hybrid MPI/OpenMP
programming. The FSI algorithm rests on three ideas: (1)
applying a block cyclic reduction for a structure-preserving
reduction; (2) computing the inverse of the reduced block
p-cyclic matrix by a structured orthogonal factorization; (3)
using the block entries of the inverse of the reduced block p-
cyclic matrix as seeds to rapidly form the selected inversion
in parallel. Performance results of the new FSI algorithm
on Edison, National Energy Research Scientific Computing
Center (NERSC)’s Cray XC30 supercomputer, show an 80%
improvement to 180 Gflops on the Intel “Ivy Bridge” processor.
The parallel applications of the FSI algorithm for computing
selected entries of multiple Green’s functions reach to 20–30
Tflops on 100 compute nodes with 2400 cores. The preliminary
results show that the FSI algorithm speeds up a full DQMC
simulation of the Hubbard Hamiltonian by a factor of five,
reducing from three and a half hours down to only forty
minutes on the 12-core processor.

Keywords-p-cyclic matrix; Hubbard model; Quantum Monte
Carlo simulations; Green’s functions; Hybrid MPI/OpenMP

I. INTRODUCTION

Broadly speaking, theoretical and computational ap-

proaches to solve for the properties of condensed matter

systems fall into two categories. Electronic structure meth-

ods attempt to solve the Schroedinger equation directly in

continuum space. They can incorporate many of the details

of specific materials, such as the precise chemical species

via the appropriate charges on the nucleii, but treat the

interactions between the electrons through the rather crude

Hartree-Fock approximation. Model Hamiltonians, on the

other hand, consider the electrons as moving on discrete

lattice sites, with typically only a very limited number of

orbitals on each site. These models allow for much more

exact treatments of electron-electron interactions. Model

Hamiltonians can be solved by approximate methods like

mean field theory, which often get the qualitative physics

correct, but are wrong quantitatively. They can also be solved

exactly on very small clusters of N ≈ 10 sites by explicitly

enumerating all the states of the quantum system, and di-

agonalizing a matrix whose dimension grows exponentially

with N . Quantum Monte Carlo (QMC) allows, in many

important cases, an exact solution but on lattices an order

of magnitude larger, N ≈ 103 sites. More precisely, QMC

gives exact results for observables within statistical error

bars which can be made systematically smaller by increasing

the number of samples generated. However, QMC is very

time consuming. For example, some of the largest projects

(hundreds of millions of core hours) of the DOE INCITE

program are QMC simulations of model Hamiltonians.

Our specific method, Determinant QMC (DQMC) [1],

[2] works on real space lattices of finite size. An alternate

approach, the “dynamic cluster approximation” (DCA) also

solves interacting electron model Hamiltonians, but works

instead on discrete grids in momentum space. The two ap-

proaches provide useful complementary information. DQMC

provides better representation of spatial correlation func-

tions. The DCA has better performance at low temperatures,

and often provides more simple routes to locating phase

transitions. A lot of important work has been done on porting

the DCA to high performance computing platforms resulting

in some of the most accurate information on the physics of

correlated electron systems currently available [3]. But there

are few studies of high-performance DQMC.

DQMC methods are increasingly moving from providing

qualitative insight concerning the dramatic phenomena like

magnetism, superconductivity, metal-insulator and valence

transitions in solids, to quantitative, material specific mod-

eling. These approaches are very challenging, and their

implementation constitutes one of the frontiers of modern

computational science. Some recent advances [4] have al-

ready dramatically increased the number of electrons and

material complexity that can be treated, but significant

bottlenecks remain. Further algorithm development, and the

implementation of these approaches on multi-core hardware,

offer the prospect of breaking these logjams, and enabling

the solution of frontier questions in the behavior of strongly

correlated materials.

The state-of-art implementation of the DQMC simulation

of the Hubbard model is available in the QUantum Electron

Simulation Toolbox (QUEST)1, a Fortran 90/95 package

that uses two-dimensional periodic rectangular lattice as the

default geometry. The computational kernel in QUEST is the

repeated computations of large number of Green’s functions.

Green’s functions determine the probability amplitude for

electrons to travel between sites, which is used for extracting

information of phenomena caused by electron interaction

such as magnetism, metal-insulator transitions and high-

temperature superconductivity. In a MC simulation, a large

number (order 103 to 104) of Green’s functions are com-

puted and used to calculate equal-time and time-dependent

physical measurements.

In matrix computation terms, Green’s function calcula-

tions concern computing selected blocks of the inverse of

block p-cyclic matrices, which we refer to as Hubbard

matrices. The Hubbard matrices are of dimension NL×NL,

where N is the number of spatial lattice sites and L is the

number of time slices from the discretization of temporal

domain which is proportional to the inverse temperature. To

study moderate lattice at low temperature, NL ≈ 103 · 102.

In QUEST, optimized BLAS and LAPACK have been

used to execute matrix operations for computing Green’s

functions, which lead to performance improvement, but are

not scalable. In addition, physical measurements are done by

direct reference to elements of Green’s functions in multi-

layer loops and are bounded by communication cost. As

a result, a modest size DQMC simulation with only 100

warmups and 200 measurements takes three and a half hours

on a 12-core Intel “Ivy Bridge” processors, in which nearly

80% of the CPU time is spent on the computation of Green’s

functions and physical measurements.2

Matrix inversion is one of the fundamental linear algebra

problems. There is a large volume of literature on algorithms

for computing selected entries of the inverse of a matrix,

referred to as selected inversion. These algorithms can

be organized in two classes. One concerns unstructured

sparse matrices [5], [6], [7]. Another concerns the selected

inversion of structured matrices, such as Vandermonde [8],

tridiagonal [9], [10] and Toeplitz [11], [12].

1https://code.google.com/p/quest-qmc/
2The length of a DQMC simulation depends on the accuracy desired for

the measurements of interest and also on parameters like the interaction
strength and temperature. With that caveat, simulations of length 1000
warmups and 2000 measurements are roughly typical.

In this paper, we study an algorithm for computing

selected blocks of the inverse of block p-cyclic matrices.

Our contributions include (a) a fast selected inversion (FSI)

algorithm to compute the selected blocks of the inverse of

a block p-cyclic matrix by exploiting the structure of the

matrix and underlying mathematical properties and (b) a

hybrid MPI/OpenMP implementation of the FSI algorithm

through exploiting coarse-grain parallelism at the MPI level

and fine-grain parallelism at the OpenMP level. Performance

results of the parallel FSI algorithm for computing selected

entries of multiple Green’s functions on Edison, NERSC’s

Cray XC30 supercomputer reach to 20–30 Tflops on 100

compute nodes with 2400 cores. The preliminary results

show that the FSI algorithm speeds up a full DQMC

simulation of Hubbard Hamiltonian of moderate size system

by a factor of five, reducing from three and a half hours

down to only forty minutes on a 12-core Intel “Ivy Bridge”

processor.

We note that there is a close relation between the FSI al-

gorithm and the probing and sketching algorithms for matrix

computations, such as the probing algorithm for computing

the diagonal of the inverse of a sparse matrix inverse [13]

and the trace of the inverse of a sparse matrix [14], [15],

[16] and the matrix sketching methods for least squares

regression and low rank approximation [17].

II. FAST SELECTED INVERSION ALGORITHM

A. Green’s function

In our current setting, Green’s function can be defined

by the inverse of the following block p-cyclic matrix in the

normal form

A =

⎡
⎢⎢⎢⎣
A11 A1L

A21 A22

. . .
. . .

AL,L−1 ALL

⎤
⎥⎥⎥⎦ ,

where each block is N ×N square and the diagonal block

matrices Aii for 1 ≤ i ≤ L are nonsingular. The p-cyclic

matrix has been studied since early 1950s [18]. It has been

widely used in many applications such as numerical solution

of partial differential equations [19], [20], Markov chain

modelling [21] and QMC simulation [1], [2].

Let D = diag(A11, A22, · · · , ALL), then

M = D−1A =

⎡
⎢⎢⎢⎣

I B1

−B2 I
. . .

. . .

−BL I

⎤
⎥⎥⎥⎦ , (1)

where B1 = A−1
11 A1L and Bi = −A−1

ii Ai,i−1 for 2 ≤ i ≤
L. A block LU factorization of M is given by M = LU

where

L =

⎡
⎢⎢⎢⎢⎢⎣

I
−B2 I

−B3 I
. . .

. . .

−BL I

⎤
⎥⎥⎥⎥⎥⎦

and

U =

⎡
⎢⎢⎢⎢⎢⎣

I B1

I B2B1

. . .
...

I BL−1BL−2 · · ·B1

I +BLBL−1 · · ·B1

⎤
⎥⎥⎥⎥⎥⎦ .

It can be verified that the inverses of L and U are given by

L−1 =

⎡
⎢⎢⎢⎢⎢⎣

I
B2 I

B3B2 B3 I
...

...
. . .

. . .

BL · · ·B2 BL · · ·B3 · · · BL I

⎤
⎥⎥⎥⎥⎥⎦

and

U−1 =

⎡
⎢⎢⎢⎢⎢⎣

I −B1F
I −B2B1F

. . .
...

I −BL−1BL−2 · · ·B1F
F

⎤
⎥⎥⎥⎥⎥⎦ ,

where F = (I + BLBL−1 · · ·B2B1)
−1. Consequently, the

inverse of M , denoted by G, is then given by

G = M−1 = U−1L−1 = (Gk�) (2)

where for 1 ≤ k, � ≤ L,

Gk� = W−1
kk Zk�, (3)

and

Wkk =

{
I +BkBk−1 · · ·B1BL · · ·Bk+1, 1 ≤ k ≤ L− 1
I +BLBL−1 · · ·B1, k = L

and

Zk� =

⎧⎪⎪⎨
⎪⎪⎩

−BkBk−1 · · ·B1BLBL−1 · · ·B�+1, k < � < L
−BkBk−1 · · ·B1, k < � = L
I, k = �
BkBk−1 · · ·B�+1, k > �

The inverse of the block p-cyclic matrix A is then given by

A−1 = GD−1.

Therefore, for the rest of discussion, we will focus on the

computation of G, which is also the form of Green’s function

that appeared in DQMC simulations.

A critical observation is that by the expression (3), there

are relations between adjacent blocks of G. In other words,

Figure 1. Relations between adjacent subblocks of Green’s function.

if a block Gk� of G is known, then its adjacent blocks

Gk−1,�, Gk+1,�, Gk,�−1 and Gk,�+1 can be easily computed.

Specifically, if the block Gk� is known, then vertically

adjacent upper block Gk−1,� satisfies the relation

Gk−1,� = B−1
k Gk�, (4)

except when Gk� is on the boundaries:

• diagonal (k = � �= 1): Gk−1,k = B−1
k (Gkk − I);

• first row (k = 1, � �= 1): GL� = −B−1
1 G1�;

• corner (k = 1, � = 1): GL1 = −B−1
1 (G11 − I).

Note that here and in the rest of paper, we use a torus index

notation, namely if k = 0, then k ≡ L and if k = L+1,then

k ≡ 1, which is the same for the index �.
Similarly, vertically adjacent lower block Gk+1,� of Gk,�

satisfies

Gk+1,� = Bk+1Gk�, (5)

except when Gk� is on the boundaries:

• sub-diagonal (� = k+1): Gk+1,k+1 = Bk+1Gk,k+1+I;

• last row (k = L, � �= 1): G1� = −B1GL�;

• corner (k = L, � = 1): G11 = −B1GL1 + I .

For horizontally adjacent left block Gk,�−1 of Gk,�, we

have

Gk,�−1 = Gk�B� (6)

except when Gk� is on the boundaries:

• sub-diagonal (� = k + 1): Gkk = Gk,k+1Bk+1 + I;

• first column (k �= L, � = 1): GkL = −Gk1B1;

• corner (k = L, � = 1): GLL = −GL1B1 + I .

Similarly, horizontally adjacent right block Gk,�+1 of Gk,�

is given by

Gk,�+1 = Gk�B
−1
�+1 (7)

except when Gk� is on the boundaries:

• diagonal (k = � �= L): Gk,k+1 = (Gkk − I)B−1
k+1;

• last column (k �= L, � = L): Gk,1 = −GkLB
−1
1 ;

• corner (k = L, � = L): GL1 = −(GLL − I)B−1
1 .

Furthermore, by the relations (4)–(7), the adjacent diagonal

blocks Gk−1,�−1 and Gk+1,�+1 of Gk� can be computed as

Gk−1,�−1 = B−1
k Gk�B� and Gk+1,�+1 = Bk+1Gk�B

−1
�+1.

The relations of adjacent blocks of Green’s function are

pictorially illustrated in Fig. 1

Figure 2. Patterns of selected inversions, diagonal, subdiagonal, columns
and rows.

B. Selected inversion

A selected inversion is a collection of the selected blocks

of G. Let us discuss four patterns of the selected inversion

shown in Fig. 2. We use I to denote the index set I =
{c−q, 2c−q, . . . , bc−q}, where c is a factor of L, b = L/c
and q is an integer randomly selected such that 0 ≤ q ≤ c−1.

q is chosen in the uniform distribution to allow blocks to be

selected uniformally across a set of Green’s functions.

• b diagonal blocks of G:

S1 = {Gkk | k ∈ I}.
• b (q �= 0) or b− 1 sub-diagonal blocks of G:

S2 = {Gk,k+1 | k ∈ I − {L}}.
• b block columns of G:

S3 = {Gk� | 1 ≤ k ≤ L and � ∈ I}.
• b block rows of G:

S4 = {Gk� | k ∈ I and 1 ≤ � ≤ L}.
In applications, the set of selected blocks is relatively

small. For example, a selected inversion of column blocks

only needs 1/c of the memory for storing the full inverse

matrix. Typically for a p-cyclic matrix with (N,L) =
(1000, 100), we choose c =

√
L = 10. Thus we save

the memory usage by 90%. A summary of the number of

selected blocks in different patterns and the reduction factor

compared with a full inversion is shown as follows:

Patterns No. of selected blocks Reduction factor

S1 b cL
S2 b or b− 1 cL
S3 bL c
S4 bL c

C. Fast selected inversion algorithm

There are a number of algorithms aiming at computing

selected diagonal blocks of Green’s function. The method

in [22] provides parallel approaches to compute the matrix

chain mutiplications arising in the explicit form (3) of

diagonal blocks. The algorithm in [23] uses the pre-pivoting

to balance the tradeoff between numerical stability and high-

performance on multicore systems with GPU accelerations.

The computation of selected off-diagonal blocks of

Green’s function is much more challenging and has not

Figure 3. Graphical illustration of the three stages of the FSI algorithm.

been closely studied. In principle, one may use the explicit

expression (3) to compute selected off-diagonal blocks of G.

However, for example, it needs bL2N3 flops to compute the

selected b block columns of G. In contrast, the fast selected

inversion (FSI) algorithm described below reduces the flops

by a factor of L, to 3bLN3.

The FSI algorithm rests on the following three ideas:

• applying the block cyclic reduction (BCR) for a

structure-preserving reduction of the Hubbard matrix

M ;

• computing the inverse of the reduced block p-cyclic

matrix by a stable structure orthogonal factorization;

• using adjacency relations (4)–(7) to rapidly form the

selected inversion S .

The BCR is well-known, see for example [24]. In [25],

Hirsch has exploited the BCR for computing the diagonal

blocks (equal-time) of Green’s functions, although it was not

explicitly stated.

At a high-level, the FSI algorithm is summarized as in

Alg. 1, with a pictorial illustration in Fig. 3.

Algorithm 1 FSI algorithm

Input: M, c
Output: S

randomize q ∈ {0, ..., c− 1}
M̂ = CLS(M, c, q)

Ĝ = M̂−1

S = WRP(Ĝ, c, q)

In Alg. 1, M̂ = CLS(M, c, q) is for a factor-of-c BCR of

M , i.e.,

M̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I B̂1

−B̂2 I

−B̂3 I
. . .

. . .

−B̂b I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where B̂i is a product of c consecutive matrices Bj , i.e.,

B̂i = Bj0Bj0−1 · · ·Bj0−c+1.

where j0 = ci − q. Note that if the index j ≤ 0, then

j := j + L.

The computational complexity of CLS is 2b(c − 1)N3.

Iterations for clustering B̂i’s can be executed in embarrass-

ingly parallel. We note that the integer c determines the

size of clustering. A larger c leads to a greater reduction.

However, the size of c is limited by numerical stability. A

large c results in the loss of the precision due to round-off

errors. Usually, c ≈
√
L. A numerical stability analysis for

the choice of c can be found in [26].

The operation Ĝ = M̂−1 in Alg. 1 is to compute the full

inverse of the reduced block p-cyclic matrix M̂ by using a

block structured orthogonal factorization inversion (BSOFI)

method from our early work [27]. The BSOFI method

first applies the block structured orthogonal factorization

M̂ = Q̂R̂, and then calculate the inverse Ĝ = R̂−1Q̂T . The

BSOFI method is numerically stable and takes advantage of

block p-cyclic structure of M̂ to lower the computational

complexity to 7b2N3. Instead of computing a full QR de-

composition and then inversion of the p-cyclic matrix in the

size of (NL)2, the block structured orthogonal factorization

computes the QR decomposition only on the dense blocks

in the size of 2N × N and then compute the inversion in

the order of N . Thus, it fully exploits the structure of the

p-cyclic matrix.

The final step S = WRP(Ĝ, c, q) in Alg. 1 is a wrapping
process. By examining the explicit expression (3) for the

blocks Gk� of Green’s function, the computed blocks of Ĝ
form a subset of the blocks of the original Green’s function

G, namely

Ĝk0,�0 = Gck0−q,c�0−q for 1 ≤ k0, �0 ≤ b. (8)

This crucial observation leads us to use Ĝk0,�0 as seeds to

compute their adjacent blocks for forming the set S of se-

lected inversions of interest. Alg. 2 is a wrapping process for

the selected block columns. The inner for loop is separated

into two loops (for Gk� � Gk−1,� and Gk� � Gk+1,�,

respectively) to minimize the accumulated floating point

arithmetic error. The computational cost is 3(bL − b2)N3.

Furthermore, we note that the b2 iterations for calculating

the adjacent blocks in wrapping are data independent. All

seeds can be used independently to compute their adjacent

blocks in parallel.

The computational cost of the FSI algorithm depends on

the shape of selected inversion. In the following table, we

compare the computational complexity the explicit inversion

using the expression (2) and the FSI algorithm for the four

patterns of the selected inversions discussed in Sec.II-B:

Selected inv. Explicit form FSI

b diagonals 2b2cN3 [2(c− 1) + 7b]bN3

b− 1 sub-diag. 4b2cN3 [2c+ 7b]bN3

b cols./rows. b3c2N3 3b2cN3

Notes: (a) If we just compute the selected diagonals or sub-

diagonal blocks, the major computation cost lies in BSOFI.

(b) For most of the applications, selected columns and rows

Algorithm 2 Wrapping(WRP)

Input: Ĝ, c, q
Output: S

S = {Ĝk0,�0 |1 ≤ k0, �0 ≤ b}
for each seed Ĝk0,�0 do

set k = ck0 − q and � = c�0 − q in G
for i = 1, ..., �(c− 1)/2	 do

Gk� � Gk−1,� by Eq. 4

S ← S ∪ {Gk−1,�}
k = k − 1

end for
reset k = ck0 − q and � = c�0 − q in G
for i = 1, ..., �c/2	 do

Gk� � Gk+1,� by Eq. 5

S ← S ∪ {Gk+1,�}
k = k + 1

end for
end for

are needed. In this case, the wrapping step is the bottleneck

in terms of the number of flops.

There are a number of advantages of the FSI algorithm. It

uses less flops and reduces by a factor of 2
3bc

2 and 7
3c than

full LU inversion and BSOFI if b block columns are needed.

More importantly, FSI can compute selected blocks of large

scale p-cyclic matrices which may be not feasible by the full

inversion method due to the memory bound. Comparing with

directly applying the explicit expression (3), say computing

b columns, it is 1
3bc times faster. The main operations of the

FSI algoirthm are Level-3 BLAS operations, such as DGEMM.

The FSI algorithm can be highly parallelized, which will be

discussed in detail in Sec.III.

III. HYBRID IMPLEMENTATION

A. OpenMP and MPI

Modern supercomputers have hierarchical architecture,

where thousands of multi-socket multi-core shared-memory

compute nodes are connected with a high-speed network.

On each node, the memory hierarchy allows many cores

to have multi-layer private cache and a big shared memory

with non-uniform memory access. For example, NERSC’s

supercomputer Edison has 5576 compute nodes. With 24

cores per node, it has 133824 cores in total. An Edison

compute node is shown in Fig. 4.

To take advantage of both distributed memory and multi-

core shared memory architecture, it goes naturally to employ

hybrid MPI/OpenMP parallelism that uses MPI for message

passing and OpenMP for frequently shared data accessing.

Many applications are found to be suitable for the hybrid

model [28], [29], [30].However, there also exist some exam-

ples where a pure MPI implementation is more efficient [28].

A tradeoff of hybrid model against pure MPI is that the

Figure 4. A Cray X30 dual-socket node, QuickPath Interconnect (QPI)
connects two 12-core Intel “Ivy Bridge” processors.

extra communication overhead within each MPI process is

replaced by OpenMP threads creation and synchronization.

An important decision before launching the application is

to select the number of OpenMP threads per MPI process

and the number of MPI processes per node. Assigning too

few MPI processes with many OpenMP threads on a node

may lead to poor performance, but assigning too many MPI

processes with few OpenMP threads on a node may exceed

the memory capacity [31].

B. Parallel implementation of FSI algorithm

DQMC simulations require the selected inversions of tens

of thousands of block p-cyclic matrices. The implementation

of the FSI algorithm is well positioned to fit the hybrid

model. We can exploit two levels of parallelism. The first

level on computing the inverses of multiple matrices is

coarse-grained and is suitable for MPI. The second level on

FSI itself is fine-grained, which is best suited for OpenMP.

A complete pseudocode of parallel implementation of the

FSI algorithm for a set of matrices is described in Alg. 3.

At the MPI level, a large set of p-cyclic matrices are

distributed among the MPI processes. Each MPI process

gets a portion (m/num MPI process) of the matrices and

runs the FSI to collect the local measurement quantities.

MPI_Reduce is called to collect the local measurement

quantities to be aggregated into the global measurement

quantities. Generating all the input matrices in one MPI

process is neither efficient nor feasible due to the memory

capacity when m is large. Fortunately, in the DQMC, the

matrices are parameterized by an array of random parameters

h, generated during a Monte Carlo process (see Sec.IV).

This allows us to generate a set of random parameters h on

the MPI root process and scatter h to other MPI processes.

The FSI algorithm on a single matrix M is implemented by

OpenMP. At the clustering step of FSI, the number L of Bi

blocks are evenly divided into b clusters with c blocks each.

Every OpenMP slave thread picks one cluster simultaneously

Algorithm 3 Parallel application of FSI

Input: M1,M2, ...,Mm and c
Output: S1,S2, ...,Sm and global measurement quantities

On MPI root {
MPI_Init
m per MPI = m/num MPI process

MPI_Scatter (sbuff:{Mi},scount:m per MPI, ...)
}
On each MPI process){
for iter = 1, ...,m per MPI do

select q ∈ {0, ..., c− 1} randomly

!$omp parallel do
M̂ = CLS(M, c, q) by OpenMP multi-threads

!$omp end parallel do nowait
Ĝ = M̂−1 by BSOFI

initialize S = {Ĝk0,�0 |1 ≤ k0, �0 ≤ b}
!$omp parallel do

execute WRP(Alg. 2) by OpenMP multi-threads

compute local measurement quantities

!$omp end parallel do nowait
end for
MPI_Reduce (sbuff:local measurement quantities,...)

}
On MPI root{
MPI_Finalize
compute global measurement quantities

}

Figure 5. Hybrid MPI/OpenMP parallel application of the FSI algorithm
for multiple Green’s functions.

to compute the product of a matrix chain. At the wrapping

step, Ĝ are divided into b2 seeds. Every OpenMP slave

thread picks a seed and calculates its adjacent blocks until

the selected inversion is formed. Fig. 5 shows an example

of topology of computing selected blocks of 8 matrices by

4 nodes. Each node has two MPI processes for 2 matrices

respectively and each MPI process has 3 OpenMP threads

associated with one matrix.
Note that the local measurement quantity calculations are

carried out in the OpenMP region. The reason to create local

measurements for each thread is to overcome the concurrent

writing issue caused by the data references of physical

measurements, see an example in Sec.IV.
In addition, we note that since Green’s functions need

to be stored on all MPI processes temporarily for the

calculation of measurements, the memory limitation of each

node becomes one of major reasons to use a hybrid imple-

mentaiton rather than pure MPI.

IV. QMC SIMULATION

At a high level, the DQMC simulation consists of two

stages: warmup and physical measurement, see Alg. 4. A

DQMC sweep in each stage travels through every site of

the lattice in a multi-layer imaginary time slices, see Fig. 6.

Algorithm 4 DQMC simulation

initialize HS configuration h0 = (h�i) = (±1)
% Warmup stage

for i=1,...,w do
DQMC sweep

end for
% Measurement stage

for i=1,...,m do
DQMC sweep

compute Green’s function and physical measurements

end for

DQMC sweep

for � = 1, 2, ..., L do
for i = 1, 2, ..., N do

(1) Propose a new configuration: h′
�i = −h�i;

(2) Compute the Metropolis ratio:

r�i =
det[M+(h

′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

;

(3) Apply Metropolis acceptance-rejection:

randomize r ∼ uniform[0, 1],
if r ≤ min{1, r�i} then
h = h′.

end if
end for

end for

The physical measurements include the correlation func-

tions for magnetic, charge, superconducting order and phase

transitions and so on. They are classified by two categories.

One is called equal-time measurements, which only need

the data from the diagonal blocks of Green’s functions G.

The other one is called time-dependent measurements which

need the information of off-diagonal blocks of G.

Figure 6. A N = 4× 4 lattice structure in a multi-layer imaginary time
(L) slices.

As an example, consider the measurement of XY spin-

spin correlation (SPXX), an L× dmax matrix with dmax ∼
O(N). To calculate the SPXX, we need to compute Green’s

functions for both spin direction at the same time [32], [33].

We denote Gσ with σ = (↑, ↓) to the electron spinning

up and down, respectively. The (τ, d) element of SPXX

contributed by G is given by

{SPXX(Gσ)}(τ,d) =

− 1

2C(τ)
∑
(k,�)

∑
(i,j)

(
G↑

k�(j, i)G
↓
�k(i, j) +G↓

k�(j, i)G
↑
�k(i, j)

)

when C(τ) > 0, and equal to 0 when C(τ) = 0, where C(τ)
is the number of blocks contributing to {SPXX(Gσ)}(τ,d),

C(τ) =
N∑

k=1

N∑
�=1

b(k, �), b(k, �) =

{
1, (k, �) ∈ T (τ)
0, otherwise

.

Index (k, �) is in the set T (τ) = {(k, �)|T (k, �) = τ} where

T (k, �) is a mapping from the block index (k, �) to τ defined

via temporal distances in lattices

T (k, �) =

{
k − �, k ≥ �
k − �+ L, k < �

.

Index (i, j) is in the set D(d) = {(i, j)|D(i, j) = d}
where D(i, j) is a mapping from the entry index (i, j)
to d defined via spatial distances in the lattice. Therefore,

in order to compute {SPXX(Gσ)}(τ,d), block columns and

rows are both required (for entries in Gk� and G�k simul-

taneously) from the selected inversion. We note that the

calculations in {SPXX(Gσ)}(τ,d) are element-wise. It is

extremely inefficient level-1 BLAS operations. FSI enables

these calculations be executed in OpenMP multi-threads.

An overview of a full DQMC simulation with the high-

lights of the FSI algorithm for computing the Green’s

function and physicial measurements (PMs) is shown in

Fig. 7.

V. PERFORMANCE RESULTS

We begin with a validation of the correctness and accuracy

of the FSI algorithm, and then report the performance of the

Figure 7. An overview of a full DQMC simulation with highlights of the
FSI algorithm and physicial measurements (PMs).

FSI algorithm and its usage in a full DQMC simulation.

Our experiments were conducted on a Cray XC30 ma-

chine called Edison at NERSC. Edison has 5576 compute

nodes. With 24 cores per node, it has 133824 cores in total.

Each Edison node consists of two sockets, and each socket

is populated with a 12-core 2.4GHz Intel “Ivy Bridge”

processor. A node has 64GB DDR3 1866MHz memory (four

8GB DIMMS per socket). Each core has its own L1 and

L2 caches, with 64KB (32KB instruction cache and 32KB

data cache) and 256KB respectively. A 30MB L3 cache is

shared between 12 cores. Edison employs the “Dragonfly”

topology for the interconnection network with 23.7TB/s

global bandwidth. It has 0.25μs to 3.7μs MPI latency and

8 GB/sec MPI bandwidth.

A. Correctness validation

To validate the correctness of the FSI algorithm, we form

a set of block p-cyclic Hubbard matrices M defined as (1).

Each block B� is of the form B� = etΔτKeσνV�(h(�,:)),

where h = (h�,i) = (±1) for 1 ≤ � ≤ L and 1 ≤
i ≤ N are random variables, referred to as a Hubbard-

Stratonovich configuration in the DQMC simulation; t is

a hopping amplitude; Δτ = β/L, where β is the inverse

temperature; K = (kij) is an adjacency matrix of the

lattice structure; σ represents electron direction spinning;

ν = cosh−1 e
UΔτ

2 , where U is the interacting energy;

V�(h(�, :)) = diag(h(�, 1), h(�, 2), . . . , h(�,N)).
We generate a random 6400 by 6400 p-cyclic Hubbard

matrix (N,L) = (100, 64) with (t, β, σ, U) = (1, 1, 1, 2).
The condition number of M is approximately 105. We

compute b selected block columns S = {Sij} by FSI. G
is computed by Intel MKL routines DGETRF and DGETRI.

The correctness of the FSI algorithm is validated by the fact

that the relative error

ε =
1

L× b

L∑
i=1

b∑
j=1

‖Sij −Gi,cj−q‖F
‖Gi,cj−q‖F

≤ 10−10.

B. Performance of the FSI algorithm

We consider a set of Hubbard matrices with various block

sizes N = 256, 400, 576, 784, 1024 and fixed (L, c) =
(100, 10). The set of the selected inversion is b = L/c = 10
block columns. The top plot of Fig. 8 shows the performance

256 400 576 784 1024
0

50

100

150

200

250

Block Dimension N

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

BSOFI CLS WRP FSI DGEMM

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

Number of Threads / Process

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Ideal−scaling
OpenMP
MKL

Figure 8. FSI performance rate (top) and scalability (bottom) on a single
12-core Intel “Ivy Bridge” processor.

profile of three steps of OpenMP multi-threaded FSI on

the Intel “Ivy Bridge” processor. As we can see, the lower

performance rate of the dense matrix inversions (BSOFI) is

compensated by DGEMM-rich operations at the clustering and

wrapping steps of FSI algorithm.

To test the scalability, we let (N,L, c) = (576, 100, 10)
and compute b = L/c = 10 block columns. The bottom plot

of Fig. 8 shows the scalability of the FSI using OpenMP and

MKL, respectively. We see that the former is much closer to

the ideal scaling. The OpenMP overhead is negligible when

the number of OpenMP threads per process is small.

For the performance test in hybrid MPI/OpenMP exe-

cution, we use 100 Edison nodes with a total of 2400

CPU cores to compute selected inversions of 2400 Hubbard

matrices with (L, c) = (100, 10) and different block sizes

N . For each Hubbard matrix, b = 10 selected block columns

are computed. Fig. 9 shows the performance rate with

different MPI processes and OpenMP threads. We notice

that each Edison compute node has a 32GB shared physical

memory per socket (64GB in a node). Besides program

itself, Node Linux kernel, Lustre file system software and

message passing library buffers all consume memory. So

available memory for one core is approximately 2.5GB. If

an application runs too many MPI tasks on one node, it has

200x12 400x6 800x3 1200x2 2400x1
18

20

22

24

26

28

30

32

(# MPI Processes) x (# OpenMP Threads / MPI Process)

P
er

fo
rm

an
ce

 (
T

F
LO

P
S

)

N=400
N=576
N=784
N=1024

Figure 9. Performance rate of parallel application of FSI for multiple
Green’s functins with difference numbers of MPI processes and OpenMP
threads.

a risk to exhaust the memory and an OOM (out of memory)

killer will terminate the process on Edison.

By Fig. 9, we see that the pure MPI execution (with one

OpenMP thread per MPI process) reaches the highest per-

formance, but it is only applicable for block size N = 400.

When N = 576, the memory requirement for the selected

inversion is approximately 2.65GB. The execution of 12

MPI processes per socket requires 31.8GB that exceeds the

available memory capacity on an Edison compute node. In

this situation, the MPI and OpenMP hybrid model exploits

the full usage of all available CPU cores and overcomes the

memory shortage to achieve the highest performance rate of

31 Tflops. The similar situation happens to N = 784 and

N = 1024.

In summary, the performance of FSI algorithm with

OpenMP is close to the one of DGEMM, the peak rate

in practice. In addition, FSI is scalable to the number of

OpenMP threads and almost doubles the performance of

pure multi-threaded MKL routines for computing a selected

inversion. Moreover, when the parallel application of the

FSI algorithm is used to computing the selected inversions

of multiple Green’s functions, the MPI/OpenMP model can

maximize the power of thousands of available cores in the

cases when the memory limits the number of MPI processes

on each node.

C. FSI in DQMC

To examine the application of FSI in the DQMC simula-

tion, we first integrate the FSI algorithm with the physical

measurements. We consider Hubbard matrices M(h) of the

dimension (L,N) = (100, 400). The cluster size c = 10.

For both the equal-time and time-dependent measurements,

we compute all diagonal blocks, b block rows and b block

columns of each G. We compare the CPU time of serial

execution, parallel executions with OpenMP and pure MKL,

respectively, on an “Ivy Bridge” processor of Edition. Fig. 10

0 10 20 30 40 50 60 70

Serial

MKL

OpenMP

Runtime (seconds)

Measurement
Green’s function

Figure 10. Runtime profile on a single Hubbard matrix.

1 6 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
un

tim
e

(h
ou

rs
)

Number of OpenMP Threads in a Process

MKL
OpenMP

Figure 11. Runtime of a full DQMC simulation with (w,m) = (100, 200)
on an “Ivy Bridge” processor of Edition.

shows a profile of CPU time of computing the Green’s

function and physical measurements. As we can see, the

pure MKL execution reduces the CPU time for computing

Green’s function due to the power of multi-threaded opti-

mized LAPACK routine, but increases the CPU time for the

physical measurements due to the execution of a sequential

code in multi-threads. However, FSI with OpenMP uses 87%

less CPU time for the computation of Green’s functions and

physical measurements.

Finally, we examine the impact of the FSI algorithm in a

full DQMC simulation with (N,L) = (400, 100). To limit

the runtime, we set the number of warmup loops to w = 100
and the number of measurement loops to m = 200. The size

of clustering in FSI is c = 10. Fig. 11 shows the total runtime

of the DQMC with FSI on an “Ivy Bridge” processor of

Edition. As we can see, FSI with OpenMP gains a factor

of 6.9 speedup from single-core to 12-core execution. In

contrast, FSI with MKL only gains a factor of 1.3 speedup.

As a result, the full DQMC simulation reduces from three

and a half hours to forty minutes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackled the bottleneck of Green’s

function calculations and physical measurements in DQMC

simulations. The performance of the FSI algorithm has

doubled the performance of simple Intel MKL calls. The

enhancement of QMC capabilities by our work, will allow

solution of problems that require either larger numbers of

electrons or more complicated types of interactions.

One promising future work is the extension of the basic

idea of the FSI algorithm to other types of structured

matrices such as block tridiagonal matrices. Other future

work includes a GPU implementation of the FSI and the

hybrid massive parallelization of the full DQMC simulation.

ACKNOWLEDGEMENT. This research used resources of the

NERSC, a DOE Office of Science User Facility supported

by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231. CJ and ZB were

supported in part by NSF grant CCF-1527091. RTS was

supported in part by DOE grant DE-NA0002908.

REFERENCES

[1] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, “Monte
Carlo calculations of coupled boson-fermion systems. i,” Phy.
Rev. D, vol. 24, p. 2278, 1981.

[2] R. R. d. Santos, “Introduction to quantum Monte Carlo simu-
lations for fermionic systems,” Brazilian Journal of Physics,
vol. 33, pp. 36–54, 2003.

[3] G. Alvarez, M. S. Summers, D. E. Maxwell, M. Eisenbach,
J. S. Meredith, J. M. Larkin, J. Levesque, T. A. Maier, P. R. C.
Kent, E. F. D’Azevedo, and T. C. Schulthess, “New algorithm
to enable 400+ TFlop/s sustained performance in simulations
of disorder effects in high-Tc superconductors,” in Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing,
pp. 61, 2008.

[4] C.-C. Chang, S. Gogolenko, J. Perez, Z. Bai, and R. T.
Scalettar, “Recent advances in determinant quantum monte
carlo,” Philosophical Magazine, vol. 95, pp. 1260–1281,
2015.

[5] S. Li, S. Ahmed, G. Klimeck, and E. Darve, “Computing
entries of the inverse of a sparse matrix using the FIND
algorithm,” Journal of Computational Physics, vol. 227, pp.
9408–9427, 2008.

[6] D. E. Petersen, S. Li, K. Stokbro, H. H. B. SøRensen, P. C.
Hansen, S. Skelboe, and E. Darve, “A hybrid method for
the parallel computation of Green’s functions,” Journal of
Computational Physics, vol. 228, pp. 5020–5039, 2009.

[7] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and E. Weinan,
“Selinv—an algorithm for selected inversion of a sparse sym-
metric matrix,” ACM Transactions on Mathematical Software,
vol. 37, p. 40, 2011.

[8] M. E. El-Mikkawy, “Explicit inverse of a generalized Vander-
monde matrix,” Applied Mathematics and Computation, vol.
146, pp. 643–651, 2003.

[9] R. K. Mallik, “The inverse of a tridiagonal matrix,” Linear
Algebra and its Applications, vol. 325, pp. 109–139, 2001.

[10] S. Vatsya and H. Pritchard, “An explicit inverse of a tridiag-
onal matrix,” International journal of computer mathematics,
vol. 14, pp. 295–304, 1983.

[11] C. Da Fonseca and J. Petronilho, “Explicit inverse of a
tridiagonal k-Toeplitz matrix,” Numerische Mathematik, vol.
100, pp. 457–482, 2005.

[12] W. F. Trench, “An algorithm for the inversion of finite
Toeplitz matrices,” Journal of the Society for Industrial &
Applied Mathematics, vol. 12, pp. 515–522, 1964.

[13] J. M. Tang and Y. Saad, “A probing method for computing
the diagonal of a matrix inverse,” Numerical Linear Algebra
with Applications, vol. 19, pp. 485–501, 2012.

[14] Z. Bai, M. Fahey, and G. Golub, “Some large-scale matrix
computation problems,” Journal of Computational and Ap-
plied Mathematics, vol. 74, pp. 71–89, 1996.

[15] H. Avron and S. Toledo, “Randomized algorithms for estimat-
ing the trace of an implicit symmetric positive semi-definite
matrix,” Journal of the ACM, vol. 58, p. 8, 2011.

[16] A. Stathopoulos, J. Laeuchli, and K. Orginos, “Hierarchical
probing for estimating the trace of the matrix inverse on
toroidal lattices,” SIAM Journal on Scientific Computing,
vol. 35, pp. S299–S322, 2013.

[17] D. P. Woodruff, “Sketching as a tool for numerical linear
algebra,” arXiv preprint arXiv:1411.4357, 2014.

[18] R. S. Varga, “p-cyclic matrices: A generalization of the
Young-Frankel successive overrelaxation scheme.” Pacific
Journal of Mathematics, vol. 9, pp. 617–628, 1959.

[19] O. G. Ernst, “Equivalent iterative methods for p-cyclic ma-
trices,” Numerical Algorithms, vol. 25, pp. 161–180, 2000.

[20] G. Fairweather and I. Gladwell, “Algorithms for almost block
diagonal linear systems,” SIAM Rev., vol. 46, pp. 49–58, 2004.

[21] W. J. Stewart, Introduction to the numerical solution of
Markov chains. Princeton, NJ: Princeton Univ. Press, 1994,
vol. 41.

[22] C.-R. Lee, I.-H. Chung, Z. Bai et al., “Parallelization of
dqmc simulation for strongly correlated electron systems,”
in Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, 2010, pp. 1–9.

[23] A. Tomas, C.-C. Chang, R. Scalettar, and Z. Bai, “Advancing
large scale many-body QMC simulations on GPU accelerated
multicore systems,” in Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International. IEEE,
2012, pp. 308–319.

[24] W. Gander and G. H. Golub, “Cyclic reduction – history and
applications,” Scientific Computing, pp. 73–85, 1997.

[25] J. E. Hirsch, “Stable Monte Carlo algorithm for fermion
lattice systems at low temperatures,” Phy. Rev. B, vol. 38,
p. 12023, 1988.

[26] Z. Bai, W. Chen, R. Scalettar, and I. Yamazaki, “Numerical
methods for quantum Monte Carlo simulations of the Hub-
bard model,” in Multi-Scale Phenomena in Complex Fluids,
ser. Contemporary Applied Mathematics, T. Y. Hou, C. Liu,
and J.-G. Liu, Eds. Beijing: Higher Education Press and
World Scientific, 2009, vol. 12, ch. 1, pp. 1–100.

[27] S. Gogolenko, Z. Bai, and R. Scalettar, “Structured orthogonal
inversion of block p-cyclic matrices on multicores with GPU
accelerators,” in Euro-Par 2014 Parallel Processing. Switzer-
land: Springer, 2014, pp. 524–535.

[28] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel
programming models and tools in the multi and many-core
era,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 23, pp. 1369–1386, 2012.

[29] M. J. Chorley and D. W. Walker, “Performance analysis of
a hybrid MPI/OpenMP application on multi-core clusters,”
Journal of Computational Science, vol. 1, pp. 168–174, 2010.

[30] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and
B. Chapman, “High performance computing using MPI and
OpenMP on multi-core parallel systems,” Parallel Computing,
vol. 37, pp. 562–575, 2011.

[31] G. Hager and G. Wellein, Introduction to high performance
computing for scientists and engineers. Boca Raton, FL:
CRC Press, Taylor and Francis Group, 2010.

[32] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Fort
Worth: Cengage Learning, 1976.

[33] M. Tinkham, Group theory and quantum mechanics. Courier
Dover Publications, 2003.

