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Abstract
We consider the problem of extracting a few desired eigenpairs of the buckling
eigenvalue problem Kx = 𝜆KGx, where K is symmetric positive semi-definite, KG

is symmetric indefinite, and the pencil K − 𝜆KG is singular, namely, K and KG

share a nontrivial common nullspace. Moreover, in practical buckling analysis
of structures, bases for the nullspace of K and the common nullspace of K and
KG are available. There are two open issues for developing an industrial strength
shift-invert Lanczos method: (1) the shift-invert operator (K − 𝜎KG)−1 does not
exist or is extremely ill-conditioned, and (2) the use of the semi-inner product
induced by K drives the Lanczos vectors rapidly toward the nullspace of K, which
leads to a rapid growth of the Lanczos vectors in norms and causes permanent
loss of information and the failure of the method. In this paper, we address these
two issues by proposing a generalized buckling spectral transformation of the
singular pencil K − 𝜆KG and a regularization of the inner product via a low-rank
updating of the semi-positive definiteness of K. The efficacy of our approach is
demonstrated by numerical examples, including one from industrial buckling
analysis.
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1 INTRODUCTION

We consider the buckling eigenvalue problem

Kx = 𝜆KGx, (1)

where K and KG are n×n sparse symmetric matrices, and K is positive semi-definite and KG is indefinite. Furthermore, the
pencil K − 𝜆KG is singular, that is, the matrices K and KG share a nontrivial common nullspace c. We are interested in (i)
extracting a few nonzero finite eigenvalues around a prescribed shift𝜎 ≠ 0 and the associated eigenvectors x perpendicular
to the common nullspace c, and (ii) counting the number of eigenvalues of K − 𝜆KG in a given interval (𝛼, 𝛽). As in
practical buckling analysis of structures, we assume that a basis Z ≡ [ZN ZC] of the nullspace of K and a basis ZC of the
common nullspace c of K and KG are available, and the pencil K − 𝜆KG is simultaneously diagonalizable.

The buckling eigenvalue problem (1) arises from the buckling analysis in structural engineering, where K is referred
to as the stiffness matrix and KG is referred to as the geometric stiffness matrix. The eigenvalue 𝜆 is used to determine
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the critical load at which a structure may become unstable (Reference 1, p. 433), and the eigenvector x is the associated
buckling shape. The bases for the nullspace of K and the common nullspace c of K and KG can be extracted from the
algebraic or geometric structure of the problem.1-3

The buckling eigenvalue problem (1) remains an outstanding computational challenge in numerical linear algebra4,5

and in industrial applications.6 When the pencil K − 𝜆KG is regular and K is positive definite, a common practice for
computing eigenpairs around a given shift 𝜎 is to convert (1) into the following ordinary eigenproblem via a so-called
buckling spectral transformation

(K − 𝜎KG)−1Kx = 𝜆

𝜆 − 𝜎
x, (2)

see References 7-10. Since (K − 𝜎KG)−1K is symmetric with respect to K, the Lanczos method with K-inner product can be
immediately used to solve the eigenproblem (2). This approach is referred to as the shift-invert Lanczos method and has
been widely used, including in a number of industrial strength eigensolvers, such as LS-DYNA.6

However, when K is positive semi-definite and K − 𝜆KG is singular, we have the following two issues:

1. Since the pencil K − 𝜆KG is singular or near singular, that is, the matrices K and KG share a nontrivial common
nullspace c, the shift-invert matrix (K − 𝜎KG)−1 does not exist or is extremely ill-conditioned.

2. Since the matrix K is positive semi-definite, the inner product induced by K causes the Lanczos vectors driven rapidly
toward the nullspace of K.4,5,8,11 It results in the large norms of the Lanczos vectors, which introduces large rounding
errors. The accuracy of the computed solutions degrades and the procedure can even fail.

These issues have been studied since the early development of the shift-invert Lanczos method in the 1980s.
Nour-Omid et al.8 proposed a modified formulation of the Ritz vectors to refine the computed solutions. Meerbergen4

proposed to control the norms of the Lanczos vectors by applying implicit restart.12 More recently, Stewart5 gave a detailed
analysis to show that the loss of information caused by the growth of the Lanczos vectors is permanent.

One way to address the issues is to consider constraints on the degrees of freedom (Reference 1, p. 272). By removing
the redundant degrees of freedom, the buckling eigenvalue problem (1) can be transformed into an equivalent sym-
metric definite generalized eigenvalue problem. This approach, however, could significantly increase the number of
nonzero entries in the shifted matrix, leading to huge amount of memory for the factorization. The constraints can also
be imposed by augmenting (1) using the Lagrange formulation.6 But both the augmented matrices become indefinite
and the shift-invert Lanczos method is not applicable. Alternative way is to enforce the Lanczos vectors in the desired
subspace by deflation.8 Still, the stability could be a concern.

In this paper, we address the two issues by first proposing a generalized buckling spectral transformation of the singu-
lar pencil K − 𝜆KG, and a regularization of the inner product via a low-rank updating of the positive semi-definite matrix K.
Then a shift-invert Lanczos method for the buckling eigenvalue problem (1) is developed. We will discuss implementa-
tion of the matrix-vector product for the computational kernel of the shift-invert Lanczos method, and propose way to
count the number of eigenvalues in a given interval (𝛼, 𝛽) for validation.

The rest of the paper is organized as follows. In Section 2, we first present a canonical form of the pencil
K − 𝜆KG, and propose a generalized buckling spectral transformation, and a regularization of the inner product. In
Section 3, we discuss the implementation of the shift-invert Lanczos method with the generalized buckling spectral
transformation and the regularized inner product. In Section 4, we discuss way to count the number of eigenval-
ues in an interval. Efficacy of the proposed approach is demonstrated in Section 5. Concluding remarks are given in
Section 6.

Following the convention of matrix computations, we use the upper case letters for matrices and lower case letters
for vectors. In particular, we use In for the identity matrix of dimension n with ej being the jth column. If not speci-
fied, the dimensions of matrices and vectors conform to the dimensions used in the context. ⋅T is for transpose, ⋅† for
pseudo-inverse, || ⋅ ||1 for 1-norm, and || ⋅ ||2 and || ⋅ ||F for 2-norm and Frobenius norm, respectively. Also, 𝜅2(⋅) is for the
2-norm condition number. We use A−T for the inverse of the matrix AT . The range and the nullspace of a matrix A are
denoted by (A) and  (A), respectively. The direct sum of two subspaces 1 and 2 is denoted by 1 ⊕ 2. The orthog-
onal complement to a subspace  is denoted by ⟂ and the orthogonal projection onto a subspace  is denoted by  .
𝜈+(S), 𝜈−(S) and 𝜈0(S) denote the numbers of positive, negative and zero eigenvalues of a symmetric matrix S, respectively.
Other notations will be explained as used.
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2 THEORY

2.1 Canonical form

We start with a canonical form of the pencil K − 𝜆KG. For the compactness of presentation, we interchange the roles of
K and KG in (1) and consider the reversal of the pencil K − 𝜆KG, that is, KG − 𝜆#K.

Theorem 1. For the pencil KG − 𝜆#K, there exists a nonsingular matrix W ∈ Rn×n such that

W TKGW =
⎡⎢⎢⎢⎣

n1 n2 n3

n1 Λ#
1

n2 Λ#
2

n3 0

⎤⎥⎥⎥⎦ and W TKW =
⎡⎢⎢⎢⎣

n1 n2 n3

n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎦, (3)

where Λ#
1 and Λ#

2 are diagonal matrices with real diagonal entries, and Λ#
2 is nonsingular. Furthermore, by conformally

partitioning W = [W1, W2, W3], we have

W T
3 W1 = 0 and W T

3 W2 = 0, (4)

Proof. see Appendix A. ▪

Remark 1. By the canonical form (3), we immediately know that (i) the columns of W3 span the common nullspace
c of K and KG, and the columns of [W1 W2] span the orthogonal complement to c, that is, ⟂

c ; (ii) the columns of
W1 are eigenvectors associated with real finite eigenvalues (Λ#

1, In1) of the pencil KG − 𝜆#K and are perpendicular to c;
(iii) The columns of W2 are eigenvectors associated with an infinite eigenvalue (Λ#

2, 0) of the pencil KG − 𝜆#K and are
perpendicular to c; (iv) For x ∈ c, (𝜆#, x) is an eigenpair of the pencil KG − 𝜆#K for any 𝜆# ∈ C.

2.2 Generalized buckling spectral transformation

Mathematically, a generalized buckling spectral transformation of the singular pencil K − 𝜆KG is to replace the inverse
in (2) by the pseudo-inverse and leads to the ordinary eigenvalue problem

Cx = 𝜇x with C = (K − 𝜎KG)†K, (5)

where (K − 𝜎KG)† is the pseudo-inverse of the singular matrix K − 𝜎KG (Reference 13, p. 290). Note that the nonzero real
shift 𝜎 cannot be an eigenvalue of the pencil K − 𝜆KG.

We now present the relationship of nontrivial eigenpairs between the original buckling eigenvalue problem (1) and
the ordinary eigenvalue problem (5). We first use the canonical form (3) to derive an eigenvalue decomposition of C and
provide the eigenvalue and eigenvector relations between C and KG − 𝜆#K.

Lemma 1. With the canonical form (3) in Theorem 1, an eigenvalue decomposition of the matrix C defined in (5) is given by

CW = W
⎡⎢⎢⎢⎣
(In1 − 𝜎Λ#

1)−1

0
0

⎤⎥⎥⎥⎦ . (6)

Proof. Recall that, since the matrix K − 𝜎KG is symmetric,

(K − 𝜎KG) =  (K − 𝜎KG)⟂ = ⟂
c . (7)

In addition, by the condition (4) in the canonical form (3), we have
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2754 LIN et al.

(W1)⊕(W2) = (W3)⟂ = ⟂
c . (8)

Therefore, from (7) and (8),

(K − 𝜎KG) = (W1)⊕(W2) = (W3)⟂ = ⟂
c . (9)

Now note that, from the canonical form (3),

W TKW =
⎡⎢⎢⎢⎣
In1

0
0

⎤⎥⎥⎥⎦ and W T(K − 𝜎KG)W =
⎡⎢⎢⎢⎣
In1 − 𝜎Λ#

1

−𝜎Λ#
2

0

⎤⎥⎥⎥⎦ . (10)

Therefore, we have

W TKW =
⎡⎢⎢⎢⎣
In1

0
0

⎤⎥⎥⎥⎦ = W T(K − 𝜎KG)W
⎡⎢⎢⎢⎣
(In1 − 𝜎Λ#

1)−1

0
0

⎤⎥⎥⎥⎦ . (11)

Left multiplying (11) by (K − 𝜎KG)†W−T ,

(K − 𝜎KG)†KW = (K − 𝜎KG)†(K − 𝜎KG)W
⎡⎢⎢⎢⎣
(In1 − 𝜎Λ#

1)−1

0
0

⎤⎥⎥⎥⎦ . (12)

The pseudo-inverse (K − 𝜎KG)† satisfies the Moore–Penrose conditions (Reference 13, p. 290), which give

(K − 𝜎KG)†(K − 𝜎KG) = ((K−𝜎KG)T ) = (K−𝜎KG), (13)

namely (K − 𝜎KG)†(K − 𝜎KG) is an orthogonal projection onto ((K − 𝜎KG)T) = (K − 𝜎KG). Therefore, from (9) and
(13),

(K − 𝜎KG)†(K − 𝜎KG)W = W
⎡⎢⎢⎢⎣
In1

In2

0

⎤⎥⎥⎥⎦ . (14)

From Equations (12) and (14), we have the eigenvalue decomposition (6) of C. ▪

Lemma 2. The matrix C defined in (5) has the following properties:

(i) (𝜆#, x) is an eigenpair of KG − 𝜆#K with nonzero finite 𝜆# and x ∈ ⟂
c if and only if (𝜇, x) is an eigenpair of C with 𝜇 ≠ 0

and 𝜇 ≠ 1 and x ∈ ⟂
c , where 𝜇 = 1

1−𝜎𝜆#
.

(ii) (𝜆#, x) is an eigenpair of KG − 𝜆#K with 𝜆# = 0 and x ∈ ⟂
c if and only if (𝜇, x) is an eigenpair of C with 𝜇 = 1 and

x ∈ ⟂
c .

(iii) (𝜆#, x) is an eigenpair of KG − 𝜆#K with |𝜆#| = ∞ and x ∈ ⟂
c if and only if (𝜇, x) is an eigenpair of C with 𝜇 = 0 and

x ∈ ⟂
c .

(iv) If x ∈ c, Cx = 0.

Proof. The lemma can be proved by comparing the eigenvalue decomposition (6) of C with the canonical form (3)
of KG − 𝜆#K. Specifically, for (i) and (ii), recall that each column of W1 is an eigenvector associated with a real,
finite eigenvalue 𝜆# of the pencil KG − 𝜆#K and the eigenvector is perpendicular to the common nullspace c. From
(6), each column of W1 is now an eigenvector associated with a non-zero, finite eigenvalue 𝜇 = (1 − 𝜎𝜆#)−1 of the
eigenproblem (5).
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LIN et al. 2755

To show (iii), recall that each column of W2 is an eigenvector associated with an infinite eigenvalue of the pencil
KG − 𝜆#K and the eigenvector is perpendicular to the common nullspace c. From (6), each column of W2 is now an
eigenvector associated with zero eigenvalue of the eigenproblem (5).

Finally, for (iv), the common nullspace c is spanned by the columns of W3 and, from (6), we know that Cx = 0 if
x ∈ c. ▪

The following theorem provides the relationship of nontrivial eigenpairs between the original buckling eigenvalue
problem (1) and the ordinary eigenvalue problem (5).

Theorem 2. (𝜆, x) is an eigenpair of the pencil K − 𝜆KG with nonzero finite eigenvalue 𝜆 and x ∈ ⟂
c if and only if (𝜇, x) is

an eigenpair of the matrix C in (5) with 𝜇 ≠ 0 and 𝜇 ≠ 1 and x ∈ ⟂
c , where 𝜇 = 𝜆

𝜆−𝜎
and 𝜎 ≠ 0.

Proof. Note that (𝜆, x) is an eigenpair of K − 𝜆KG with nonzero finite eigenvalue 𝜆 and x ∈ ⟂
c if and only if (𝜆#, x) is

an eigenpair of KG − 𝜆#K with non-zero finite eigenvalue 𝜆# = 𝜆−1 and x ∈ ⟂
c . Also, from Lemma 2 (i), we know that

(𝜆#, x) is an eigenpair of KG − 𝜆#K with nonzero finite eigenvalue 𝜆# and x ∈ ⟂
c if and only if (𝜇, x) is an eigenpair of the

eigenvalue problem Cx = 𝜇x with 𝜇 = 1
1−𝜎𝜆#

, 𝜇 ≠ 0 and 𝜇 ≠ 1, and x ∈ ⟂
c . Therefore, (𝜆, x) is an eigenpair of the pencil

K − 𝜆KG with nonzero finite eigenvalue 𝜆 and x ∈ ⟂
c if and only if (𝜇, x) is an eigenpair of the eigenvalue problem Cx = 𝜇x

with 𝜇 = 𝜆

𝜆−𝜎
, 𝜇 ≠ 0 and 𝜇 ≠ 1, and x ∈ ⟂

c . □
By Theorem 2, near the shift 𝜎, the eigenpairs (𝜆, x) of K − 𝜆KG with non-zero finite eigenvalues 𝜆 and x ∈ ⟂

c are
transformed into eigenpairs (𝜇, x) of C with nonzero eigenvalues 𝜇, which typically are well-separated, and those away
from the shift 𝜎 are transformed into clustered eigenpairs (𝜇, x) of C near unity as shown in Figure 1. We note that the
eigenpairs (𝜇, x) with 𝜇 = 0 or 𝜇 = 1 are not the ones of interest. The eigenpairs (1, x) correspond to eigenpairs of K − 𝜆KG
with infinite eigenvalues and the eigenpairs (0, x) correspond to eigenpairs of K − 𝜆KG with x ∈  (K). ▪

2.3 Regularization of the inner product

In this subsection we introduce a positive definite matrix M from a low-rank updating of K, and then show that the matrix
C in the generalized buckling spectral transformation (5) is symmetric with respect to the inner product induced by M.

Theorem 3. Let C be defined in (5). Let Z = [ZN ZC] span the nullspace  (K) and ZC span the common nullspace c of
K and KG. Define

M = K + (KGZN)HN(KGZN)T + ZCHCZT
C , (15)

where HN and HC are arbitrary positive definite matrices. Then

(i) the matrix M is positive definite,
(ii) the matrix C is symmetric with respect to the inner product induced by M.

Proof. By the canonical form (3), we have

F I G U R E 1 Buckling spectral
transformation with 𝜎 < 0 (left) and
𝜎 > 0 (right)
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2756 LIN et al.

 (K) = (W2)⊕(W3) = (ZN)⊕(ZC) and c = (W3) = (ZC),

and

[
ZN ZC

]
=
[

W2 W3

][R22 O
R32 R33

]
,

for some matrices R22 ∈ Rn2×n2 , R32 ∈ Rn3×n2 , R33 ∈ Rn3×n3 , and R22 and R33 are nonsingular. Therefore,

W TKGZN = W TKG(W2R22 + W3R32) = W TKGW2R22 =
⎡⎢⎢⎢⎣

0
Λ#

2R22

0

⎤⎥⎥⎥⎦ .
Since the basis W satisfies the condition (4),

W TZC = W TW3R33 =
⎡⎢⎢⎢⎣

0
0

(W T
3 W3)R33

⎤⎥⎥⎥⎦ .
Therefore,

W TMW = W T (
K + (KGZN)HN(KGZN)T + ZCHCZT

C
)

W =
⎡⎢⎢⎢⎣
In1

ĤN

ĤC

⎤⎥⎥⎥⎦ , (16)

where

ĤN = Λ#
2R22HN RT

22Λ
#
2 and ĤC = (W T

3 W3)R33HCRT
33(W

T
3 W3).

To prove that M is positive definite, we show that both ĤN and ĤC are positive definite. For the matrix ĤN , we note
that the matrix HN is positive definite and the matrix R22 is nonsingular. Also, from Theorem 1, the diagonal matrix Λ#

2 is
nonsingular. Therefore, the matrix ĤN is positive definite. For the matrix ĤC, we note that the matrix HC is positive definite
and the matrix R33 is nonsingular. Also, since the matrix W3 is of full rank, the symmetric matrix W T

3 W3 is nonsingular.
Therefore, the matrix ĤC is also positive definite. This proves (i).
To prove (ii), by the eigenvalue decomposition (6) of C and (16), we have

W TMCW = W TMWW−1CW =
⎡⎢⎢⎢⎣
(In1 − 𝜎Λ#

1)−1

0
0

⎤⎥⎥⎥⎦ .
Therefore, the matrix MC is symmetric, which means that the matrix C is symmetric with respect to the inner product

induced by M. ▪

Remark 2. We note that if the pencil K − 𝜆KG is regular, Theorem 3 is still applicable. In this case, the matrix C in (2) is
symmetric with respect to the inner product induced by M =K + (KGZN)HN (KGZN )T .

3 SHIFT-INVERT LANCZOS METHOD

3.1 Shift-invert Lanczos method

Using Theorem 2, we have generalized the buckling spectral transformation to the singular pencil K − 𝜆KG and converted
the buckling eigenproblem (1) into an equivalent ordinary eigenvalue problem (5). From Theorem 3, we know that the
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LIN et al. 2757

matrix C in (5) is symmetric with respect to the inner product induced by the positive definite matrix M in (15). It natu-
rally leads that to solve the buckling eigenvalue problem (1), we can use the Lanczos method on the matrix C with the
inner product induced by M. This new strategy is also referred to as the shift-invert Lanczos method and outlined in
Algorithm 1.

The shift-invert Lanczos method, after j steps, computes a sequence of Lanczos vectors {v1 … vj+ 1} and a symmetric
tridiagonal matrix Tj = tridiag(𝛽i−1, 𝛼i, 𝛽i) satisfying the governing equations

CVj = VjTj + 𝛽jvj+1eT
j and V T

j+1MVj+1 = Ij+1, (17)

where V j+ 1 ≡ [v1 … vj+ 1]. Care must be taken to ensure that the equations in (17) are satisfied7-9,14,15 in the presence of
finite-precision arithmetic. In particular, at step 11 of Algorithm 1, we perform full re-orthogonalization at each iteration
using the classical Gram–Schmidt process (Reference 16, p. 120), that is,

r = r − Vj(V T
j (Mr)).

Efficient practical techniques such as partial and selective re-orthogonalization have been developed and
well-implemented.9,14,15 In next subsection, we will focus on the implementation of the matrix-vector product u=Cv at
step 6.

Algorithm 1. Shift-invert Lanczos method for the buckling eigenvalue problem (1)

This algorithm takes as input the starting vector v, the matrix-vector product u = Cv, the matrix M with the positive def-
inite matrices HN and HC, and the tolerance value tol for the relative residual norm. It returns the converged eigenpairs
(𝜇i, x̂i) of C.

1: r = v
2: p = Mr
3: 𝛽0 = (pTr)1∕2

4: for j = 1, 2,… do
5: vj = r∕𝛽j−1
6: r = Cvj (see Section 3.2)
7: r = r − 𝛽j−1vj−1
8: p = Mr
9: 𝛼j = vT

j p
10: r = r − 𝛼jvj
11: perform re-orthogonalization if necessary
12: p = Mr
13: 𝛽j = (pTr)1∕2

14: compute the eigenpairs (𝜇i, ŝi) of Tj = tridiag(𝛽i−1, 𝛼i, 𝛽i)
15: use tol to check the relative residual norm (33) for convergence
16: end for
17: return the converged eigenpairs (𝜇i, x̂i = Vĵsi)

3.2 The matrix-vector product

We first show that the matrix-vector product u = Cv = (K − 𝜎KG)†Kv is connected with the solution of a consistent
singular linear system with constraint.

Theorem 4. Given v ∈ Rn, the vector

u = (K − 𝜎KG)†Kv, (18)
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2758 LIN et al.

is the unique solution of the consistent singular linear system

(K − 𝜎KG)u = Kv, (19)

with the constraint

ZT
Cu = 0, (20)

where ZC is a basis of the common nullspace of K and KG.

Proof. First note that since both K and K − 𝜎KG are symmetric, we have

(K) =  (K)⟂ and (K − 𝜎KG) =  (K − 𝜎KG)⟂ = ⟂
c , (21)

and

c =  (K − 𝜎KG) ⊂  (K). (22)

Therefore from (21) and (22),

Kv ∈ (K) ⊂ (K − 𝜎KG),

which implies that the linear system (19) is consistent. From (18),

(K − 𝜎KG)u = (K − 𝜎KG)(K − 𝜎KG)†Kv = (K−𝜎KG)Kv = Kv, (23)

where (K−𝜎KG) is an orthogonal projection onto (K − 𝜎KG) (by the Moore–Penrose conditions Reference 13, p. 290).
This means that u is a solution of the consistent singular linear system (19).

On the other hand, from (18) and (23),

u = (K − 𝜎KG)†Kv = (K − 𝜎KG)†(K − 𝜎KG)u = ((K−𝜎KG)T )u = (K−𝜎KG)u. (24)

Since (K − 𝜎KG) = ⟂
c , it implies that u is perpendicular to the common nullspace c, which is also the nullspace

 (K − 𝜎KG).
The uniqueness can be shown as follows. Given two solutions u1 and u2 to (19), the difference u1 −u2 would satisfy

(K − 𝜎KG)(u1 − u2) = 0, which implies u1 − u2 ∈ c. However, since both solutions satisfy the constraint (20), ZT
C(u1 −

u2) = 0. Therefore, u1 −u2 = 0. ▪

We now present method to compute the matrix-vector product u=Cv. First, we have the following theorem to extract
a non-singular submatrix of K − 𝜎KG by exploiting the basis ZC.

Theorem 5. Let ZC ∈ Rn×n3 be a basis of  (K − 𝜎KG) and P ∈ Rn×n be a permutation matrix such that PTZC ≡

[
Y1
Y2

]
, and

Y2 ∈ Rn3×n3 is nonsingular. Define

S = PT(K − 𝜎KG)P and S =

[n−n3 n3

n−n3 S𝜎
11 S12

n3 ST
12 S22

]
. (25)

Then

(1) the submatrix S𝜎
11 ∈ R(n−n3)×(n−n3) is nonsingular,
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LIN et al. 2759

(2) 𝜈+(S𝜎
11) = 𝜈+(K − 𝜎KG) and 𝜈−(S𝜎

11) = 𝜈−(K − 𝜎KG), where 𝜈+(X) and 𝜈−(X) denote the numbers of positive and negative
eigenvalues of the symmetric matrix X, respectively.

Proof. Let

E =

[ n−n3 n3

n−n3 In−n3 Y1

n3 0 Y2

]
∈ R

n×n.

The matrix E is non-singular since Y 2 is nonsingular. By the congruence transformation, we have

ETSE = ETPT(K − 𝜎KG)PE = ET

[
S𝜎

11 S12

ST
12 S22

]
E =

[n−n3 n3

n−n3 S𝜎
11 0

n3 0 0

]
. (26)

Sylvester’s law (Reference 13, p. 448) tells that the matrices K − 𝜎KG and ETSE have the same inertias. In particular,
from (26), we know that

𝜈+(K − 𝜎KG) = 𝜈+(S𝜎
11), 𝜈−(K − 𝜎KG) = 𝜈−(S𝜎

11),

and

𝜈0(K − 𝜎KG) = 𝜈0(S𝜎
11) + n3 (27)

But 𝜈0(K − 𝜎KG) = dim( (K − 𝜎KG)) = n3. Therefore, from (27), 𝜈0(S𝜎
11) = 0 and S𝜎

11 is nonsingular. ▪

Theorem 5 was inspired by Reference 17, theorem 2.2, where the authors consider solving a consistent semi-definite
linear systems Ax = b from the electromagnetic applications.18 The matrix A, generated from the finite element modeling,
is positive semi-definite and an explicit basis of the nullspace of A is available. This explicit basis of the nullspace is then
used to identify a nonsingular part of A and a solution of the linear system can be computed from it. Although in the
buckling eigenvalue probem (1), the matrix K − 𝜎KG is indefinite, we found that the strategy developed in Reference 17
can be generalized to the system (19) and (20).

By Theorem 5, the method to solve (19), that is, compute the matrix-vector product u = Cv = (K − 𝜎KG)†Kv, can be
described in two steps:

1. Find a solution up of the consistent singular linear system (19).
2. Compute u = (K−𝜎KG)up to satisfy the constraint (20), where (K−𝜎KG) is an orthogonal projection onto (K − 𝜎KG).

Specifically, in Step 1, find the permutation matrix P as described in Theorem 5, and rewrite (19) in the partitioned
form (25): [

S𝜎
11 S12

ST
12 S22

][
w1

w2

]
=

[
c1

c2

]
∈ (S), (28)

where [
w1

w2

]
≡ PTu and

[
c1

c2

]
≡ PTKv.

Since S𝜎
11 is nonsingular, S𝜎

11 is of full rank and the leading n−n3 columns of S are linearly independent. On the other
hand, we know that rank(S) = rank(K − 𝜎KG) = n − n3. Therefore, the leading n−n3 columns of S is a basis of (S), and
there is a solution wp of (28) with w2 = 0. Direct substitution gives
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2760 LIN et al.

wp =

[
(S𝜎

11)
−1c1

0

]
,

where the inverse (S𝜎
11)

−1 can be computed using the sparse LDLT factorization of S𝜎
11.19,20 A solution up of (19) is then

given by

up = P

[
(S𝜎

11)
−1c1

0

]
.

In Step 2, since ZC is a basis of  (K − 𝜎KG), which is the orthogonal complement to (K − 𝜎KG), the vector u can be
computed by the projection

u = (K−𝜎KG)up = (I − ZC(ZT
CZC)−1ZT

C)up.

If ZC is an orthonormal basis, then

u = (K−𝜎KG)up = (I − ZCZT
C)up.

4 COUNTING EIGENVALUES

In this section, as a validation scheme, we discuss a way to count the number of eigenvalues in a given interval. In the
following, 𝜈+(A) and 𝜈−(A) denote the number of positive and negative eigenvalues of a symmetric matrix A, respectively.
n(𝛼, 𝛽) and n#(𝛼, 𝛽) denote the numbers of eigenvalues of the pencil K − 𝜆KG and the reversed pencil KG − 𝜆#K in an
interval (𝛼, 𝛽), respectively.

First, we consider the following lemma.

Lemma 3. Let Z = [ZN ZC] span the nullspace  (K) and ZC span the common nullspace c of K and KG, then

(i) for 𝛼 < 0, n(𝛼, 0) = 𝜈−(K − 𝛼KG) − 𝜈−(ZT
N KGZN),

(ii) for 𝛼 > 0, n(0, 𝛼) = 𝜈−(K − 𝛼KG) − 𝜈+(ZT
N KGZN).

In addition, the matrix ZT
N KGZN is nonsingular.

Proof. The proof is based on the following two facts: (1) (𝜆, x) is an eigenpair of the pencil K − 𝜆KG with nonzero finite
eigenvalue 𝜆 and x ∈ ⟂

c if and only if (𝜆#, x) is an eigenpair of the pencil KG − 𝜆#K with nonzero finite eigenvalue 𝜆# = 𝜆−1

and x ∈ ⟂
c . (2) By the canonical form (3), we have

W T
(

KG − 1
𝛼

K
)

W =
⎡⎢⎢⎢⎣
Λ#

1 −
1
𝛼

In1

Λ#
2

0

⎤⎥⎥⎥⎦ .
Consequently, by Sylvester’s law, we have

𝜈−

(
KG − 1

𝛼
K
)
= 𝜈−

(
Λ#

1 −
1
𝛼

In1

)
+ 𝜈−(Λ#

2),

𝜈+

(
KG − 1

𝛼
K
)
= 𝜈+

(
Λ#

1 −
1
𝛼

In1

)
+ 𝜈+(Λ#

2).

Now, for (i), since 𝛼 < 0,

n(𝛼, 0) = n#
(
−∞,

1
𝛼

)
= 𝜈−

(
Λ#

1 −
1
𝛼

In1

)
= 𝜈−

(
KG − 1

𝛼
K
)
− 𝜈−(Λ#

2) = 𝜈−(K − 𝛼KG) − 𝜈−(Λ#
2), (29)
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LIN et al. 2761

where for the second equality, see Remark 1. For (ii), since 𝛼 > 0,

n(0, 𝛼) = n#
( 1
𝛼
,+∞

)
= 𝜈+

(
Λ#

1 −
1
𝛼

In1

)
= 𝜈+

(
KG − 1

𝛼
K
)
− 𝜈+(Λ#

2) = 𝜈−(K − 𝛼KG) − 𝜈+(Λ#
2). (30)

On the other hand, by the canonical form (3), we have

 (K) = (ZN)⊕(ZC) = (W2)⊕(W3) and c = (ZC) = (W3),

and

ZN = W2R22 + W3R32,

where R22 ∈ Rn2×n2 , R32 ∈ Rn3×n2 and R22 is nonsingular. Also, we know that W T
2 KGW2 = Λ#

2. Therefore,

ZT
N KGZN = RT

22(W
T
2 KGW2)R22 = RT

22Λ
#
2R22.

This implies that the matrix ZT
N KGZN is nonsingular, and by Sylvester’s law, we have

𝜈−(Λ#
2) = 𝜈−(ZT

N KGZN) and 𝜈+(Λ#
2) = 𝜈+(ZT

N KGZN). (31)

The lemma is an immediate consequence of (29), (30), and (31). ▪

Lemma 3 establishes the relation between the number of eigenvalues in the interval (𝛼, 0) or (0, 𝛼) and the inertia
𝜈−(K − 𝛼KG). Below, we discuss how to express the inertia 𝜈−(K − 𝛼KG) in terms of the submatrix S𝛼

11 in (25).

Lemma 4. In terms of the submatrix S𝛼
11 in (25),

𝜈−(K − 𝛼KG) = 𝜈−(S𝛼
11). (32)

Proof. The equality (32) immediately follows from Theorem 5. ▪

Combining Lemmas 3 and 4, we have the following theorem which provides a computational approach to count the
number of eigenvalues of K − 𝜆KG using the inertias of S𝛼

11.

Theorem 6. In terms of the submatrix S𝛼
11 in (25), we have

(i) n(𝛼, 0) = 𝜈−(S𝛼
11) − 𝜈−(ZT

N KGZN), if 𝛼 < 0.
(ii) n(0, 𝛼) = 𝜈−(S𝜎

11) − 𝜈+(ZT
N KGZN), if 𝛼 > 0.

Remark 3. In practice, the inertia 𝜈−(S𝛼
11) is a by-product of the sparse LDLT factorizations of the submatrix S𝛼

11 (Reference
21, p. 214). The inertias 𝜈−(ZT

N KGZN) and 𝜈+(ZT
N KGZN) can be easily computed since the size of ZT

N KGZN is typically small
in buckling analysis.

5 NUMERICAL EXAMPLES

In this section, we begin with a synthetic example to illustrate the issue associated with the growth of the norms of the
Lanczos vectors with K-inner product and the consequence of the growth as discussed by Meerbergen4 and Stewart.5 Then
we demonstrate the efficacy of the proposed shift-invert Lanczos method for an example arising in industrial buckling
analysis of structures.
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2762 LIN et al.

F I G U R E 2 Left: the 2-norms of the Lanczos vectors vj. Middle: the relative residual norms of the approximate eigenpairs (𝜆i, x̂i). Right:
the 2-norms of the Lanczos vectors vj with (+) and without (x) implicit restart

Algorithm 1 is implemented in MATLAB.a The accuracy of a computed eigenpair (𝜆i, x̂i) of the buckling eigenvalue
problem (1) is measured by the relative residual norm

𝜂(𝜆i, x̂i) ≡
||Kx̂i − 𝜆iKGx̂i||2

(||K||1 + |𝜆i|||KG||1)||x̂i||2 . (33)

The Euclidean angle 𝜃i = ∠(x̂i,c) is computed for checking if x̂i is perpendicular to the common nullspace c of
K and KG.22,23

Example 1. Let us consider the following matrix pair (K, KG) similar to the ones constructed by Meerbergen4 and
Stewart:5

K = QΛQT ∈ R
n×n and KG = QΦQT ∈ R

n×n,

where Q ∈ Rn×n is a random orthogonal matrix, Λ ∈ Rn×n and Φ ∈ Rn×n are diagonal matrices with diagonal elements

Λkk =

{
k, if 1 ≤ k ≤ n − m
0, otherwise

and Φkk = (−1)k, 1 ≤ k ≤ n.

By construction, K is positive semi-definite and KG is indefinite, and the pencil K − 𝜆KG is regular. The last m columns
of Q form a basis of the nullspace  (K). For 1≤ k≤n−m, the kth column of Q is an eigenvector and the associated
eigenvalue is 𝜆k = (−1)k ⋅ k. The zero eigenvalue of C ≡ (K − 𝜎KG)−1K is a well-separated eigenvalue, and the associated
eigenspace is also the nullspace of K. We use the MATLAB function ldl to compute the LDLT factorization of the shifted
matrix K − 𝜎KG.

For numerical experiments, we take n= 500 and m= 1. We use the buckling spectral transformation (2) with the
shift 𝜎 = −0.6. We run the Lanczos method with K-inner product, and the starting vector Cx0 with x0 = [1, … , 1]T . The
approximate eigenpairs (𝜆i, x̂i) of (1) are computed by (𝜆i, x̂i) =

(
𝜎𝜇i
𝜇i−1

, x̂i

)
.

The left plot of Figure 2 shows the 2-norms of 40 Lanczos vectors vj. As observed by Meerbergen4 and
Stewart,5 the 2-norms of Lanczos vectors vj grow rapidly. Consequently, as shown in the middle plot of Figure 2,
the accuracy of approximate eigenpairs (𝜆i, x̂i) deteriorates. In contrast, when we replace the K-inner product by
the positive definite M-inner product with HN = Im, we observe that the 2-norms of the Lanczos vectors are well
bounded. Multiple eigenvalues near the shift 𝜎 are computed with the relative residual norms around the machine
precision.

We note that in Reference 4, Meerbergen proposed to control the norms of the Lanczos vectors by applying implicit
restart. We experimented the schemes with and without the implicit restart The results are shown in the right plot of
Figure 2. We can see that the 2-norms of the Lanczos vectors still grow rapidly.

aAn implementation is available at https://github.com/cplin722/bucklingEigs.
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LIN et al. 2763

Example 2. This is an example from the buckling analysis of a finite element model of an airplane shown in Figure 3.
The size of the pencil K − 𝜆KG is n= 67, 512. The stiffness matrix K is positive semi-definite and the dimension of the
nullspace  (K) is known to be 6, which corresponds to the six rigid body modes.2 The geometric stiffness matrix KG is
symmetric but indefinite. The basis Z of  (K) is computed by Z = [−(K−1

11 K12)T I6]T ,2 where [K11 K12] ∈ R(n−6)×n is the
leading block rows of K. The dimension of the common nullspace c of K and KG is 3, which can be easily computed from
the basis Z, see Reference 13, theorem 6.4.1). The accuracy of the bases is shown in the table in Figure 3. We are interested
in computing the nonzero eigenvalues of the pencil K − 𝜆KG in an interval around zero and the associated eigenvectors
perpendicular to the common nullspace c.

We use the method to compute the matrix-vector product u=Cv described in Section 3.2. We determine the permu-
tation matrix P by maximizing the number of nonzero entries in the last n3 columns of S in (25). The MATLAB function
ldl, which uses MA5724 for real sparse matrices, is used to compute the sparse LDLT factorization of the submatrix S𝜎

11.
The pivot tolerance 𝜏 = 0.1 is used to control the numerical stability of the factorization.24 In defining the positive definite
matrix M, we form the product KGZN and normalize each column of the matrices KGZN and ZC. The condition number
of KGZN after the normalization is 𝜅2(KGZN) = 1.03. Then we set the matrices HN = 𝜔In2 and HC = 𝜔In3 , 𝜔 = ||K||1, to
balance the matrix M.25 The starting vector of the Lanczos procedure is v=Cx0 with x0 being a random vector.8

To monitor the progress of the shift-invert Lanczos method, an approximate eigenpair (𝜇i, x̂i) computed from an
eigenpair (𝜇i, ŝi) of the reduced matrix Tj is considered to have converged if the following two conditions are satisfied:

|𝜇i| ≥ tol and
|𝜎|

(𝜇i − 1)2
|𝛽j||eT

j ŝi| < tol, (34)

where the first condition excludes the zero eigenvalues and the second condition bounds the error of the computed
eigenvalue 𝜆i =

𝜎𝜇i
𝜇i−1

with the prescribed tolerance tol (see References 7,9, and 26, p. 357). In this numerical example, we
experiment with the tolerance tol= 10−6.

We now show the numerical results for computing nonzero eigenvalues of the pencil K − 𝜆KG and corresponding
eigenvectors perpendicular to the common nullspace c in the interval (−8, 8). First, let us consider the left-half interval
(−8, 0). With the shift 𝜎 = −4.0, the shift-invert Lanczos method (Algorithm 1) computed 12 eigenvalues to the machine
precision in the interval (−8, 0) at 38th iteration. The accuracy of the computed eigenpairs

(
𝜆i =

𝜎𝜇i
𝜇i−1

, x̂i

)
is shown in

Table 1. To validate the number of eigenvalues in the interval (−8, 0), we use the counting scheme described in Section 4.
Using the inertias of the submatrix S𝛼

11 with 𝛼 = −8 and Theorem 5, we have

n(−8, 0) = 𝜈−(S𝛼
11) − 𝜈−(ZT

N KGZN) = 15 − 3 = 12.

This matches the number of eigenvalues found in the interval.
Next let us consider the right-half interval (0, 8). In this case, we use the shift 𝜎 = 4.0. By the shift-invert Lanczos

method (Algorithm 1), we found 13 eigenvalues to the machine precision in the interval (0, 8) at 44th iteration. The
accuracy of the computed eigenpairs

(
𝜆i =

𝜎𝜇i
𝜇i−1

, x̂i

)
are shown in Table 2. To validate the number of eigenvalues in the

interval (0, 8), we again use the counting scheme described in Section 4. Using the inertias of the submatrix S𝛼
11 with 𝛼 = 8

and Theorem 5, we have

F I G U R E 3 Left: Finite element model of an airplane. Right: Accuracy of the bases for the nullspace of K and common nullspace of
K and KG. The second column shows the singular values di of KGY with Y being an orthonormal basis of  (K). The third and fourth
columns show the accuracy of the basis Z = [ZN ZC]= [z1 z2 … z6]
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2764 LIN et al.

i 𝝀i 𝜼(𝝀i, x̂i) cos∠(x̂i,c)

1 −2.716598 1.48 ⋅ 10−17 8.52 ⋅ 10−17

2 −2.883589 1.73 ⋅ 10−17 8.27 ⋅ 10−17

3 −3.292700 1.37 ⋅ 10−17 4.84 ⋅ 10−18

4 −3.378406 1.01 ⋅ 10−17 2.38 ⋅ 10−17

5 −5.754628 2.72 ⋅ 10−17 4.04 ⋅ 10−17

6 −5.854071 2.92 ⋅ 10−17 3.47 ⋅ 10−17

7 −6.089281 3.14 ⋅ 10−17 2.47 ⋅ 10−17

8 −6.228974 2.67 ⋅ 10−17 6.24 ⋅ 10−17

9 −6.784766 5.33 ⋅ 10−16 4.93 ⋅ 10−17

10 −6.886759 2.57 ⋅ 10−15 7.67 ⋅ 10−18

11 −7.561377 1.88 ⋅ 10−12 1.31 ⋅ 10−16

12 −7.745144 3.83 ⋅ 10−12 4.87 ⋅ 10−17

T A B L E 1 Results of 12 computed eigenvalues in the interval (−8, 0)
after 38 steps of the Lanczos method with the shift 𝜎 = −4.0.||X̂TMX̂ − I12||F = 4.75 ⋅ 10−12 with X̂ ≡ [x̂1 … x̂12]

i 𝝀i 𝜼(𝝀i, x̂i) cos∠(x̂i,c)

1 2.967043 3.80 ⋅ 10−17 1.10 ⋅ 10−16

2 3.025965 2.96 ⋅ 10−17 3.39 ⋅ 10−17

3 3.917831 1.71 ⋅ 10−17 7.71 ⋅ 10−17

4 4.008941 1.61 ⋅ 10−17 7.13 ⋅ 10−17

5 4.591063 2.43 ⋅ 10−17 4.29 ⋅ 10−17

6 4.662575 2.64 ⋅ 10−17 2.47 ⋅ 10−17

7 5.699271 5.24 ⋅ 10−17 7.45 ⋅ 10−17

8 5.725937 7.44 ⋅ 10−17 1.38 ⋅ 10−17

9 6.465175 7.40 ⋅ 10−16 1.14 ⋅ 10−16

10 6.598173 7.96 ⋅ 10−15 2.18 ⋅ 10−16

11 7.285975 4.45 ⋅ 10−15 3.32 ⋅ 10−16

12 7.626265 2.41 ⋅ 10−14 1.39 ⋅ 10−15

13 7.880296 1.24 ⋅ 10−12 3.71 ⋅ 10−14

T A B L E 2 Results of 13 computed eigenvalues in the interval (0, 8) after
44 steps of the Lanczos method with the shift 𝜎 = 4.0.||X̂TMX̂ − I13||F = 1.79 ⋅ 10−11 with X̂ ≡ [x̂1 … x̂13].

n(0, 8) = 𝜈−(S𝛼
11) − 𝜈+(ZT

N KGZN) = 13 − 0 = 13.

This also matches the number of computed eigenvalues in the interval.

6 CONCLUDING REMARK

We studied the buckling eigenvalue problem of singular pencil, and addressed two open issues associated with the
shift-invert Lanczos method. We found that the proposed scheme for counting the number of eigenvalues is a reliable
tool for validation.

It is still an open problem how to choose the positive definite matrices HN and HC for the optimal condition number
𝜅2(M). An analysis following the work in Reference 25 is a direction of future research.

Also note that there are different implementations of the matrix-vector product u=Cv. Similar validation schemes
can be developed. Performance of different implementations for practical industrial examples is a subject of further
study.
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APPENDIX A. CANONICAL FORM OF A SYMMETRIC SEMI-DEFINITE PENCIL A − 𝝀B

In this section, we give a constructive derivation of a canonical form of a symmetric semi-definite pencil A − 𝜆B, namely
A is symmetric and B is symmetric semi-positive definite.

Theorem 7. For a symmetric semi-definite pencil A − 𝜆B, there exists a non-singular matrix W ∈ Rn×n such that

W TAW =

⎡⎢⎢⎢⎢⎢⎣

2n0 n1 n2 n3

2n0 S
n1 Λ1

n2 Λ2

n3 0

⎤⎥⎥⎥⎥⎥⎦
and W TBW =

⎡⎢⎢⎢⎢⎢⎣

2n0 n1 n2 n3

2n0 Ω
n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎥⎥⎦
, (A1)

where

S ≡ In0 ⊗

[
0 1
1 0

]
, Ω ≡ In0 ⊗

[
1 0
0 0

]
,

Λ1 and Λ2 are diagonal matrices with real diagonal entries, and Λ2 is nonsingular. Moreover, we have

n0 = dim( (B)) − n2 − n3,

n1 = rank(B) − n0,

n2 = rank( (B)A (B)),
n3 = dim( (A) ∩ (B)),

where  (B) is the orthogonal projection onto  (B).

We first introduce the following lemma due to Fix and Heiberger,27 also see Reference 26, section 15.5.

Lemma 5. For the symmetric semi-definite pencil A − 𝜆B, there exists a non-singular matrix W ∈ Rn×n such that

W TAW =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 A00 A01 A02 Σ 0
n1 AT

01 A11 A12

n2 AT
02 AT

12 Λ2

n0 Σ 0
n3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and W TBW =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0
n0 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Λ2 and Σ are non-singular, diagonal matrices with real diagonal entries.

Proof. Proof of Theorem 7. By Lemma 5, there exists a non-singular matrix W0 ∈ Rn×n such that

A(1) ≡ W T
0 AW0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 A00 A01 A02 Σ 0
n1 AT

01 A11 A12

n2 AT
02 AT

12 Λ2

n0 Σ 0
n3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B(1) ≡ W T

0 BW0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0
n0 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Λ2 and Σ are nonsingular, diagonal matrices with real diagonal entries.
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Let

W1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 In2

n0 −Σ−1A00∕2 −Σ−1A01 −Σ−1A02 In0

n3 In3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

then

A(2) ≡ W T
1 A(1)W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 0 Σ
n1 A11 A12

n2 AT
12 Λ2

n0 Σ 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B(2) ≡ W T

1 B(1)W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0
n0 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Next let

W2 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 −Λ−1
2 AT

12 In2

n0 In0

n3 In3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

then

A(3) ≡ W T
2 A(2)W2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 0 Σ
n1 C11

n2 Λ2

n0 Σ 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B(3) ≡ W T

2 B(2)W2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0
n0 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where C11 ∈ Rn1×n1 is symmetric and C11 = A11 − A12Λ−1
2 AT

12.
Define the permutation matrix

P3 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

In0 0 0 0 0
0 0 In1 0 0
0 0 0 In2 0
0 In0 0 0 0
0 0 0 0 In3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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then

A(4) ≡ PT
3 A(3)P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n0 n1 n2 n3

n0 Σ
n0 Σ
n1 C11

n2 Λ2

n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B(4) ≡ PT

3 B(3)P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n0 n1 n2 n3

n0 In0

n0 0
n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since C11 ∈ Rn1×n1 is symmetric, it admits the eigen-decomposition

C11 = Q1Λ1QT
1 ,

where Q1 ∈ Rn1×n1 is an orthogonal matrix and Λ1 ∈ Rn1×n1 is a diagonal matrix. Applying the congruent transformation
associated with W4 ≡ diag(In0 ,Σ

−1,Q1, In2 , In3), we have

A(5) ≡ W T
4 A(4)W4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n0 n1 n2 n3

n0 In0

n0 In0

n1 Λ1

n2 Λ2

n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B(5) ≡ W T

4 B(4)W4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n0 n0 n1 n2 n3

n0 In0

n0 0
n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Last, define the permutation matrix P5 ≡ diag(E, In1 , In2 , In3) with E ≡ [e1 en0+1 e2 … e2n0] and we have the canonical
form in (A1)

A(6) ≡ PT
5 A(5)P5 =

⎡⎢⎢⎢⎢⎢⎣

2n0 n1 n2 n3

2n0 S
n1 Λ1

n2 Λ2

n3 0

⎤⎥⎥⎥⎥⎥⎦
and B(6) ≡ PT

5 B(5)P5 =

⎡⎢⎢⎢⎢⎢⎣

2n0 n1 n2 n3

2n0 Ω
n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎥⎥⎦
,

where

S ≡ In0 ⊗

[
0 1
1 0

]
and Ω ≡ In0 ⊗

[
1 0
0 0

]
.

The canonical form (A1) is obtained with W ≡W0W1W2P3W4P5.
Now we interpret the dimension of each block matrix. From the canonical form of B in Equation (A1), we can infer

that n0 = dim( (B)) − n2 − n3 and n1 = rank(B)−n0. Also, n3 = dim( (A) ∩ (B)). To interpret n2, let Z ∈ Rn×(n0+n2+n3)

be the basis of  (B) consisting of the columns of W and consider the QR decomposition of Z =QR. Since Q is an
orthonormal basis of  (B), rank( (B)A (B)) = rank(QTAQ). By the Sylvester’s law, rank(QTAQ)= rank(ZTAZ).
But, from the canonical form (A1), ZTAZ = diag(0n0 ,Λ2, 0n3) and rank(ZTAZ)=n2. Therefore, n2 = rank
( (B)A (B)). ▪

Corollary 1. The symmetric semi-definite pencil A − 𝜆B is simultaneously diagonalizable if and only if n0 = 0. In this case,
we have the canonical form
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LIN et al. 2769

W TAW =
⎡⎢⎢⎢⎣

n1 n2 n3

n1 Λ1

n2 Λ2

n3 0

⎤⎥⎥⎥⎦ and W TBW =
⎡⎢⎢⎢⎣

n1 n2 n3

n1 In1

n2 0
n3 0

⎤⎥⎥⎥⎦,

Proof. From the pairs (S,Ω) and (Λ2, 0) in Equation (A1), we note that the algebraic and geometric multiplicity of
the infinite eigenvalues are 2n0 +n2 and n0 +n2, respectively. Therefore, the symmetric semi-definite pencil A − 𝜆B is
simultaneously diagonalizable if and only if n0 = 0. ▪
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