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APPLICATIONS\ast 
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Abstract. A two dimensional eigenvalue problem (2DEVP) of a Hermitian matrix pair (A,C)
is introduced in this paper. The 2DEVP can be regarded as a linear algebra formulation of the
well-known eigenvalue optimization problem of the parameter matrix A  - \mu C. We first present
fundamental properties of the 2DEVP, such as the existence and variational characterizations of 2D-
eigenvalues, and then devise a Rayleigh quotient iteration (RQI)-like algorithm, 2DRQI in short, for
computing a 2D-eigentriplet of the 2DEVP. The efficacy of the 2DRQI is demonstrated by large scale
eigenvalue optimization problems arising from the minmax of Rayleigh quotients and the distance
to instability of a stable matrix.

Key words. eigenvalue problem, eigenvalue optimization, variational characterization, Rayleigh
quotient iteration
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DOI. 10.1137/22M1472589

1. Introduction. We consider the problem of finding scalars \mu ,\lambda \in \BbbR and a
nonzero vector x\in \BbbC n to satisfy the nonlinear equations

(A - \mu C)x= \lambda x,(1.1a)

xHCx= 0,(1.1b)

xHx= 1,(1.1c)

where A,C \in \BbbC n\times n are given Hermitian matrices and C is indefinite. The pair (\mu ,\lambda )
is called a 2D-eigenvalue, x the corresponding 2D-eigenvector, and (\mu ,\lambda ,x) a 2D-
eigentriplet. We use the term ``2D"" based on the fact that an eigenvalue has two
components, which is a point on the two-dimensional (\mu ,\lambda )-plane. The nonlinear
equations (1.1) are called a 2D eigenvalue problem (2DEVP) of the matrix pair (A,C).

Our interest in studying the 2DEVP (1.1) primarily stems from eigenvalue op-
timization. If we regard \mu as a parameter in the 2DEVP (1.1), then the equation
(1.1a) is a parameter eigenvalue problem of the matrix H(\mu ) =A - \mu C. Since A and
C are Hermitian, H(\mu ) has n real eigenvalues \lambda 1(\mu ), \lambda 2(\mu ), . . . , \lambda n(\mu ) for any \mu \in \BbbR .
Suppose that these eigenvalues are sorted such that \lambda 1(\mu ) \geq \lambda 2(\mu ) \geq \cdot \cdot \cdot \geq \lambda n(\mu ).
When one wants to optimize an eigenvalue \lambda j(\mu ) with respect to \mu :

inf
\mu \in \BbbR 

\lambda j(\mu ),(1.2)
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1456 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

equation (1.1b) is actually a stationary condition for (local or global) maxima or min-
ima of \lambda j(\mu ) (see section 3). This fact has been observed by Overton and Womersley
[37] when \lambda j(\mu \ast ) is a simple eigenvalue of H(\mu \ast ) at a stationary point \mu \ast of \lambda j(\mu ). In
general, when \lambda j(\mu \ast ) is a multiple eigenvalue of H(\mu \ast ), to the best of our knowledge,
the connection to the 2DEVP (1.1) as presented in this paper is new.

Different equivalent conditions of eigenvalue optimizations have been discovered
in the literature, such as conditions based on the generalized gradient [42] and ex-
istence of a special positive semidefinite matrix in the context of minimizing the
largest eigenvalue of a multivariable Hermitian matrix [10]. Eigenvalue optimiza-
tions in the presence of nonconvexity and multiplicity are particularly challenging
[10, 18, 24, 28, 33, 35, 37, 42, 48].

Blum and Chang [1] considered the following so-called two-parameter or dou-
ble eigenvalue problem arising from solving a boundary value problem of ordinary
differential equations with double parameters:\left\{     

Ax= \lambda C1x+ \mu C2x,

f(x) = 0,

\| x\| = 1,

(1.3)

where A,C1,C2 \in \BbbR n\times n, \| \cdot \| denotes the 2-norm, and f is a real-valued function. In
(1.3), \lambda ,\mu \in \BbbR and x\in \BbbR n are the eigenvalues and eigenvectors to be found. Khazanov
[21] generalized the problem (1.3) to more than two parameters and derived a related
eigenvalue problem. Obviously, when A and C in (1.1) are real, the 2DEVP (1.1) is a
special case of (1.3). Due to the general form of the function f in (1.3), there is a lack of
essential theoretical analysis of the problem (1.3) such as the existence of the solution.
In addition, the restriction to the real vectors and matrices severely limits applications
of the problem (1.3) such as calculating the distance to instability (see section 6).
Although algorithms are proposed for solving the problem (1.3) in [1, 21], there are
no convergence analyses of the proposed algorithms and no backward error analyses
for a computed solution. Maybe due to these concerns, the two-parameter or double
eigenvalue problems of the form (1.3) have received little attention over the years.

In this paper, we will first present theoretical results of the 2DEVP, such as the
relationship between the 2DEVP and eigenvalue optimization, and variational charac-
terization of 2D-eigenvalues. We then devise a Rayleigh quotient iteration (RQI)-like
(2DRQI) algorithm for computing a 2D-eigentriplet. One of main features of the
2DRQI is that the computational kernel is a linear system of equations, similar to the
classical RQI for solving a Hermitian eigenvalue problem [40, sec. 4.6]. Therefore,
the 2DRQI is capable of solving large scale 2DEVP by exploiting the structure and
sparsity of matrices A and C. As a part of the main contributions of this paper,
the 2DEVP and the 2DRQI algorithm are exploited in depth for applications in two
eigenvalue optimization problems, namely finding the minmax of two Rayleigh quo-
tients and computing the distance to instability (DTI) of a stable matrix. We will
demonstrate the theoretical and algorithmic advantages of treating these eigenvalue
optimizations through the 2DEVP and 2DRQI, such as introducing the notion of the
backward error of a computed DTI for the first time, and the substantial reduction
in computing time compared with existing algorithms for many large scale DTI prob-
lems. A rigorous convergence analysis of the 2DRQI to show that the 2DRQI locally
quadratically converges is presented in [30].

The rest of this paper is organized as follows. In section 2, we study the related
parameter eigenvalue problem of the 2DEVP and introduce the notion of sorted and
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2D EIGENVALUE PROBLEM 1457

analyticalized eigencurves. In section 3, we investigate the existence and variational
characterizations of 2D-eigenvalues. In section 4, we introduce 2D Rayleigh quotient
(2DRQ) and Jacobian of the 2DEVP and derive the 2DRQI for computing a 2D-
eigentriplet. The backward error analysis of the 2DEVP is in section 5. In section 6, we
discuss the applications of the 2DEVP and the 2DRQI for two eigenvalue optimization
problems. In section 7, we present numerical examples to illustrate the convergence
behaviors of the 2DRQI and demonstrate its efficiency in applications. Concluding
remarks are in section 8. In the spirit of reproducible research, MATLAB scripts
of the implementations of algorithms and data that are used to generate numerical
results presented in this paper are available at https://github.com/AdrainT/2DEVP.

2. The associated parameter eigenvalue problem. If we discard (1.1b),
the remaining two equations of the 2DEVP (1.1) are a parameter eigenvalue problem
of the matrix H(\mu ) = A - \mu C with real parameter \mu . For \mu \in \BbbR , there exist n real
eigenvalues \lambda j(\mu ) and corresponding orthonormal eigenvectors xj(\mu ) ofH(\mu ). If \lambda j(\mu )
are sorted such that \lambda 1(\mu ) \geq \cdot \cdot \cdot \geq \lambda n(\mu ), then we have n sorted eigencurves \lambda j(\mu )
of H(\mu ) for j = 1,2, . . . , n. The sorted eigencurves \lambda j(\mu ) are continuous and may be
nondifferentiable at the intersections; see Figure 1a. The following theorem is a direct
result of [14, Thm. S6.3] and shows that with proper reordering, the eigencurves \lambda j(\mu )
can be analyticalized.

Theorem 2.1 (see [14]). For Hermitian matrices A and C and \mu \in \BbbR , there exist
scalar functions \lambda 1(\mu ), . . ., \lambda n(\mu ) and matrix-valued functions X(\mu ) =\bigl[ 
x1(\mu ), . . . , xn(\mu )

\bigr] 
such that

A - \mu C =X(\mu )diag
\bigl[ 
\lambda 1(\mu ), . . . , \lambda n(\mu )

\bigr] 
XH(\mu ),

XH(\mu )X(\mu ) = I.
(2.1)

Furthermore, \lambda j(\mu ) and xj(\mu ) are analytic for \mu \in \BbbR .

The analytic eigencurves \lambda j(\mu ) for \mu \in \BbbR in Theorem 2.1 will be called analyti-
calized eigencurves of H(\mu ). Analyticalized eigencurves may be different from sorted
eigencurves as illustrated in Figure 1b. In the rest of the paper, we will use \lambda j(\mu ) and\widetilde \lambda j(\mu ) to denote a sorted and an analyticalized eigencurve of H(\mu ), respectively.

A benefit of introducing analyticalized eigencurves is that we can have the notion
of one-sided derivatives of the sorted eigencurves at any point \mu \in \BbbR , even the one
corresponding to the intersection of the sorted eigencurves. To that end, let us first
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(a) Sorted eigencurves λj(µ)
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(b) Analyticalized eigencurves λ̃j(µ)

Fig. 1. Illustration of eigencurves.
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1458 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

present the following theorem derived from [45, p. 45, Thm. 1] to show that the de-
rivatives of analyticalized eigencurves can be calculated through solving an eigenvalue
problem.

Theorem 2.2 (see [45]). Let \widetilde \lambda 1(\mu ), . . . ,\widetilde \lambda n(\mu ) be the analyticalized eigencurves
of H(\mu ). Assume \lambda 0 is an eigenvalue of H(\mu 0) with algebraic multiplicity k, i.e.,\widetilde \lambda j(\mu 0) = \lambda 0 for p\leq j \leq p+ k - 1 with some integer p\geq 1. Let Xk be an orthonormal

basis of the eigensubspace corresponding to \lambda 0. Then by counting multiplicities, \widetilde \lambda \prime 
j(\mu 0)

have one-to-one correspondence with the eigenvalues of  - XH
k CXk for p\leq j \leq p+k - 1.

By Theorem 2.2, we can introduce one-sided derivatives of sorted eigencurves.

Theorem 2.3. Assume (\mu \ast , \lambda \ast ) is an intersection of k sorted eigencurves, i.e.,
\lambda j(\mu \ast ) = \lambda \ast for p\leq j \leq p+ k - 1 for some integer p\geq 1, and \lambda j(\mu \ast ) \not = \lambda \ast for j < p or
j \geq p+ k. Let Xk be an orthonormal basis for the eigensubspace of the eigenvalue \lambda \ast 
of A - \mu \ast C. Then for p\leq j \leq p+ k - 1, the one-sided derivatives

\lambda 
\prime ( - )
j (\mu \ast )\equiv lim

t\rightarrow 0 - 

\lambda j(\mu \ast + t) - \lambda j(\mu \ast )

t
and \lambda 

\prime (+)
j (\mu \ast )\equiv lim

t\rightarrow 0+

\lambda j(\mu \ast + t) - \lambda j(\mu \ast )

t

exist. Furthermore, both multisets \{ \lambda 
\prime ( - )
j (\mu \ast ) | p\leq j \leq p+ k - 1\} and \{ \lambda 

\prime (+)
j (\mu \ast ) | p\leq 

j \leq p + k  - 1\} have one-to-one correspondence with the multiset of eigenvalues of
 - Ck \equiv  - XH

k CXk; i.e., if the eigenvalues of  - Ck are \tau 1 \geq \tau 2 \geq \cdot \cdot \cdot \geq \tau k, then

\lambda 
\prime ( - )
p+k - j(\mu \ast ) = \tau j = \lambda 

\prime (+)
p - 1+j(\mu \ast ) for j = 1, . . . , k.

Proof. We first prove by contradiction that there exists r > 0, such that in the
interval (\mu \ast , \mu \ast + r), for any i, j, there can be only one of the following two cases
between any two analyticalized eigencurves \widetilde \lambda i(\mu ) and \widetilde \lambda j(\mu ) of A - \mu C:

\widetilde \lambda i(\mu ) = \widetilde \lambda j(\mu ) or \widetilde \lambda i(\mu ) \not = \widetilde \lambda j(\mu )

for any \mu \in (\mu \ast , \mu \ast + r). If r does not exist, then we can find a fixed pair (i, j) and a
sequence \{ \mu m\} \infty m=1 such that \widetilde \lambda i(\mu m) = \widetilde \lambda j(\mu m), \mu m \rightarrow \mu \ast , \mu m \not = \mu \ast , but \widetilde \lambda i(\mu ) \not \equiv \widetilde \lambda j(\mu ),
which contradicts the identity property of analytic functions [22, p. 87].

We next prove that in the interval [\mu \ast , \mu \ast + r), each sorted eigencurve identically
equals to an analyticalized eigencurve. In fact, we have proved that in the interval
(\mu \ast , \mu \ast + r), two analyticalized eigencurves that are not equal identically will not
intersect. Then by the continuity of analyticalized eigencurves, for any i, j, there are
exactly the following three cases that hold for all \mu \in (\mu \ast , \mu \ast + r):

\widetilde \lambda i(\mu )< \widetilde \lambda j(\mu ) or \widetilde \lambda i(\mu ) = \widetilde \lambda j(\mu ) or \widetilde \lambda i(\mu )> \widetilde \lambda j(\mu ).

This implies that in the interval (\mu \ast , \mu \ast + r), the algebraic order of the analytical-
ized eigencurves is preserved. Thus we can find a permutation \{ \ell 1, \ell 2, . . . , \ell n\} of
\{ 1,2, . . . , n\} , such that \widetilde \lambda \ell j (\mu ) = \lambda j(\mu ) for \mu \in (\mu \ast , \mu \ast + r) and j = 1, . . . , n. By con-

tinuity, \widetilde \lambda \ell j (\mu \ast ) = \lambda j(\mu \ast ) for j = 1, . . . , n. Consequently, for p \leq j \leq p + k  - 1, the
limit

lim
t\rightarrow 0+

\lambda j(\mu \ast + t) - \lambda j(\mu \ast )

t

exists and equals to \widetilde \lambda \prime 
\ell j
(\mu \ast ). By Theorem 2.2, the multiset \{ \lambda 

\prime (+)
j (\mu \ast )

\bigm| \bigm| p \leq j \leq 
p+k - 1\} has one-to-one correspondence with the multiset of eigenvalues of  - Ck. By
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2D EIGENVALUE PROBLEM 1459

a similar argument, we can show that the limit \lambda 
\prime ( - )
j (\mu \ast ) exists and has one-to-one

correspondence with the eigenvalues of  - Ck, counting multiplicities.
Furthermore, note that for t > 0 and p\leq j \leq p+ k - 2,

\lambda j(\mu \ast + t) - \lambda j(\mu \ast )

t
\geq \lambda j+1(\mu \ast + t) - \lambda j+1(\mu \ast )

t

and

\lambda j(\mu \ast  - t) - \lambda j(\mu \ast )

 - t
\leq \lambda j+1(\mu \ast  - t) - \lambda j+1(\mu \ast )

 - t
.

Thus for p\leq j \leq p+ k - 2,

\lambda 
\prime (+)
j (\mu \ast )\geq \lambda 

\prime (+)
j+1 (\mu \ast ) and \lambda 

\prime ( - )
j (\mu \ast )\leq \lambda 

\prime ( - )
j+1 (\mu \ast ).(2.2)

Then the equality \lambda 
\prime (+)
p - 1+j(\mu \ast ) = \tau j = \lambda 

\prime ( - )
p+k - j(\mu \ast ) follows from (2.2) and the corre-

spondence between \{ \lambda 
\prime (+)
j (\mu \ast )

\bigm| \bigm| p \leq j \leq p+ k  - 1\} , \{ \lambda 
\prime ( - )
j (\mu \ast )

\bigm| \bigm| p \leq j \leq p+ k  - 1\} ,
and \{ \tau j

\bigm| \bigm| 1\leq j \leq k\} .
We end this section with the following corollary of Theorem 2.2. Its proof can

also be drawn from the proof of Theorem 2.3 when k= 1.

Corollary 2.4. If \lambda p(\mu ) is a simple eigenvalue of A  - \mu C, then \lambda p(\cdot ) is dif-
ferentiable at \mu and \lambda \prime 

p(\mu ) =  - xp(\mu )
HCxp(\mu ), where xp(\mu ) is a corresponding unit

eigenvector of \lambda p(\mu ).

3. Existence and variational characterization of 2D-eigenvalues. In this
section, we discuss the existence of 2D-eigenvalues and their variational characteriza-
tions to reveal intrinsic connections between the 2DEVP and eigenvalue optimization.

Theorem 3.1. If (\mu \ast , \lambda \ast ) is a local minimum or maximum of a sorted eigencurve
\lambda (\mu ) of A - \mu C, then (\mu \ast , \lambda \ast ) must be a 2D-eigenvalue of (A,C).

Proof. We prove for the case when (\mu \ast , \lambda \ast ) is a local maximum of some sorted
eigencurve. The proof for the case when (\mu \ast , \lambda \ast ) is a local minimum is similar. Assume
(\mu \ast , \lambda \ast ) is an intersection of k sorted eigencurves \lambda j(\mu ) of A - \mu C for p\leq j \leq p+k - 1
with some integer p \geq 1. Then \lambda j(\mu \ast ) = \lambda \ast . Let Xk be an orthonormal basis for
the eigensubspace of the eigenvalue \lambda \ast of A  - \mu \ast C, and Ck = XH

k CXk. Then by

Theorem 2.3 and Corollary 2.4, both multisets \{ \lambda 
\prime ( - )
j (\mu \ast ) | p \leq j \leq p + k  - 1\} and

\{ \lambda 
\prime (+)
j (\mu \ast ) | p \leq j \leq p+ k  - 1\} have one-to-one correspondence with the multiset of

eigenvalues of  - Ck.

Since (\mu \ast , \lambda \ast ) is a local maximum, we have \lambda 
\prime (+)
p+k - 1(\mu \ast )\leq 0 and \lambda 

\prime ( - )
p+k - 1(\mu \ast )\geq 0.

By the one-to-one correspondence, Ck has both nonnegative and nonpositive eigenval-
ues. This implies that Ck is not definite (Ck = 0 when k= 1). Let z be a unit vector
that satisfies zHCkz = 0. Then (\mu \ast , \lambda \ast ,Xkz) is a 2D-eigentriplet. This completes the
proof.

Remark 3.2. The proof of Theorem 3.1 is algebraic. An alternative proof is to
use Clarke's generalized directional derivative and generalized gradient in nonsmooth
optimization [6, p. 10]. Specifically, if (\mu \ast , \lambda \ast ) is a stationary point (locally minimum
or maximum) of some sorted eigencurve \lambda j(\mu ), then we have the first-order optimality
condition 0\in \partial \lambda j(\mu \ast ), where \partial \lambda j(\mu \ast ) is Clarke's generalized derivative \partial \lambda j(\mu ) at \mu \ast of
the eigencurve \lambda j(\mu ) [6, p. 38, Prop. 2.3.2]. Based on Clarke's generalized derivatives

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

69
.2

37
.6

.3
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1460 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

of spectral functions [27, p. 585] and the chain rule [6, p. 42, Thm. 2.3.9], we can
derive that

\partial \lambda j(\mu \ast )\subseteq \{  - xHCx | x is a unit eigenvector corresponding to \lambda \ast of A - \mu \ast C.\} 
(3.1)

Consequently, by the first-order optimal condition and (3.1), we conclude that if
(\mu \ast , \lambda \ast ) is a stationary point of some sorted eigencurve \lambda j(\mu ), then there exists a unit
eigenvector x\ast corresponding to the eigenvalue \lambda \ast of A - \mu \ast C, such that 0 = xH

\ast Cx\ast .
Such a (\mu \ast , \lambda \ast , x\ast ) is a 2D-eigentriplet of the 2DEVP (1.1).

Theorem 3.1 shows that if (\mu \ast , \lambda \ast ) is a local minimum or maximum of some sorted
eigencurve, then (\mu \ast , \lambda \ast ) must be a 2D-eigenvalue. Conversely, a 2D-eigenvalue (\mu ,\lambda )
does not necessarily correspond to a local minimum or maximum of a sorted eigencurve
as shown in Example 1.

Example 1. Let

A=

\left[  2 0 1
0 0 1
1 1 0

\right]  and C =

\left[  1 0 1
0 1 1
1 1 0

\right]  .
Three sorted eigencurves \lambda 1(\mu )\geq \lambda 2(\mu )\geq \lambda 3(\mu ) of A - \mu C are depicted in blue, red,
and yellow, respectively, in Figure 2a. (\mu ,\lambda ,x) = (1,0, e3) is a 2D-eigentriplet. The
2D-eigenvalue (\mu ,\lambda ) = (1,0) is on the eigencurve \lambda 2(\mu ). However, it is neither a local
minimum nor a local maximum of \lambda 2(\mu ) as shown in the close up plot in Figure 2b.

By Theorem 3.1, we immediately have the following theorem on the existence of
2D-eigenvalues.

Theorem 3.3. The 2DEVP (1.1) has at least one 2D-eigenvalue.

Proof. We prove by construction. Let \lambda 1(\mu ) be the largest sorted eigencurve of
A - \mu C. Then as \mu \rightarrow  - \infty ,

\lambda 1(\mu ) = max
\| x\| =1

xH(A - \mu C)x\geq \lambda min(A) - \mu max
\| x\| =1

xHCx= \lambda min(A) - \mu \lambda max(C)\rightarrow +\infty ,
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(a) Sorted eigencurves λ1(µ) ≥ λ2(µ) ≥
λ3(µ)
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(b) close up plot of eigencurve λ2(µ)

Fig. 2. A 2D-eigenvalue can be neither minima nor maxima. (Color available online.)
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2D EIGENVALUE PROBLEM 1461

where we use the fact that \lambda max(C)> 0 since C is indefinite. On the other hand, as
\mu \rightarrow +\infty ,

\lambda 1(\mu )\geq \lambda min(A) - \mu min
\| x\| =1

xHCx= \lambda min(A) - \mu \lambda min(C)\rightarrow +\infty ,

where we use the fact that \lambda min(C) < 0 < \lambda max(C) since C is indefinite. Therefore,
the minimum of \lambda 1(\mu ) is attainable at some point \mu \ast by the continuity of \lambda 1(\mu ). By
Theorem 3.1, (\mu \ast , \lambda 1(\mu \ast )) is a 2D-eigenvalue of (A,C).

The following theorem reveals variational characterizations of extreme eigencurves
\lambda 1(\mu ) and \lambda n(\mu ).

Theorem 3.4. Let \lambda 1(\mu )\geq \cdot \cdot \cdot \geq \lambda n(\mu ) be n sorted eigenvalues of A - \mu C. Then
it holds that

min
\mu \in \BbbR 

\lambda 1(\mu ) = max
x\not =0

xHCx=0

\rho A(x) and max
\mu \in \BbbR 

\lambda n(\mu ) = min
x \not =0

xHCx=0

\rho A(x),(3.2)

where \rho A(x) is the Rayleigh quotient of A, \rho A(x) = xHAx/(xHx).

Proof. We only prove the first identity in (3.2). The proof for the second identity
is similar. We note that the proof of Theorem 3.3 indicates that the minimum of
\lambda 1(\mu ) is attainable at some point \mu \ast and (\mu \ast , \lambda \ast ) = (\mu \ast , \lambda 1(\mu \ast )) is a 2D-eigenvalue.
Let x\ast be the corresponding 2D-eigenvector of (\mu \ast , \lambda \ast ); then

xH
\ast Cx\ast = 0 and \lambda \ast = \rho A(x\ast )\leq max

x \not =0

xHCx=0

\rho A(x).

On the other hand,

\lambda \ast = \lambda 1(\mu \ast ) = max
xHx=1

xH(A - \mu \ast C)x\geq max
xHx=1
xHCx=0

xH(A - \mu \ast C)x

= max
xHx=1
xHCx=0

xHAx.

This completes the proof.

As a corollary of Theorem 3.4, the following result provides lower and upper
bounds of the \lambda component of 2D-eigenvalues (\mu ,\lambda ) on the (\mu ,\lambda )-plane.

Corollary 3.5. Let (\mu \ast , \lambda \ast ) be a 2D-eigenvalue of (A,C) and \lambda 1(\mu ) \geq \cdot \cdot \cdot \geq 
\lambda n(\mu ) be n sorted eigencurves of A - \mu C. Then

max
\mu \in \BbbR 

\lambda n(\mu )\leq \lambda \ast \leq min
\mu \in \BbbR 

\lambda 1(\mu ),(3.3)

where the first equality holds if \lambda n(\mu \ast ) = \lambda \ast , and the second equality holds if
\lambda 1(\mu \ast ) = \lambda \ast .

Proof. Let x\ast be a 2D-eigenvector associated with (\mu \ast , \lambda \ast ). Then the inequalities
in (3.3) hold by Theorem 3.4 and the identity \lambda \ast = \rho A(x\ast ). If \lambda n(\mu \ast ) = \lambda \ast , we further
have

max
\mu \in \BbbR 

\lambda n(\mu )\leq \lambda \ast = \lambda n(\mu \ast )\leq max
\mu \in \BbbR 

\lambda n(\mu ).

Thus the first inequality in (3.3) turns to equality. Similar arguments show the second
equality holds if \lambda 1(\mu \ast ) = \lambda \ast .

Based on Corollary 3.5, we have the following definitions of extreme 2D-
eigenvalues.
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1462 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

Definition 3.6. Let \lambda 1(\mu 
\ast ) = min\mu \in \BbbR \lambda 1(\mu ) and \lambda n(\mu \ast ) = max\mu \in \BbbR \lambda n(\mu ). Then

(\mu \ast , \lambda 1(\mu 
\ast )) and (\mu \ast , \lambda n(\mu \ast )) are called the maximum and minimum 2D-eigenvalues

of (A,C), respectively.

The following theorem provides an upper bound of | \mu | of 2D-eigenvalues (\mu ,\lambda ) on
the (\mu ,\lambda )-plane when C is nonsingular.

Theorem 3.7. Assume the indefinite matrix C is nonsingular and \lambda 
(+)
C and \lambda 

( - )
C

are the minimum positive and maximum negative eigenvalues of C, respectively. If
(\mu \ast , \lambda \ast , x\ast ) is a 2D-eigentriplet of (A,C), then

| \mu \ast | \leq \| A\| /
\sqrt{} 
 - \lambda 

( - )
C \lambda 

(+)
C .

Proof. By multiplying xH
\ast C on the left of (1.1a), we have

| \mu \ast | =
| xH

\ast CAx\ast | 
\| Cx\ast \| 2

\leq \| A\| \| x\ast \| 
\| Cx\ast \| 

=
\| A\| 

\| Cx\ast \| 
.

Then an upper bound of \| A\| 
\| Cx\ast \| can be obtained from a lower bound of \| Cx\ast \| , which

leads to computing the quantity

min
xHx=1
xHCx=0

\| Cx\| .(3.4)

By substituting C2 for A in the second equation of (3.2), we have

min
xHx=1
xHCx=0

\| Cx\| 2 = min
xHCx=0

x\not =0

xHC2x

xHx
=max

\mu \in \BbbR 
\lambda n(C

2  - \mu C)(3.5)

=max
\mu \in \BbbR 

min\{ c2i  - \mu ci| i= 1, \cdot \cdot \cdot , n\} ,

where c1, c2, . . . , cn are eigenvalues of C. Let \lambda 
( - )
C = cj and \lambda 

(+)
C = ck for some j and

k. Then at the intersection \widetilde \mu \ast = cj + ck of lines c2j  - \mu cj and c2k  - \mu ck, we have

max
\mu \in \BbbR 

min\{ c2i  - \mu ci| i= 1, . . . , n\} \leq max
\mu \in \BbbR 

min\{ c2i  - \mu ci| i= j, k\} 

=min\{ c2i  - \widetilde \mu \ast ci| i= j, k\} = - \lambda 
( - )
C \lambda 

(+)
C .

On the other hand, we can prove  - \lambda 
( - )
C \lambda 

(+)
C \leq c2i  - \~\mu \ast ci for i= 1, . . . , n. Without loss

of generality, we only consider the case ci > 0. Then

 - \lambda 
( - )
C \lambda 

(+)
C  - (c2i  - \widetilde \mu \ast ci) = c2k  - \widetilde \mu \ast ck  - c2i + \~\mu \ast ci = (ck  - ci)(ck + ci  - \widetilde \mu \ast )(3.6)

= (ck  - ci)(ci  - cj)\leq 0,

where the first equation is due to the fact  - \lambda 
( - )
C \lambda 

(+)
C = c2j  - \widetilde \mu \ast cj = c2k  - \widetilde \mu \ast ck and

the last inequality results from the fact that either cj \leq ck \leq ci or ci \leq cj \leq ck holds.
Hence we have

max
\mu \in \BbbR 

min\{ c2i  - \mu ci| i= 1, . . . , n\} \geq min\{ c2i  - \~\mu \ast ci| i= 1, . . . , n\} = - \lambda 
( - )
C \lambda 

(+)
C .

This implies

min
xHx=1
xHCx=0

\| Cx\| 2 =max
\mu \in \BbbR 

min\{ c2i  - \mu ci| i= 1, . . . , n\} = - \lambda 
( - )
C \lambda 

(+)
C .

This completes the proof.
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2D EIGENVALUE PROBLEM 1463

We end this section with a well-known result on the convexity of the extreme
eigencurves \lambda 1(\mu ) and \lambda n(\mu ) of H(\mu ) = A - \mu C, which will be used for applications
such as finding the minmax of Rayleigh quotients in subsection 6.1.

Theorem 3.8 (see [9, 27, 36]). \lambda 1(\mu ) is convex and \lambda n(\mu ) is concave.

4. 2D Rayleigh quotient iteration. The Rayleigh quotient iteration (RQI) is
an efficient single-vector iterative algorithm for finding an eigenpair of a Hermitian
matrix; see, for example, [40, sec. 4.6], [50]. In this section, we derive an RQI-like
method to solve the 2DEVP (1.1).

4.1. 2D Rayleigh quotient. Let us first introduce the concepts of Rayleigh
quotients and Ritz values for the 2DEVP (1.1) and then reveal their approximation
properties to 2D-eigentriplets.

Definition 4.1. Given an n\times n Hermitian matrix pair (A,C) and an n\times p matrix
V with orthonormal columns, the p\times p matrix pair (V HAV,V HCV ) is called a 2D
Rayleigh quotient (2DRQ). If V HCV is indefinite and (\nu , \theta , z) is a 2D-eigentriplet of
the 2DRQ (V HAV,V HCV ), i.e.,\Bigl( 

(V HAV ) - \nu (V HCV )
\Bigr) 
z = \theta z,(4.1a)

zH(V HCV )z = 0,(4.1b)

zHz = 1,(4.1c)

then (\nu , \theta ) is called a 2D-Ritz value, V z a 2D-Ritz vector, and (\nu , \theta ,V z) a 2D-Ritz
triplet.

The pair (V HAV,V HCV ) is called a 2DRQ for two reasons. First it is analogous
to the definition of the Rayleigh quotient for a matrix and a matrix with orthonormal
columns [40, p. 288]. Second, it is to be shown in section 4.3 that when C = 0, the
kth iterate Vk in Algorithm 4.1 degenerates to a vector parallel to (A - \lambda kI)

 - 1x, and
V H
k AVk is the standard Rayleigh quotient [40, p. 75].

The 2DEVP (1.1) can be formulated as the problem of finding the root of the
following system of nonlinear equations:

F (\mu ,\lambda ,x)\equiv 

\left[  Ax - \mu Cx - \lambda x
 - xHCx/2

 - (xHx - 1)/2

\right]  = 0.

When \mu ,\lambda , and x are real, the Jacobian of the function F is well defined; see, e.g., [20,
p. 65]. When x is complex, the second and third elements of F are not differentiable
due to the violation of the Cauchy--Riemann conditions [22]. In this case we have the
following natural extension of the Jacobian of the nonlinear function F .

Definition 4.2. The Jacobian of F (\mu ,\lambda ,x) (and the 2DEVP) is defined as

J(\mu ,\lambda ,x) =

\left[  A - \mu C  - \lambda I  - Cx  - x
 - xHC 0 0
 - xH 0 0

\right]  .(4.2)

We note that the Jacobian J(\mu ,\lambda ,x) has been introduced in [29] for deriving a
Newton-type method to overcome the difficulties caused by the nondifferentiability
of F . In [30], we have proved that for a 2D eigentriplet (\mu \ast , \lambda \ast , x\ast ), J(\mu \ast , \lambda \ast , x\ast ) is
nonsingular if and only if one of the following two cases occurs:
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1464 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

I: The algebraic multiplicity of the eigenvalue \lambda \ast of A - \mu \ast C is one (simple) and
the corresponding eigencurve \lambda (\mu ) satisfies \lambda \prime \prime (\mu \ast ) \not = 0.

II: The algebraic multiplicity of \lambda \ast for A  - \mu \ast C is two and the corresponding
two analyticalized eigencurves \widetilde \lambda 1(\mu ) and \widetilde \lambda 2(\mu ) satisfy \widetilde \lambda \prime 

1(\mu \ast )\widetilde \lambda \prime 
2(\mu \ast )< 0.

Cases I and II are generic cases, namely the cases that typically arise in most
applications. The Newton-type method [29] is only applicable to case I, while the
algorithm derived in subsection 4.2 is applicable to both cases.

4.2. Algorithm derivation. The gist of an iterative algorithm for finding a 2D-
eigentriplet (\mu \ast , \lambda \ast , x\ast ) is how to use the kth approximation (\mu k, \lambda k, xk) of (\mu \ast , \lambda \ast , x\ast )
to obtain a projection subspace Vk containing a vector closer to the 2D-eigenvector
x\ast and then define the (k + 1)st approximation (\mu k+1, \lambda k+1, xk+1) using a 2D-Ritz
triplet.

To that end, assume the Jacobian J(\mu k, \lambda k, xk) defined in (4.2) is nonsingular.
Write

\mu \ast = \mu k +\Delta \mu k, \lambda \ast = \lambda k +\Delta \lambda k, x\ast = xk +\Delta xk,

where | \Delta \mu k| \leq \epsilon , | \Delta \lambda k| \leq \epsilon , and \| \Delta xk\| \leq \epsilon for some small \epsilon > 0. Then by (1.1a), we
have

\widehat Jk
\left[  x\ast 
\Delta \mu k

\Delta \lambda k

\right]  =O(\epsilon 2),(4.3)

where \widehat Jk = \bigl[ A - \mu kC  - \lambda kI  - Cxk  - xk

\bigr] 
. This implies that up to the second-order

approximation of \epsilon , the vector [
x\ast 

\Delta \mu k

\Delta \lambda k

] lies in the null subspace of \widehat Jk. Since the Jacobian
J(\mu k, \lambda k, xk) is assumed to be nonsingular, \widehat Jk is of full rank and the dimension of
the null subspace of \widehat Jk is 2. Let [ \widetilde Vk

R
] be a basis matrix of the null subspace of \widehat Jk,

where \widetilde Vk \in \BbbC n\times 2, R \in \BbbC 2\times 2. Then by (4.3), up to the second-order approximation of
\epsilon , x\ast lies approximately in span\{ \widetilde Vk\} . Therefore a natural idea is to use the 2D-Ritz
triplet based on the Rayleigh quotient induced by span\{ \widetilde Vk\} to define the next iterate
(\mu k+1, \lambda k+1, xk+1).

To compute \widetilde Vk, one can apply the traditional methods for computing the null
space of \widehat Jk, such as the rank revealing QR decomposition [7, p. 107]. However, for
exploiting the underlying structure and sparsity of (A,C), we consider the following
augmented linear equation of (4.3):

J(\mu k, \lambda k, xk)

\left[  Xa

u
v

\right]  =

\left[  0 0
1 0
0 1

\right]  .(4.4)

By the first block row of (4.4), span\{ Xa\} \subseteq span\{ \widetilde Vk\} . Meanwhile, by the second and
third block rows of (4.4), dim(span\{ Xa\} ) = 2. Since dim(span\{ \widetilde Vk\} )\leq 2, we have

span\{ Xa\} = span\{ \widetilde Vk\} .(4.5)

Once Xa is computed, an orthonormal basis of span\{ \widetilde Vk\} is given by

Vk = orth(Xa),(4.6)

where orth(X) denotes an orthonormal basis for the range of the matrix X. We note
that since \widehat Jk is of full rank, Vk is well defined (up to an orthogonal transformation)
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2D EIGENVALUE PROBLEM 1465

even when A - \mu kC  - \lambda kI is singular. The approach described here for computing a
basis of a null space of a matrix via an augmented system is inspired by [38, 39, 47],
which can be traced back to [41].

After obtaining the orthonormal basis matrix Vk of the desired projection sub-
space, we can define the 2DRQ:

(Ak,Ck)\equiv (V H
k AVk, V

H
k CVk),(4.7)

where for the sake of exposition, without loss of generality, we assume that Vk is up
to another orthogonal transformation such that

Ck = V H
k CVk =

\biggl[ 
c1,k

c2,k

\biggr] 
is diagonal with c1,k \geq c2,k.(4.8)

When Ck is indefinite, the following 2\times 2 2DEVP of (Ak,Ck) has explicit solutions:

(Ak  - \nu Ck  - \theta I)z = 0,(4.9a)

zHCkz = 0,(4.9b)

zHz = 1.(4.9c)

Specifically, we first note that up to a scaling, a nonzero vector z satisfying (4.9b) and
(4.9c) is of the form

z(\alpha ) =
1

\surd 
c1,k  - c2,k

\biggl[ \surd  - c2,k
\alpha 
\surd 
c1,k

\biggr] 
,(4.10)

where \alpha \in \BbbC and | \alpha | = 1. By multiplying zH(\alpha ) and zH(\alpha )C on the left of (4.9a), we
have

\nu (\alpha ) =
zH(\alpha )CkAkz(\alpha )

\| Ckz(\alpha )\| 2
and \theta (\alpha ) = zH(\alpha )Akz(\alpha ),(4.11)

and the triplet (\nu (\alpha ), \theta (\alpha ), z(\alpha )) satisfies (4.9a). Since there exist infinitely many \alpha 
with | \alpha | = 1, the 2DEVP (4.9) seems to possess an infinite number of 2D-eigenvalues.
However, this does not imply that any triplet (\nu (\alpha ), \theta (\alpha ), z(\alpha )) defined in (4.10) and
(4.11) is a 2D-eigentriplet of the 2DEVP (4.9) since only real pairs (\nu (\alpha ), \theta (\alpha )) are of
interest.

Obviously, \theta (\alpha ) in (4.11) is always real. By straightforward calculation, we have

\nu (\alpha ) =
a11,k  - a22,k + (c1,k\alpha a12,k + c2,k\alpha a12,k)/

\surd  - c1,kc2,k
c1,k  - c2,k

,(4.12)

where aij,k is the (i, j)-element of Ak. Since c1,k > 0 and c2,k < 0, \nu (\alpha ) is real if and
only if \alpha a12,k is real. There are two cases:

\bullet a12,k \not = 0. In this case, there are exactly two choices of \alpha : \alpha k,j=\pm | a12,k| /a12,k,
j = 1,2, such that \alpha a12,k is real. The 2DEVP (4.9) has exactly two 2D-
eigentriplets given by

(\nu (\alpha k,j), \theta (\alpha k,j), z(\alpha k,j)) , j = 1,2.(4.13)

Furthermore, \theta (\alpha k,j) are simple eigenvalues of Ak  - \nu (\alpha k,j)Ck.
\bullet a12,k = 0. In this case, any \alpha with | \alpha | = 1 leads to the same real (\nu (\alpha ), \theta (\alpha )).

The 2D-eigentriplets of the 2DEVP (4.9) are given by
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1466 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

(\nu (\alpha ), \theta (\alpha ), z(\alpha ))(4.14)

for any \alpha \in \BbbC with | \alpha | = 1. \theta (\alpha ) is an eigenvalue of Ak  - \nu (\alpha )Ck of
multiplicity 2.

By the 2D-eigentriplets (4.13) or (4.14) of (Ak,Ck), we can use the following
2D-Ritz triplets to define the (k+ 1)st iterate (\mu k+1, \lambda k+1, xk+1):

\mu k+1 = \nu (\alpha k,j), \lambda k+1 = \theta (\alpha k,j), and xk+1 = Vkz(\alpha k,j),(4.15)

when a12,k \not = 0, where j is the index such that | \mu k - \nu (\alpha k,j)| + | \lambda k - \theta (\alpha k,j)| is smaller
for j = 1,2. Otherwise, when a12,k = 0, the k+ 1st iterate (\mu k+1, \lambda k+1, xk+1) is given
by

\mu k+1 = \nu (1), \lambda k+1 = \theta (1) and xk+1 = Vkz(1),(4.16)

where, for the sake of convenience, we choose \alpha = 1 in (4.14).
When Ck is not indefinite, as we may encounter at early stages of iterations, we

propose the following strategy for determining the (k+1)st iterate (\mu k+1, \lambda k+1, xk+1).
First, since the exact 2D-eigenvector x\ast satisfies xH

\ast Cx\ast = 0, we choose a unit vector
xk+1 to minimize | xHCx| for x \in span\{ Vk\} . Specifically, when c1,k \not = c2,k, up to a
scaling, xk+1 is uniquely determined by

xk+1 =

\Biggl\{ 
Vke1, | c1,k| < | c2,k| ,
Vke2, | c1,k| > | c2,k| .

(4.17)

When c1,k = c2,k, we use

xk+1 = Vkw/\| Vkw\| ,(4.18)

where w is a uniformly distributed random vector on [ - 1,1]. Once xk+1 is determined
by (4.17) or (4.18), (\mu k+1, \lambda k+1) is obtained by solving the following least squares
problem:

(\mu k+1, \lambda k+1) = arg min
\nu ,\theta \in \BbbR 

\| Axk+1  - \nu Cxk+1  - \theta xk+1\| .(4.19)

4.3. Algorithm outline. Algorithm 4.1 summarizes the derivation in the pre-
vious section for an algorithm to compute a 2D-eigentriplet. It is called 2DRQI since
the algorithm is an extension of the RQI for a Hermitian matrix A. By (4.4) and
(4.6), we see that when A - \mu kC  - \lambda kI is nonsingular,

span\{ Vk\} = span\{ (A - \mu kC  - \lambda kI)
 - 1xk, (A - \mu kC  - \lambda kI)

 - 1Cxk\} .

If C = 0 and \lambda k is the Rayleigh quotient of A and xk, then span\{ Vk\} = span\{ (A - 
\lambda kI)

 - 1xk\} is the one used in the classical RQI; see, e.g., [40, sec. 4.6].
A few remarks on Algorithm 4.1 are in order. (1) A proper initial (\mu 0, \lambda 0, x0) is

critical for the rapid convergence of the algorithm. The initial pair (\mu 0, \lambda 0) should
be close to a 2D-eigenvalue of interest. For the initial vector x0, we first compute
a 2D-Ritz triplet (\nu , \theta , z) of 2DRQ (XHAX,XHCX), where X consists of the two
orthonormal eigenvectors corresponding to two eigenvalues of A - \mu 0C closest to \lambda 0,
and then we set x0 to be the 2D-Ritz vector Xz associated with the 2D-Ritz value
(\nu , \theta ) closest to (\mu 0, \lambda 0). (2) To solve the linear system (4.4), we should exploit the
structure and sparsity of matrices A and C. See numerical examples in section 7.
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2D EIGENVALUE PROBLEM 1467

Algorithm 4.1 2DRQI.

Require: n\times n Hermitian matrices A and C, where C is indefinite; initial
(\mu 0, \lambda 0, x0), tol, maxit.

Ensure: An approximate 2D-eigentriplet (\widehat \mu ,\widehat \lambda , \widehat x) and an estimated backward error
\eta 1.

1: for k= 0,1,2, . . . ,maxit do
2: solve the linear system (4.4) for the n\times 2 matrix Xa.
3: set Vk = orth(Xa) and update Vk to satisfy (4.8).
4: solve the 2\times 2 2DEVP (4.9) of (Ak,Ck) = (V H

k AVk,Diag(c1,k, c2,k)).
5: if Ck is indefinite then
6: determine (\mu k+1, \lambda k+1, xk+1) by (4.15) or (4.16).
7: else
8: if | c1,k| \not = | c2,k| then
9: determine xk+1 by (4.17).
10: else
11: determine xk+1 by (4.18).
12: end if
13: determine (\mu k+1, \lambda k+1) by solving (4.19).
14: end if
15: exit for-loop if \eta 1(\mu k+1, \lambda k+1, xk+1)\leq tol.
16: end for

17: return (\widehat \mu ,\widehat \lambda , \widehat x) = (\mu k+1, \lambda k+1, xk+1) and \eta 1(\widehat \mu ,\widehat \lambda , \widehat x).
(3) We use an estimate \eta 1 of the backward error of approximate 2D-eigentriplet
(\mu k, \lambda k, xk) as the stopping criterion; see Theorem 5.2 in section 5. In section 7,
we will provide examples to demonstrate that the 2DRQI is locally quadratically con-
vergent. (4) Although Algorithm 4.1 is designed to compute a stationary point of the
eigencurve \lambda j(\mu ) for some j, there is a lack of control on j. In section 6, we will show
how to address this issue through carefully choosing initial vectors and exploiting the
convexity in applications to compute the desired eigencurve \lambda j(\mu ) for a given j.

In [30], under the proper conditions, we prove that the 2DRQI is locally quadrat-
ically convergent for the generic cases I and II discussed in subsection 4.1.

5. Backward error analysis. It is well known that the backward error of an
approximate solution is a reliable and effective stopping criterion for an iterative
algorithm. In this section, we provide a backward error analysis of the 2DEVP (1.1).
The resulting backward error estimate can be used as the stopping criterion of the
2DRQI (Algorithm 4.1). In subsection 6.2, the notion of the backward error analysis
of the 2DEVP will be extended to the computation of the distance to instability. We
start with the following theorem.

Theorem 5.1. Let (\widehat \mu ,\widehat \lambda , \widehat x) be an approximate 2D-eigentriplet of (A,C) with\widehat \mu ,\widehat \lambda \in \BbbR and \| \widehat x\| = 1. Then there exist Hermitian matrices \delta A and \delta C such that
(i) C + \delta C is indefinite, and (ii) (\widehat \mu ,\widehat \lambda , \widehat x) is an exact 2D-eigentriplet of the perturbed
matrix pair (A+ \delta A,C + \delta C):

(A+ \delta A - \widehat \mu (C + \delta C)) \widehat x= \widehat \lambda \widehat x,(5.1a) \widehat xH(C + \delta C)\widehat x= 0,(5.1b) \widehat xH\widehat x= 1.(5.1c)
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1468 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

Proof. We prove by construction. We first find the desired perturbation matrix
\delta C to satisfy (5.1b). Define \delta \widehat C = - (\widehat xHC\widehat x)I. Then

\widehat xH(C + \delta \widehat C)\widehat x= 0.(5.2)

If C + \delta \widehat C is indefinite, then (5.1b) holds by taking \delta C = \delta \widehat C. If C + \delta \widehat C is not
indefinite, then C + \delta \widehat C is positive or negative semidefinite. Equation (5.2) implies
(C + \delta \widehat C)\widehat x = 0. Let Q be an orthogonal matrix with Qe1 = \widehat x. Then we have
QH(C + \delta \widehat C)Qe1 = 0 and

QH(C + \delta \widehat C)Q=

\biggl[ 
0 0

0 \widehat C1

\biggr] 
,

where \widehat C1 is an (n - 1)-by-(n - 1) matrix. Define

(5.3) δC = δĈ +Q


1 1 n− 2

1 0 ∆ 0
1 ∆ 0 0
n− 2 0 0 0

QH

with a nonzero scalar \Delta . Then it can be verified that QH(C+\delta C)Q (and thus C+\delta C)
is indefinite and (5.1b) holds.

For finding the desired perturbation matrix \delta A to satisfy (5.1a), let \delta \widehat A be a
Hermitian matrix such that \delta \widehat A \widehat x= h/\| h\| , h= - (A - \widehat \lambda I)\widehat x+\widehat \mu (C+\delta C)\widehat x. For example,
\delta \widehat A can be a Householder matrix [17, Thm. 2.1.13]. Then it is straightforward to verify
that (5.1a) holds with \delta A= \| h\| \delta \widehat A. This completes the proof.

By Theorem 5.1, the backward error \eta of an approximate 2D-eigentriplet (\widehat \mu ,\widehat \lambda , \widehat x)
of (A,C) is defined as the infimum of the normwise relative perturbation of A and C
such that (\widehat \mu ,\widehat \lambda , \widehat x) is an exact 2D-eigentriplet of the perturbed 2DEVP (5.1):

\eta \equiv inf
\Bigl\{ 
\epsilon 
\bigm| \bigm| \bigm| \exists \delta A, \delta C s.t.\| \delta A\| \leq \epsilon \| A\| ,\| \delta C\| (5.4)

\leq \epsilon \| C\| ,C + \delta C is indefinite and (5.1) holds\} .

The following theorem provides a tight computable estimate of \eta .

Theorem 5.2. Let (\widehat \mu ,\widehat \lambda , \widehat x) be an approximate 2D-eigentriplet of (A,C) with\widehat \mu ,\widehat \lambda \in \BbbR and \| \widehat x\| = 1, and

\eta 1 =max

\biggl\{ 
| \gamma A| 
\| A\| 

,
| \gamma C | 
\| C\| 

,
\| r\| 

\| A\| + | \widehat \mu | \| C\| 

\biggr\} 
,(5.5)

where \gamma A = \widehat xHA\widehat x  - \widehat \lambda , \gamma C = \widehat xHC\widehat x, and r = (A  - \widehat \mu C  - \widehat \lambda I)\widehat x. Then the backward
error \eta of (\widehat \mu ,\widehat \lambda , \widehat x) defined in (5.4) satisfies

\eta 1 \leq \eta \leq 
\surd 
2\eta 1.(5.6)

Proof. We first prove the lower bound \eta \geq \eta 1. For any \delta A and \delta C satisfying the
perturbed 2DEVP (5.1), by (5.1a) and (5.1b), we have \widehat xH(A+ \delta A)\widehat x = \widehat \lambda . Hence by
the definition (5.4) of \eta , we have

\eta \geq \| \delta C\| 
\| C\| 

\geq | \widehat xH\delta C\widehat x| 
\| C\| 

=
| \widehat xHC\widehat x| 
\| C\| 

=
| \gamma C | 
\| C\| 

,(5.7)
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2D EIGENVALUE PROBLEM 1469

and

\eta \geq \| \delta A\| 
\| A\| 

\geq | \widehat xH\delta A\widehat x| 
\| A\| 

=
| \widehat xHA\widehat x - \widehat \lambda | 

\| A\| 
=

| \gamma A| 
\| A\| 

.(5.8)

Now by (5.1a), for the norm of the residual vector r,

\| r\| = \| (A - \widehat \mu C  - \widehat \lambda I)\widehat x\| = \| (\delta A - \widehat \mu \delta C)\widehat x\| \leq \| \delta A\| + | \widehat \mu | \| \delta C\| \leq (\| A\| + | \widehat \mu | \| C\| )\epsilon .

Therefore, by the definition (5.4) of \eta , we have

\eta \geq \| r\| 
\| A\| + | \widehat \mu | \| C\| 

.(5.9)

Combining (5.7), (5.8), and (5.9), we have \eta \geq \eta 1.
The gist of finding the upper bound of \eta , namely \eta \leq 

\surd 
2\eta 1, is to find two particular

perturbation matrices \delta A and \delta C such that

\delta A\widehat x - \widehat \mu \delta C\widehat x= - r,(5.10a) \widehat xH\delta C\widehat x= - \gamma C ,(5.10b)

and

C + \delta C is indefinite,(5.11)

and then derive the upper bound of \eta from the upper bound of max\{ \| \delta A\| 
\| A\| , \| \delta C\| 

\| C\| \} .
We first note that we can safely discard the condition (5.11). This is due to the fact
that when (5.10) holds, using the same arguments as in the proof of Theorem 5.1,
we can add infinitesimal perturbation to \delta A, \delta C to guarantee (5.10) and (5.11) hold.

Since the backward error \eta takes the infimum, the quantity max\{ \| \delta A\| 
\| A\| , \| \delta C\| 

\| C\| \} is still
an upper bound.

To find \delta A and \delta C satisfying (5.10), let us define

\widetilde a\equiv  - \| A\| 
\| A\| + | \widehat \mu | \| C\| 

(I  - \widehat x\widehat xH)r, \widetilde c\equiv sign(\widehat \mu )\| C\| 
\| A\| + | \widehat \mu | \| C\| 

(I  - \widehat x\widehat xH)r,

where sign(\widehat \mu ) = \widehat \mu /| \widehat \mu | if \widehat \mu \not = 0 and 1 otherwise. Then \widetilde a and \widetilde c are orthogonal to \widehat x and
satisfy \widetilde a - \widehat \mu \widetilde c= - (I  - \widehat x\widehat xH) r.

Next, let us define a\equiv ( - \widehat xHr - \widehat \mu \gamma C)\widehat x+ \widetilde a and c\equiv  - \gamma C\widehat x+ \widetilde c. Then it holds that\Biggl\{ 
a - \widehat \mu c= (\widetilde a - \widehat \mu \widetilde c) - \widehat xHr\widehat x= - (I  - \widehat x\widehat xH)r - \widehat xHr\widehat x= - r,\widehat xHc= - \gamma C .

From the vectors a and c, we can construct Hermitian matrices \delta A and \delta C, say real
constant multiples of Householder reflections [17, Thm. 2.1.13] satisfying \delta A\widehat x = a,
\delta C\widehat x= c, \| \delta A\| = \| a\| , and \| \delta C\| = \| c\| . Then \delta A and \delta C are desired matrices satisfying
(5.10).

For \delta A, by the definition of r, we have  - \widehat xHr - \widehat \mu \gamma C = - \gamma A, and thus

\| \delta A\| 
\| A\| 

=
\| a\| 
\| A\| 

=
\|  - \gamma A\widehat x+ \widetilde a\| 

\| A\| 
=

\sqrt{} 
\gamma 2
A + \| \widetilde a\| 2
\| A\| 

=

\sqrt{} \biggl( 
| \gamma A| 
\| A\| 

\biggr) 2

+

\biggl( 
\| \widetilde a\| 
\| A\| 

\biggr) 2

\leq 

\sqrt{} \biggl( 
| \gamma A| 
\| A\| 

\biggr) 2

+

\biggl( 
\| r\| 

\| A\| + | \widehat \mu | \| C\| 

\biggr) 2

\leq 
\surd 
2\eta 1.(5.12)
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1470 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

By an analogous derivation, for \delta C, we have

\| \delta C\| 
\| C\| 

\leq 
\surd 
2\eta 1.(5.13)

Combining the upper bounds (5.12) and (5.13), we have \eta \leq 
\surd 
2\eta 1. This completes

the proof.

6. Applications. In this section, we discuss two eigenvalue optimization prob-
lems that can be reformulated as the 2DEVP (1.1) and then solved by the 2DRQI
(Algorithm 4.1).

6.1. Minmax of Rayleigh quotients. Given Hermitian matrices A,B \in \BbbC n\times n,
the minmax problem of Rayleigh quotients (RQminmax)

min
x \not =0

max

\biggl\{ 
xHAx

xHx
,
xHBx

xHx

\biggr\} 
(6.1)

arises from quadratically constrained quadratic programs (QCQP) [12], the trust re-
gion methods for nonlinear equality constrained optimization [54], transmit beam-
forming [13, 19, 55], MIMO relay optimization [46], and cognitive radio networks [56].
The RQminmax (6.1) is closely related to the well-known S-Lemma in control theory
and robust optimization [43, 53]. We have the following theorem to characterize a
solution of the RQminmax (6.1).

Theorem 6.1. Let \lambda A be the minimum eigenvalue and xA be a corresponding
unit eigenvector of A, let \lambda B be the minimum eigenvalue and xB be a corresponding
unit eigenvector of B, and let \rho A(x) = xHAx/xHx and \rho B(x) = xHBx/xHx be the
Rayleigh quotients of A and B.

I. If \lambda A \geq \rho B(xA), then xA is a solution of the RQminmax (6.1).
II. If \lambda B \geq \rho A(xB), then xB is a solution of the RQminmax (6.1).
III. Otherwise, that is, if \lambda A < \rho B(xA) and \lambda B < \rho A(xB), let \mu \ast be an optimizer

of the eigenvalue optimization problem (EVOPT),

max
\mu \in \BbbR 

\lambda min(A - \mu C),(6.2)

and let V\mu \ast be the set of eigenvectors x\ast corresponding to \lambda min(A - \mu \ast C) and
xH
\ast Cx\ast = 0, where C =A - B. Then (a) \mu \ast \in [0,1], (b) V\mu \ast \not = \emptyset , and (c) any

x\ast \in V\mu \ast is a solution of the RQminmax (6.1).

Proof. For case I, we note that for any x \not = 0, max\{ \rho A(x), \rho B(x)\} \geq \rho A(x)\geq \lambda A.
On the other hand, max\{ \rho A(xA), \rho B(xA)\} = \lambda A. Thus x\ast = xA is a solution of the
RQminmax (6.1).

Case II can be proven by exchanging the roles of A and B in the proof of case I.
The proof of case III. is divided into two subcases: Case III. (1): \lambda A < \theta B

and \lambda B < \theta A; and case III. (2): the negation of case III. (1), i.e., the inequalities
\lambda A < \theta B and \lambda B < \theta A do not hold simultaneously, where \theta A = \lambda min(S

H
BASB), \theta B =

\lambda min(S
H
A BSA), and SA and SB are orthonormal basis of the eigensubspace of \lambda A and

\lambda B , respectively.
Consider case III. (1). For (a), it is sufficient to prove that

g
\prime ( - )(1)< 0 and g

\prime (+)(0)> 0,(6.3)

where g(\mu ) = \lambda min(A - \mu C). For the first inequality in (6.3), if g(1) = \lambda B is a simple
eigenvalue of A  - C = B, then by Corollary 2.4, g is differentiable at \mu = 1 and
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2D EIGENVALUE PROBLEM 1471

g\prime (1) =  - xH
BCxB =  - xH

B (A - B)xB = \lambda B  - \theta A < 0. Thus the first inequality holds.
If g(1) is not simple, by Theorem 2.3, g

\prime ( - )(1) equals to the maximum eigenvalue
of  - Ck = SH

B (B  - A)SB = \lambda BI  - SH
BASB . Since \lambda B < \theta A \equiv \lambda min(S

H
BASB),  - Ck

is negative definite. This implies that g
\prime ( - )(1) < 0. By an analogous argument,

g
\prime (+)(0)> 0. Thus the result (a) holds.

For (b), note that (\mu \ast , \lambda min(A - \mu \ast C)) is a 2D-eigenvalue of (A,C) according to
Theorem 3.1. Then the associated 2D-eigenvectors belong to V\mu \ast , and thus we obtain
the result (b).

For (c), we first claim that if x\ast is the solution of the RQminmax (6.1), then
xH
\ast Cx\ast = 0. We prove by contradiction. Assume xH

\ast Cx\ast > 0, i.e., xH
\ast Ax\ast > xH

\ast Bx\ast .
Then x\ast does not belong to SA since otherwise \lambda A = \rho A(x\ast ) > \rho B(x\ast ) \geq \theta B , which
contradicts the condition that \lambda A < \theta B . Consider x(t) = x\ast + t sign(xH

Ax\ast )xA with
t > 0, where by convention sign(0) = 1. A straightforward calculation shows

\rho A(x(t)) =
\| x\ast \| 2\rho A(x\ast ) +

\bigl( 
t2\| xA\| 2 + 2t| xH

\ast xA| 
\bigr) 
\lambda A

\| x\ast \| 2 + t2\| xA\| 2 + 2t| xH
\ast xA| 

<\rho A(x\ast ).(6.4)

On the other hand, by the continuity of \rho A(x(t)) and \rho B(x(t)) with respect to t,
\rho B(x(t)) < \rho A(x(t)) holds for a sufficiently small t. This implies that for such t we
have

max\{ \rho A(x(t)), \rho B(x(t))\} = \rho A(x(t))<\rho A(x\ast ) =max\{ \rho A(x\ast ), \rho B(x\ast )\} ,

which contradicts the condition that x\ast is the solution of the RQminmax (6.1). Hence
xH
\ast Cx\ast \leq 0. A similar argument leads to xH

\ast Cx\ast \geq 0. Therefore, we conclude
xH
\ast Cx\ast = 0, and we have

min
x \not =0

max\{ \rho A(x), \rho B(x)\} = min
xHx=1
xHCx=0

max\{ xHAx,xHBx\} = min
xHx=1
xHCx=0

xHAx

=max
\mu \in \BbbR 

\lambda min(A - \mu C),

where the last equality is from Theorem 3.4. Thus for x\ast \in V\mu \ast , we have

\rho A(x\ast ) = \rho B(x\ast ) = \rho A - \mu \ast C(x\ast ) = \lambda min(A - \mu \ast C) =max
\mu \in \BbbR 

\lambda min(A - \mu C)

=min
x \not =0

max\{ \rho A(x), \rho B(x)\} ,

which implies the result (c). This completes the proof of case III. (1).
Case III. (2) implies that at least one of the following conditions holds: (i) \lambda A \geq 

\theta B ; (ii) \lambda B \geq \theta A. Let us assume (i). It can be shown analogously if we assume (ii).
By the condition under case III, i.e., \lambda A <\rho B(xA) and \lambda B <\rho A(xB), we have

 - xH
ACxA = - \lambda A + \rho B(xA)> 0 and  - xH

BCxB = - \rho A(xB) + \lambda B < 0.(6.5)

Note that xA and xB are also eigenvectors of A  - 0 \cdot C = A and A  - 1 \cdot C = B,
respectively. Thus by Theorem 2.3, the inequalities in (6.5) imply that

g\prime  - (0) = \lambda max( - SH
A CSA)\geq  - xH

ACxA > 0 and(6.6)

g\prime +(1) = \lambda min( - SH
BCSB)\leq  - xH

BCxB < 0.

Let \mu \ast be an optimizer of the EVOPT (6.2). Then by (6.6) and the concavity of g(\mu ),
we conclude that \mu \ast \in [0,1]. Therefore, the result (a) holds.
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1472 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

The result (b) follows from the same argument as in case III. (1).
To prove (c), we first calculate the optimal value of the EVOPT (6.2). Since

\lambda A \geq \theta B , by denoting zB as the unit eigenvector of SH
A BSA corresponding to \theta B and

the definition of SA, we have

\rho A(SAzB) = \lambda A \geq \theta B = \rho B(SAzB).

Let \widetilde xA = SAzB . Then  - \widetilde xH
AC\widetilde xA \leq 0 and thus by Theorem 2.3,

g\prime +(0) = \lambda min( - SH
A CSA)\leq  - \widetilde xH

AC\widetilde xA \leq 0.(6.7)

According to (6.6), (6.7), and the concavity of g(\mu ) (see Theorem 3.8), 0 is an optimizer
of the EVOPT (6.2) and thus

max
\mu \in \BbbR 

\lambda min(A - \mu C) = \lambda A.(6.8)

Now for any x\ast \in V\mu \ast , we have

\rho B(x\ast ) = \rho A(x\ast ) = \lambda min(A - \mu \ast C) =max
\mu \in \BbbR 

\lambda min(A - \mu C)

= \lambda A =min
x\not =0

max\{ \rho A(x), \rho B(x)\} ,

where the first equality results from xH
\ast Cx\ast = 0, the second equality results from the

fact that \rho A(x\ast ) = \rho A - \mu \ast C(x\ast ) and x\ast is an eigenvector corresponding to \lambda min(A - 
\mu \ast C), the third equality comes from the fact that \mu \ast is an optimizer, the fourth
equality results from (6.8), and the last equality holds according to

\lambda A \leq min
x \not =0

max\{ \lambda A, \rho B(x)\} \leq min
x \not =0

max\{ \rho A(x), \rho B(x)\} \leq max\{ \rho A(SAzB), \rho B(SAzB)\} 

= \lambda A

as \theta B \leq \lambda A. Thus x\ast is the solution of the RQminmax (6.1) and the result (c) holds.
This completes the proof of case III. (2).

Remark 6.2. In [12], Gaurav and Hari considered the characterization of the
solution of the RQminmax (6.1) similar to Theorem 6.1. However, it is assumed that
eigenvalues \lambda A, \lambda B , and \lambda min(A - \mu \ast C) are all simple. Furthermore, there is no result
(a) in case III.

By the characterization of the solution of the RQminmax (6.1) in Theorem 6.1,
for cases I and II, we can obtain a solution of the RQminmax (6.1) regardless of
the multiplicities of \lambda A and \lambda B . For case III, we know that (\mu \ast , \lambda \ast ) with \lambda \ast =
\lambda min(A - \mu \ast C) is the minimum 2D-eigenvalue of (A,C) (see Definition 3.6). On the
other hand, by the definition of V\mu \ast , up to a scaling, x\ast \in V\mu \ast if and only if x\ast is
a 2D-eigenvector associated with (\mu \ast , \lambda \ast ). Thus the RQminmax (6.1) in case III.
turns to calculating a minimum 2D-eigenvalue and the corresponding 2D-eigenvector
of (A,C).

Based on the fact that \mu \ast of the minimum 2D-eigenvalue (\mu \ast , \lambda \ast ) must be in
[0,1], we can combine the bisection search and the 2DRQI (Algorithm 4.1). Starting
with the initial search interval [a, b] = [0,1] of the EVOPT (6.2), let \mu 0 = (a+ b)/2,
\lambda 0 = \lambda min(A  - \mu 0C), and x0 be the one recommended for the 2DRQI (Algorithm
4.1). Then we can use the 2DRQI with the initial (\mu 0, \lambda 0, x0) to find a 2D-eigentriplet
(\widehat \mu ,\widehat \lambda , \widehat x) of (A,C).
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2D EIGENVALUE PROBLEM 1473

If \widehat \lambda = \lambda min(A - \widehat \mu C), then according to Corollary 3.5,\widehat \lambda =max
\mu \in \BbbR 

\lambda min(A - \mu C).

Thus \widehat \mu is an optimizer of EVOPT (6.2) and \widehat x is the solution of RQminmax (6.1).
If \widehat \lambda \not = \lambda min(A  - \widehat \mu C), or the 2DRQI does not converge, then we can use the

concavity of g(\mu ) = \lambda min(A - \mu C) (see Theorem 3.8) to bisect the interval [a, b] and
run the 2DRQI with a new initial (\mu 0, \lambda 0, x0). This bisection search strategy works
under the assumption on the nonsingularity of Jacobian at the target 2D-eigentriplet
due to the following facts:

\bullet if (x(n))HCx(n) \leq 0, where x(n) is an eigenvector corresponding to \lambda 0 =
\lambda min(A - \mu 0C), then by Theorem 2.3, g\prime  - (\mu 0) = \lambda max( - X0(\mu 0)

HCX0(\mu 0))\geq 
0, where X0(\mu ) is an orthonormal basis of the eigensubspace of \lambda min(A  - 
\mu C), and there is an optimizer \mu \ast of the EVOPT (6.2) such that \mu \ast \geq \mu 0.
Consequently, we set a= \mu 0 to half the search interval.

\bullet if (x(n))HCx(n) > 0, then by Theorem 2.3, g\prime +(\mu 0) = \lambda min( - X0(\mu 0)
HCX0(\mu 0))

< 0 and there is an optimizer \mu \ast of the EVOPT (6.2) such that \mu \ast \leq \mu 0. Con-
sequently, we set b= \mu 0 to half the search interval.

A combination of 2DRQI (Algorithm 4.1) and the bisection search described above
is summarized in Algorithm 6.1 for solving the RQminmax (6.1), where in line 9 we
use whether

Algorithm 6.1. Minmax of two RQs.

Require: n-by-n Hermitian matrices A and B, tolerance values abstol, reltol,
and backtol.

Ensure: approximate solution \widehat x and the optimal value \widehat \lambda of RQminmax (6.1).
1: compute a minimum eigenpair (\lambda A, xA) of A. If \lambda A \geq \rho B(xA), then return

(\widehat \lambda , \widehat x) = (\lambda A, xA).
2: compute a minimum eigenpair (\lambda B , xB) of B. If \lambda B \geq \rho A(xB), then return

(\widehat \lambda , \widehat x) = (\lambda B , xB).
3: set [a, b] = [0,1].
4: for k= 0,1,2, . . . , until b - a< abstol do
5: set \mu 0 = (a+ b)/2.
6: compute two smallest eigenpairs (\lambda n, x

(n)), (\lambda n - 1, x
(n - 1)) of A - \mu 0C.

7: compute the minimum 2D-Ritz triplet (\nu , \theta , z) of (ZHAZ,ZHCZ), where
Z =

\bigl[ 
x(n - 1) x(n)

\bigr] 
.

8: apply the 2DRQI (Algorithm 4.1) with the initial (\mu 0, \lambda 0 = \lambda n, x0 =Zz) and
the backward error tolerance backtol.

9: if 2DRQI converges to (\widehat \mu ,\widehat \lambda , \widehat x) and | \widehat \lambda  - \lambda min(A - \widehat \mu C)| < reltol \cdot (| 1 - \widehat \mu | 
\| A\| + | \widehat \mu | \| B\| ) then

10: return (\widehat \lambda , \widehat x).
11: else
12: if (x(n))HCx(n) \leq 0 then
13: update a= \mu 0.
14: else
15: update b= \mu 0.
16: end if
17: end if
18: end for
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1474 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

| \widehat \lambda  - \lambda min(A - \widehat \mu C)| = | \widehat \lambda  - \lambda min ((1 - \widehat \mu )A+ \widehat \mu B) | < reltol \cdot (| 1 - \widehat \mu | \| A\| + | \widehat \mu | \| B\| )

to numerically check whether \widehat \lambda = \lambda min(A - \widehat \mu C). Numerical examples for large scale
RQminmax (6.1) arising from signal processing are presented in section 7.

6.2. The distance to instability. A basic problem in the stability analysis of
dynamical systems is to compute the distance to instability (DTI); see, for example,
[51, sec. 49]. In matrix notation, for a stable matrix \widehat A\in \BbbC m\times m, that is all eigenvalues
of \widehat A are located in the open left-half of the complex plane \BbbC , the DTI is defined as

\beta ( \widehat A)\equiv min
\Bigl\{ 
\| E\| 

\bigm| \bigm| \widehat A+E is unstable,E \in \BbbC m\times m
\Bigr\} 
.(6.9)

Van Loan [52] showed that \beta ( \widehat A) can be recast as the singular value optimization

\beta ( \widehat A) =min
\mu \in \BbbR 

\sigma min( \widehat A - \mu iI),(6.10)

where i=
\surd 
 - 1 and \sigma min(X) refers to the smallest singular value of the matrix X. By

the relation between the singular values of a matrix X and eigenvalues of Hermitian
matrix

\bigl[ 
0 XH

X 0

\bigr] 
(see, e.g., [7, Thm. 3.3]), the singular value optimization (6.10) can

be transformed to the eigenvalue optimization (EVOPT)

\beta ( \widehat A) =min
\mu \in \BbbR 

\lambda m(A - \mu C),(6.11)

where A and C are 2m\times 2m matrices given by A =
\Bigl[ \widehat A\widehat AH

\Bigr] 
and C =

\bigl[ 
iI

 - iI

\bigr] 
, and

\lambda m(A - \mu C) is the smallest positive eigenvalue of A - \mu C.
By Theorem 3.1, if \mu \ast is an optimizer of (6.11), then (\mu \ast , \beta ( \widehat A)) is a 2D-eigenvalue

of the 2DEVP of (A,C). In addition, we have the following list of characterizations
of the target 2D-eigentriplet:

\bullet If (\mu ,\lambda , [uv ]) is a 2D-eigentriplet of (A,C), then (\mu , - \lambda , [ - u
v ]) is also a 2D-

eigentriplet. This implies the 2D-eigenvalues are symmetric with regard to
\lambda = 0.

\bullet The corresponding 2D-eigenvector x\ast = [ x1
x2
] of (\mu \ast , \beta ( \widehat A)) must obey

Imag(xH
1 x2) = 0, and xH

1 x1 = xH
2 x2 =

1

2
,(6.12)

where, for the second identity, we use the fact that xH
1
\widehat Ax2 = xH

2
\widehat AHx1.

\bullet Based on the ordering of 2m eigenvalues of A - \mu C,

\lambda 1(\mu )\geq \lambda 2(\mu )\geq \cdot \cdot \cdot \geq \lambda m(\mu )> 0>\lambda m+1(\mu )\geq \cdot \cdot \cdot \geq \lambda 2m(\mu ),(6.13)

we have the following characterization of \beta ( \widehat A):

\beta ( \widehat A) =min\{ \lambda | (\mu ,\lambda ) is a 2D-eigenvalue of (A,C) and \lambda > 0\} 
= - max\{ \lambda | (\mu ,\lambda ) is a 2D-eigenvalue of (A,C) and \lambda < 0\} 
=min\{ | \lambda | | (\mu ,\lambda ) is a 2D-eigenvalue of (A,C)\} .

(6.14)

\bullet Theorem 3.7 implies the optimizer \mu \ast of the EVOPT (6.11) is in the interval
[ - \| A\| ,\| A\| ], which is tighter than the interval [ - 2\| A\| ,2\| A\| ] derived in [52].

Algorithm 6.2 is an outline of a 2DRQI-based algorithm for computing \beta ( \widehat A). A
few remarks are in order.
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2D EIGENVALUE PROBLEM 1475

Algorithm 6.2. DTI by 2DRQI.

Require: m\times m stable matrix \widehat A, reltol, tol.

Ensure: 2D-eigentriplet (\widehat \mu ,\widehat \lambda , \widehat x), where \widehat \lambda is an estimate of the DTI \beta ( \widehat A), and a
backward error estimate \eta 2.

1: set \mu 0 as the imaginary part of the rightmost eigenvalue of \widehat A.
2: compute the singular triplet (u,\lambda 0, v) corresponding to the smallest singular

value of \widehat A - \mu 0iI.
3: apply the 2DRQI (Algorithm 4.1) with initial (\mu 0, \lambda 0, x0 =

1\surd 
2
[uv ]) and stopping

tolerance tol to compute an approximate 2D-eigentriplet (\widehat \mu ,\widehat \lambda , \widehat x) of (A,C) and
the corresponding backward error estimate \eta 2.

4: validate the computed DTI \widehat \lambda with reltol (optional).

(1) The initial (\mu 0, \lambda 0, x0) (lines 1 and 2) follows the recommendation of [11] and
is critical for the success of the computation.

(2) To satisfy the conditions (6.12) for the approximate 2D-eigenvector xk =\bigl[ xk,1
xk,2

\bigr] 
, we should add the following steps after line 14 in the 2DRQI (Algo-

rithm 4.1):

1 : xk+1,1 =

\surd 
2

2
xk+1,1/\| xk+1,1\| ,

2 : xk+1,2 =

\surd 
2

2
xk+1,2/\| xk+1,2\| .

With this normalization, we assume the computed xk satisfies (6.12) exactly
in the subsequent analysis.

(3) For the stopping criterion of the 2DRQI, we use a backward error estimate
of the computed DTI. It has been a challenge to properly define the stopping
criterion of iterative methods for computing DTI [11, 16, 18, 52]. A main
reason is that it is meaningless to define the backward error for an estimated
DTI \widehat \beta only. Specifically, if a backward error \widetilde \eta of \widehat \beta is defined as

\widetilde \eta = inf
\Bigl\{ 
\epsilon | \exists \delta \widehat A such that\| \delta \widehat A\| \leq \epsilon \| \widehat A\| and\beta ( \widehat A+ \delta \widehat A) = \widehat \beta \Bigr\} ,(6.15)

then one can show that the calculation of the backward error \widetilde \eta could be as
hard as the calculation of the original \beta ( \widehat A). This is analogous to the fact that
for eigenvalue problems we do not define the backward error of an approximate
eigenvalue only. We consider the backward error of an approximate eigenpair;
see, e.g., [49, Thm. 1.3]. As an advantage of treating the DTI via the 2DEVP,
we can establish the notion of the backward error for a computed DTI via
an approximate 2D-eigentriplet. The resulting backward error estimation
naturally leads to a reliable stopping criterion for an iterative DTI algorithm.
To that end, let the approximate 2D eigentriplet (\widehat \mu ,\widehat \lambda , \widehat x) of (A,C) be an
exact 2D-eigentriplet of structurally perturbed 2DEVP\Biggl[ 

0 \widehat A+ \delta \widehat A\widehat AH + \delta \widehat AH 0

\Biggr] \widehat x - \widehat \mu C\widehat x= \widehat \lambda \widehat x,(6.16a)

\widehat xHC\widehat x= 0,(6.16b) \widehat xH\widehat x= 1(6.16c)
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1476 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

for some \delta \widehat A. Then we can define a structure-preserving backward error of
the 2DEVP of the DTI problem as follows:

\widehat \eta \beta (\widehat \mu ,\widehat \lambda , \widehat x) = inf
\Bigl\{ 
\epsilon | \exists \delta \widehat A such that\| \delta \widehat A\| \leq \epsilon \| \widehat A\| and(6.16)holds

\Bigr\} 
.(6.17)

We first note that the set in (6.17) is nonempty when the approximate 2D-

eigenvector \widehat x=
\Bigl[ \widehat x1\widehat x2

\Bigr] 
satisfies the conditions (6.12). In fact, denote r = [ r1r2 ],

where r1 = \widehat A\widehat x2  - \widehat \mu i\widehat x2  - \widehat \lambda \widehat x1 and r2 = \widehat AH\widehat x1 + \widehat \mu i\widehat x1  - \widehat \lambda \widehat x2. Then it can be
shown that the matrix

\delta \widehat A=\delta \widehat A1+\delta \widehat A2 with \delta \widehat A1= - 
\biggl( 
I  - \widehat x1\widehat xH

1\widehat xH
1 \widehat x1

\biggr) 
r1\widehat xH

2\widehat xH
2 \widehat x2

and \delta \widehat A2= - \widehat x1r
H
2\widehat xH

1 \widehat x1

satisfies (6.16). Meanwhile, we have

\| \delta \widehat A\| = max
\| z\| =1

\bigm\| \bigm\| \bigm\| (\delta \widehat A1 + \delta \widehat A2)z
\bigm\| \bigm\| \bigm\| = max

\| z\| =1

\sqrt{} \bigm\| \bigm\| \bigm\| \delta \widehat A1z
\bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \delta \widehat A2z

\bigm\| \bigm\| \bigm\| 2
\leq 
\sqrt{} \bigm\| \bigm\| \bigm\| \delta \widehat A1

\bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \delta \widehat A2

\bigm\| \bigm\| \bigm\| 2 \leq \sqrt{} 2\| r1\| 2 + 2\| r2\| 2 =
\surd 
2\| r\| ,(6.18)

where the second equality results from the fact that \delta \widehat A1z is orthogonal to
\delta \widehat A2z.
Next we provide an estimate of \widehat \eta \beta . Since \widehat \eta \beta is the backward error of the stuc-
tured 2DEVP (6.16), the backward error \eta in (5.4) of a generic (unstructured)
2DEVP is the lower bound of \widehat \eta \beta :\widehat \eta \beta \geq \eta \geq \eta 1,(6.19)

where \eta 1 is defined as in (5.5). On the other hand, by the definition of \widehat \eta \beta 
and (6.18), we have an upper bound of \widehat \eta \beta :

\widehat \eta \beta \leq \eta 2 \equiv 
\surd 
2
\| r\| 
\| \widehat A\| 

.(6.20)

By the facts that \| \widehat A\| = \| A\| and \| C\| = 1, we have

\eta 2
\eta 1

\leq 

\surd 
2 \| r\| 
\| \widehat A\| 

\| r\| 
\| A\| +| \widehat \mu | \| C\| 

=
\surd 
2

\Biggl( 
1 +

| \widehat \mu | 
\| \widehat A\| 

\Biggr) 
.(6.21)

Combining (6.19), (6.20), and (6.21), we have

1
\surd 
2
\Bigl( 
1 + | \widehat \mu | 

\| \widehat A\| 

\Bigr) \eta 2 \leq \widehat \eta \beta \leq \eta 2.(6.22)

Therefore \eta 2 defined in (6.20) can be used as an estimate of \widehat \eta \beta . Consequently,
the stopping criteria (line 15) of the 2DRQI (Algorithm 4.1) should be

| Imag(xH
k,1xk,2)| \leq tol and \eta 2(\mu k, \lambda k, xk)\leq tol,(6.23)

where tol is a prescribed tolerance value. In addition, to handle the possible
stagnation of the 2DRQI, we can also include the following test into the
stopping criterion for possible stagnation:

\eta 2(\mu k, \lambda k, xk)\geq 
1

2

\Bigl( 
\eta 2(\mu k - 2, \lambda k - 2, xk - 2) + \eta 2(\mu k - 1, \lambda k - 1, xk - 1)

\Bigr) 
.(6.24)
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2D EIGENVALUE PROBLEM 1477

(4) For the optional validation step of Algorithm 6.2, we know that if the com-
puted \widehat \lambda is an acceptable estimate of DTI \beta ( \widehat A), it should satisfy

(1 - reltol)\widehat \lambda \leq \beta ( \widehat A)\leq \widehat \lambda (6.25)

for a small reltol, where, without loss of generality, we assume \widehat \lambda > 0.
Otherwise, according to the symmetric properties of 2D-eigenvalues in DTI,
we can use  - \widehat \lambda as an estimate of the DTI \beta ( \widehat A).
The upper bound of (6.25) naturally holds according to (6.14) and (\widehat \mu ,\widehat \lambda ) is
a 2D-eigenvalue. For the lower bound of (6.25), we just need to verify that
H((1 - reltol)\widehat \lambda ) has no imaginary eigenvalue. This is based on the following
lemma.

Lemma 6.3 (see [3]). For any \lambda > 0, \lambda < \beta ( \widehat A) if and only if G(\lambda ) has no
pure imaginary eigenvalue, where G(\lambda ) is a Hamiltonian matrix of the form

G(\lambda ) =

\Biggl[ \widehat A  - \lambda I

\lambda I  - \widehat AH

\Biggr] 
.(6.26)

This validation procedure is the one proposed in [11]. However, it should
be noted that checking whether G((1  - reltol)\widehat \lambda ) has no imaginary eigen-
values could be prohibitively expensive for large scale problems. Therefore,
the validation step is optional in all existing algorithms for computing DTI
[11, 16, 18].

In section 7, we will provide a numerical example to compare the performance of
the 2DRQI and a recently proposed subspace method for computing the DTI.

7. Numerical examples. In this section, we first present a numerical example
to illustrate the convergence behaviors of the 2DRQI (Algorithm 4.1) and then present
three examples for finding the minmax of two Rayleigh quotients (Algorithm 6.1) and
for computing the DTI (Algorithm 6.2). All algorithms are implemented in MATLAB
2016b. Numerical experiments are performed on an HP computer with an Intel(R)
Core(TM) 2.60 GHz i7-6700HQ CPU and 8 GB RAM.

Example 2. This example illustrates convergence behaviors of the 2DRQI (Algo-
rithm 4.1). Let us consider the 2DEVP (1.1) of the matrices

A=

\left[   - 0.7 0.01 0.2
0.01 2 0
0.2 0 0

\right]  and C =

\left[  0.3 0.01 0.2
0.01 1 0
0.2 0  - 1

\right]  .
It can be verified that (\mu 1, \lambda 1, x1) = (1,1,

\Biggl[ 
0
1\surd 
2

1\surd 
2

\Biggr] 
) is a 2D-eigentriplet and \lambda 1 = 1 is

an eigenvalue of A - \mu 1C with multiplicity 2. In addition, by a brute-force bisection
search following the sorted eigencurves \lambda 1(\mu ) \geq \lambda 2(\mu ) \geq \lambda 3(\mu ) of A  - \mu C on the
interval [ - 1.5,1.5], we find additional two 2D-eigenvalues to machine precision:

(\mu 2, \lambda 2) = ( - 0.665101440190437, - 0.239801782612878),

(\mu 3, \lambda 3) = ( - 0.145810069397438, - 0.744080780565709).

Moreover, \lambda 2 and \lambda 3 are the simple eigenvalues of A  - \mu 2C and A  - \mu 3C, respec-
tively. The left plot of Figure 3 depicts the sorted eigencurves \lambda j(\mu ) for j = 1,2,3.
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1478 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

The maximum 2D-eigenvalue (\mu 1, \lambda 1) = (1,1) is marked in red. The 2D-eigenvalue
(\mu 2, \lambda 2) is blue. The minimum 2D-eigenvalue (\mu 3, \lambda 3) is green.

We use each grid point on the 100\times 100 mesh of the domain (\mu ,\lambda ) = [ - 1.5,1.5]\times 
[ - 2,2] as an initial (\mu 0, \lambda 0) and the vector x0 is generated based on the remarks of
Algorithm 4.1. If the 2DRQI with (\mu 0, \lambda 0, x0), tol = n \cdot macheps, and maxit = 15
converges to the ith 2D-eigenvalue (\mu i, \lambda i), then we use the same color for the initial
(\mu 0, \lambda 0) and (\mu i, \lambda i). The right plot of Figure 3 shows that the 2DRQI converges to a
2D-eigentriplet for all 10,000 initials (\mu 0, \lambda 0, x0).

Table 1 records the convergence history of a sequence \{ (\mu 3;k, \lambda 3;k, x3;k)\} to the
minimum 2D-eigenvalue (\mu 3, \lambda 3), marked in green in Figure 3. We observe that the
sequence \{ (\mu 3;k, \lambda 3;k)\} converges quadratically, the matrix Ck of the 2DRQ (Ak,Ck)
remains indefinite, and a12,k \not = 0. Table 2 shows the convergence history of a sequence
\{ (\mu 1;k, \lambda 1;k, x1;k)\} to the maximum 2D-eigenvalue (\mu 1, \lambda 1), marked in red in Figure
3. Note that \lambda 1 is an eigenvalue of A - \mu 1C with multiplicity 2. We observe that the
sequence \{ \mu 1;k, \lambda 1;k\} converges quadratically and the matrix Ck of the 2DRQ (Ak,Ck)
remains indefinite. However, a12,k approaches to 0.

For the convergence analysis of the 2DRQI presented in [30], we can see that
although the algorithm and local quadratic convergence rate are the same regardless
of the multiplicity of the eigenvalue \lambda \ast of A - \mu \ast C, the convergence analysis needs to
be treated differently as indicated by whether | a12,k| approaches to 0.

Example 3. We use Algorithm 6.1 to solve the RQminmax (6.1) arising from a
MIMO relay precoder design problem in signal communication to minimize the total

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

2

3

4

Fig. 3. Left: Sorted eigencurves and corresponding 2D-eigenvalues of (A,C) in Example 2.
Right: Computed 2D-eigenvalues with different initials. (Color available online.)

Table 1
Convergence history of \{ (\mu 3;k, \lambda 3;k, x3;k)\} to (\mu 3, \lambda 3, x3).

k | \mu 3;k  - \mu 3| | \lambda 3;k  - \lambda 3| \eta 1(\mu 3;k, \lambda 3;k, x3;k) (c1,k, c2,k) | a12,k| 
0 1.6e0 8.9e-1 4.1e-1 (-1.0e0, 3.3e-1) 2.9e-1
1 2.6e-3 8.4e-3 7.1e-2 (-1.0e0, 3.3e-1) 2.9e-1

2 2.2e-5 1.2e-7 2.7e-4 (-1.0e0, 3.3e-1) 2.9e-1

3 6.5e-13 1.1e-16 2.1e-9 (-1.0e0, 3.3e-1) 2.9e-1
4 3.4e-16 2.6e-16 1.1e-16 (-1.0e0, 3.3e-1) 2.9e-1
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2D EIGENVALUE PROBLEM 1479

Table 2
Convergence history for \{ (\mu 1;k, \lambda 1;k, x1;k)\} to (\mu 1, \lambda 1, x1).

k | \mu 1;k  - \mu 1| | \lambda 1;k  - \lambda 1| \eta 1(\mu 1;k, \lambda 1;k, x1;k) (c1,k, c2,k) | a12,k| 
0 1.0e0 1.0e0 3.2e-1 (-1.0e0, 7.9e-1) 9.3e-2

1 3.3e-1 4.6e-1 3.1e-1 (-9.6e-1, 9.6e-1 ) 3.2e-2
2 5.0e-2 9.0e-2 1.3e-1 (-1.0e0, 1.0e0 ) 2.4e-4

3 5.2e-4 3.3e-4 8.1e-3 (-1.0e0, 1.0e0 ) 3.2e-9

4 3.8e-10 2.2e-11 2.1e-6 (-1.0e0, 1.0e0 ) 8.0e-16
5 4.2e-16 2.2e-16 2.5e-16 (-1.0e0, 1.0e0 ) 4.6e-16

relay power subject to SINR constraints at the receivers [4]. Consider the multipoint
to multipoint communication with two sources. The signals ro after MIMO relay
processing and signals y received by destinations are

ro =ZHups+Znr and y=HH
dlZHupx+HH

dlZnr + nd,

where s is the transmit signals of the sources, and nr and nd are zero-mean circu-
larly symmetric complex Gaussian random variables with variance \sigma 2

r and \sigma 2
d. Hup =

[h1, h2] \in \BbbC m\times 2 denotes channels between two sources and antennas, Hdl = [g1, g2] \in 
\BbbC m\times 2 denotes channels between antennas and two destinations, and m is the number
of antennas at the relay. Z \in \BbbC m\times m is the processing matrix to be designed. Under the
assumption that the source transmit signals s are zero-mean and statistically indepen-
dent with the unit power, the goal of the MIMO relay precoder design is to minimize
the relay power while maintaining SINR no less than a prescribed threshold \gamma th.

After some algebraic manipulations, the MIMO precoder relay design problem be-
comes solving the following homogeneous quadratic constrained programming
(HQCQP) problem:

min
u

uHTu s.t. uHPju+ 1\leq 0 for j = 1,2,(7.1)

where u=vec(Z) is a column vector obtained by stacking the columns of Z on top of
one another. Additionally, above T = \widehat F0 \otimes I, P1 = \widehat F1 \otimes g1g

H
1 and P2 = \widehat F2 \otimes g2g

H
2 are

of dimensions n = m2, with \widehat F0 = h1h
T
1 + h2h

T
2 + \sigma 2

rI,
\widehat F1 = 1

\gamma \mathrm{t}\mathrm{h}\sigma 2
d
(\gamma thh2h

T
2 + \gamma th\sigma 

2
rI

 - h1h
T
1 )/(\gamma th\sigma 

2
d), and

\widehat F2 =
1

\gamma \mathrm{t}\mathrm{h}\sigma 2
d

\bigl( 
\gamma thh1h

T
1 + \gamma th\sigma 

2
rI  - h2h

T
2

\bigr) 
/(\gamma th\sigma 

2
d). The operator

\otimes is the Kronecker product. Note that \widehat F0 and \widehat Fi are m\times m Hermitian matrices with\widehat F0 positive definite. Gaurav and Hari [12] show that the HQCQP (7.1) is equivalent
to the RQminmax (6.1) of the matrices

A= SHP1S = F1 \otimes g1g
H
1 , B = SHP2S = F2 \otimes g2g

H
2 ,(7.2)

where S = T - 1
2 is the square root of T - 1, F1 = \widehat F - 1

2
0

\widehat F1
\widehat F - 1

2
0 , and F2 = \widehat F - 1

2
0

\widehat F2
\widehat F - 1

2
0 .

We note that by exploiting the structure of A and B, the matrix-vector multiplications
Ax and Bx can be performed efficiently. For numerical experiments described in [12],
Hup and Hdl are complex Gaussian random matrices. The SINR is set to 3 dB and
noise variances are set to  - 10 dB, i.e., \gamma th = 10

3
10 , and \sigma 2

d = \sigma 2
r = 10 - 1.

Algorithm 6.1 first checks cases I and II of the RQminmax (6.1) described in The-
orem 6.1 for possible early exit. Then it uses a combination of the 2DRQI and the bi-
section search to find an optimizer \mu 

(RQI)
\ast of the EVOPT (6.2) for the general case III.

A dichotomous method is proposed in [12] for solving the EVOPT (6.2). Starting
from a search interval [a, b] containing the global maximum of the concave function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1480 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

g(\mu ) = \lambda min(A - \mu C), where C =A - B, the dichotomous method compares g(a), g(b),
g((a+ b)/2 - \epsilon r), and g((a+ b)/2 + \epsilon r) for a small scalar \epsilon r, and then by using the
concavity of g(\mu ), replaces a with (a+ b)/2 - \epsilon r or b with (a+ b)/2 + \epsilon r for the next
iteration. When the search interval width b  - a is less than a prescribed tolerance
tol, it returns an approximate optimal value \mu 

(Dich)
\ast = (a+ b)/2.

An alternative algorithm to solve the EVOPT (6.2) is to use the subspace method
[18]. The subspace method solves an eigenvalue optimization problem by successively
projecting the original problem onto a subspace. Specifically, for the EVOPT (6.2)
with the prescribed interval [0,1] and an initial \mu 0 = 1

2 , the subspace method first
computes \lambda min(A - \mu 0C) and the corresponding eigenvector v0, and then sets the initial
projection subspace V0 = v0. At the kth iteration for k \geq 1, the subspace method
projects EVOPT (6.2) onto the subspace Vk - 1 and solves the reduced problem:

\lambda 
(k)
min = max

\mu \in [0,1]
\lambda min

\bigl( 
V H
k - 1AVk - 1  - \mu V H

k - 1CVk - 1

\bigr) 
.(7.3)

With a minimizer \mu k of the reduced problem (7.3), the subspace method computes
the eigenvector vk of \lambda min(A - \mu kC), and then updates the projection subspace Vk =

orth(Vk - 1, vk). It is proved [18] that f
(k)
L = maxj=1,\cdot \cdot \cdot ,k\{ \lambda min(A  - \mu jC)\} is a lower

bound of the optimal value, while f
(k)
U = minj=1,\cdot \cdot \cdot ,k\{ \lambda (j)

min\} is an upper bound, and

f
(k)
U  - f

(k)
L will tend to 0, i.e., the iteration converges.

leigopt is an implementation of the subspace method in MATLAB [18].1 It uses
eigopt, a quadratic supporting functions based method [33], to solve the reduced

problem, and terminates the iteration when | \lambda (k - 1)
min  - \lambda 

(k)
min| < tol for a prescribed tol

or the number of iterations exceeds
\surd 
n. We note that there are two minor modifica-

tions here. First, to improve computational efficiency of leigopt, we set the dimen-
sion of the projection subspace opts.p = 20 in eigs, instead of round(sqrt(n))
used in leigopt. We have tried to use the interior point method to substitute for
eigopt. Numerical experiments show the interior point method is slower on the di-
mensionalities shown in Table 3. Second, we observe that the stopping criterion often
leads to early termination of leigopt and thus fails to obtain an accurate solution.

To solve this problem, we use a more robust criterion, | f (k)
U  - f

(k)
L | < tol. We denote

the returned value as \mu 
(leig)
\ast .

We observed that the optimizers of the EVOPT (6.2) on the interval [0,1] com-
puted by the dichotomous method (tol = 1e-8), leigopt (tol = 1e-10), and Al-
gorithm 6.1 (backtol = n\epsilon and reltol = 1e-8) agree up to 8 significant digits for
20 runs of each of dimensions n= 102,1002,2002,4002.

Table 3 records the average numbers of iterations and running time (in seconds)
of 100 runs of three methods. The runtime of the subspace method is written as

Table 3
Performance of the dichotomous method, the subspace method, and Algorithm 6.1 for solving

the EVOPT (6.2).

Dichotomous method Subspace method Algorithm 6.1

n=m2 niter runtime niter runtime niter runtime

102 15 0.11 5 0.083(0.063) 3.1 0.026
1002 15 1.2 5 0.27(0.068) 2.6 0.19

2002 15 4.6 5 0.86(0.069) 2.4 0.57

4002 15 29 5 5.2(0.069) 2.1 3.6

1http://home.ku.edu.tr/\sim emengi/software/leigopt, downloaded on October 2, 2021. The codes
have been migrated to https://mysite.ku.edu.tr/emengi/leigopt.
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tall(tsub) with tall for the total time spent on solving the EVOPT (6.2) and tsub
for the time spent solving the subproblems (7.3). The significant performance gain
of Algorithm 6.1 in speed compared to the dichotomous method and the subspace
method is due to the smaller number of iterations and the fact that each iteration
of the dichotomous method needs to solve two eigenvalue problems of A  - \mu jC for
computing g(\mu j) = \lambda min(A  - \mu jC), where we use the sparse eigensolver eigs. In
contrast, each iteration of Algorithm 6.1 calls the 2DRQI (Algorithm 4.1) once, which
in turn only needs to solve the augmented linear system (4.4), where we use the linear
solver gmres with the tolerance n\epsilon and the maximum Krylov subspace dimension
30 and without preconditioning.

Example 4. In this example, we consider the computation of DTI for matrices
from the finite difference discretization of the Orr--Sommerfeld operator for planar
Poiseuille flow. An n\times n Orr--Sommerfeld matrix is of the form2

\widehat An =L - 1
n Bn,

where Ln = (1/h2)tridiag(1, - (2 + h2),1), Bn = 1
\scrR e

L2
n  - i(UnLn + 2I), and Un =

diag(1 - u2
1, . . . ,1 - u2

n). h= 2/(n+1) is the stepsize of discretization, uk = - 1+ kh,
\scrR e is the Reynolds number (\scrR e = 1000 in numerical experiments), and i =

\surd 
 - 1.

The stability of the Orr--Sommerfeld matrices has been extensively studied [8, 31, 44].
It is known that the eigenvalues of Orr--Sommerfeld matrices are highly sensitive to
perturbations. The DTI is an important measure of the stability under uncertainty
[11, 16, 18].

For efficiently solving the linear equation (4.4) in Algorithm 6.2, we first reorder
the Jacobian J(\mu k, \lambda k, xk) to a banded arrow matrix [5, p. 86] and then apply a Schur
complement technique [34, p. 406]. For the initial (\mu 0, \lambda 0, x0) of the 2DRQI, we apply
the Cayley--Arnoldi algorithm with a complex shift for computing \mu 0 [32] and then
use the MATLAB function svds to compute the smallest singular triplet of \widehat A - \mu 0iI
with tol= n\epsilon .

We also apply the subspace method and its implementation leigopt [18] discussed
in Example 3. In this case, for computing DTI \beta ( \widehat An), leigopt solves the singular
value minimization

\beta ( \widehat An) =min
\mu \in \BbbR 

\sigma min( \widehat An  - \mu iI).(7.4)

With a prescribed search interval [a, b] and an initial \mu 0 \in [a, b], leigopt first computes
\sigma min( \widehat An - \mu 0iI) and the corresponding right singular vector v0 and then sets the initial
projection subspace V0 = v0. At the kth iteration for k \geq 1, leigopt projects the
minimization (7.4) onto the subspace Vk - 1 and solves the reduced problem:

\sigma 
(k)
min = min

\mu \in [a,b]
\sigma min( \widehat AnVk - 1  - \mu iVk - 1).(7.5)

With a minimizer \mu k of the reduced problem (7.5), the subspace method computes
\sigma min( \widehat An  - \mu kiI) and the corresponding right singular vector vk and then updates

the projection subspace Vk =Orth(vk - 1, vk). The iteration terminates when \sigma 
(k - 1)
min  - 

\sigma 
(k)
min < tol for a prescribed tol, or the number of iterations exceeds

\surd 
n. For numerical

experiments, the initial \mu 0 = 0 and the tolerance tol = 1e-12.

2The formulation in [16, 18] has some typos.
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1482 TIANYI LU, YANGFENG SU, AND ZHAOJUN BAI

Table 4
DTI computation by the subspace method and Algorithm 6.2.

The subspace method Algorithm 6.2

n niter runtime \widehat \beta ( \widehat An) niter runtime \widehat \beta ( \widehat An)

1000 9.4 0.14(0.013) 1.97789572876e-3 5.8 0.025 + 0.032 1.9778957275e-3

4000 9.4 0.42(0.029) 1.97809674700e-3 4.9 0.062 + 0.095 1.9780964583e-3
16000 8.5 1.42(0.069) 1.93794289874e-3 4.8 0.25 + 0.38 1.9376706543e-3

We note that to improve computational efficiency, the following minor modifi-
cations are made in leigopt. (1) We set the dimension of the projection subspace
opts.p = 20 in eigs or svds, instead of round(sqrt(n)) used in leigopt. (2)
leigopt uses eigopt, a quadratic supporting functions based method [33], to solve
the reduced problem (7.5). For the Orr--Sommerfeld matrices, eigopt is too time
consuming. Instead, we use a modified Boyd--Balakrishnan method [2]. As a byprod-
uct, the search interval [a, b] does not need to be prescribed with this method.3 (3)
We keep all historic right singular vectors, i.e., v0, v1, . . . , vk, in the projection sub-
space Vk. This slightly decreases the number of iterative steps and reduces the total
computational time.

Table 4 shows the performance of Algorithm 6.2 and leigopt. The runtime of
Algorithm 6.2 is written as t1 + t2 with t1 for calculating the rightmost eigenvalue
of \widehat An and the singular triplet of \widehat An  - \mu 0iI (i.e., lines 1 and 2 of Algorithm 6.2)
and t2 for the rest of calculation. The runtime of the subspace method is written as
tall(tsub) with tall for the total time and tsub for solving the subproblems (7.5). We
observe that the \widehat \beta ( \widehat An) computed by the two algorithms agree from 4 to 8 significant
digits. However, Algorithm 6.2 uses no more than half of the runtime of the subspace
method. The reason for the speedup of Algorithm 6.2 is twofold. Algorithm 6.2 uses
fewer iterative steps. The major cost of the subspace method is on computing the
right singular vector vk corresponding to \sigma min( \widehat A - \mu kiI). In contrast, in Algorithm
6.2, we only need to solve a linear equation of the form (4.4) in each iteration of
2DRQI (Algorithm 4.1).

We note that the validation step for computed \widehat \beta ( \widehat An) by Algorithm 6.2 and the
subspace method is not reported in Table 4. For the matrix size n= 1000, it is verified
that both algorithms pass the validation procedure described in subsection 6.2 with
reltol = 1e-9. Although there exists an algorithm [23] for checking whether G(\lambda )
defined in Lemma 6.3 has pure imaginary eigenvalues, it would be too expensive for
large matrix sizes. As is common practice of the existing algorithms [11, 16, 18, 52],
there is no validation procedure for large scale DTI calculation.

Example 5. In this example, we present the performance of the 2DRQI-based
Algorithm 6.2 and the subspace method based leigopt on the computation of the
DTI of test matrices depicted in Table 5. These matrices come from DTI related
literature [15, 25, 26]. It should be noted that some of the test matrices are unstable
ones. As is common practice, for those unstable matrices A, a shift \sigma \in \BbbR is introduced
so that \widehat A - \sigma iI is a stable matrix.

Similar to Example 4, we make the following modifications to improve the effi-
ciency of leigopt. First, we set the dimension of the projection subspace opts.p =
20 in eigs or svds, instead of round(sqrt(n)) used in leigopt. Second, we use the

3This strategy is also recommended by Dr. Mengi, one of the authors of leigopt, in a private
communication.
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2D EIGENVALUE PROBLEM 1483

Table 5
Statistics of the test matrices.

Matrix n Sparsity Shift (\sigma ) Frobenius norm Source

olmstead1000 1000 0.003996 5 1.26e + 06 [15, 25]
dwave2048 2048 0.002410 1 3.02e + 01 [15, 25]

pde2961 2961 0.001660 10 3.70e + 02 [15, 25]

rdbrusselator3200 3200 0.001840 1 2.81e + 03 [15, 25]
HF2D9 3481 0.001420 1 9.51e + 03 [26]

tols4000 4000 0.000549 0 2.98e + 08 [15, 25]

HF2D CD3 4096 0.001210 2 1.18e + 05 [26]
markov5050 5050 0.000974 2 1.48e + 02 [15, 25]

sparserandom10000 10000 0.001200 3 3.06e + 02 [15]

skewlap3d30 24389 0.000279 0 9.24e + 05 [15, 25]

Table 6
Performance of Algorithm 6.2 and leigopt on the set of matrices depicted in Table 5.

Algorithm 6.2 leigopt

Matrix niter \beta ( \widehat A) Timing niter \beta ( \widehat A) Timing

olmstead1000 0 4.740742924e-1 0.034 3 4.740742924e-1 0.053

dwave2048 0 2.119727657e-2 0.098 3 2.119727657e-2 0.122
pde2961 3 2.267878235e-2 0.58 6 2.267878235e-2 0.66

rdbrusselator3200 3 3.594599642e-1 0.72 4 3.594599642e-1 0.74
HF2D9 0 7.192219953e-1 0.20 3 7.192219953e-1 0.25

tols4000 1 1.999796888e-3 0.60 4 1.999796837e-3 0.64

HF2D CD3 0 1.913018555e-2 0.27 3 1.913018555e-2 0.36
markov5050 1 9.263768378e-1 0.86 5 9.263768378e-1 0.59

sparserandom10000 0 1.273786238e-5 31.0 3 1.273786238e-5 60.9

skewlap3d30 0 8.729075984e + 1 9.8 3 8.729075984e + 1 13.7

modified Boyd--Balakrishnan algorithm to substitute for eigopt. Note that leigopt
needs an initial \mu 0 to start. In the Orr--Sommerfeld class of matrices in Example 4, \mu 0

is prescribed. However, for the test matrices in Table 5, we do not have such prior in-
formation. Therefore, we calculate the rightmost eigenvalue of \widehat A using the MATLAB
eigs function except for the matrices tols4000 and olmstead1000, and use its imagi-
nary part as the initial \mu 0. The cost for calculating the initial \mu 0 is counted in the total
cost of the running time. For the matrices tols4000 and olmstead1000, since eigs

failed to find the rightmost eigenvalue, we use the Cayley--Arnoldi algorithm with a
complex shift. When calculating the smallest triplets, we use svds. We set tol to n\epsilon 
in Algorithm 6.2 and 10 - 12 in leigopt as in [18], where \epsilon is the machine precision.

Table 6 summarizes the performance of Algorithm 6.2 and leigopt in terms of
the number of iterations, computed DTI \beta ( \widehat A), and total running time. We observe
that all computed DTI \beta ( \widehat A) by both methods match in at least 8 significant digits.
Algorithm 6.2 is generally faster except for the matrix markov5050. For the matrix
markov5050, it is more expensive to solve linear systems than to calculate the singular
values in Algorithm 6.2. We note that for some matrices, Algorithm 6.2 takes 0 iter-
ations. This is due to the fact that for these matrices, the initial values already pass
the backward error test, while leigopt does not equip such a backward error test. To
end this example, we highlight that the 2DRQI is a local method and is sensitive to
the choice of the initial approximation. For example, if the initial approximation \mu 0

is set to 10 for the matrix markov5050, Algorithm 6.2 fails to converge to the correct
DTI \beta ( \widehat A) while leigopt succeeds.
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8. Conclusion. We introduced the 2DEVP (1.1) of a Hermitian matrix pair
(A,C). We investigated the relationships between the well-known eigenvalue opti-
mization problem of the parameter matrix H(\mu ) = A  - \mu C and the 2DEVP. We
presented essential properties of the 2DEVP such as the existence and variational
characterizations of 2D-eigenvalues. We devised an RQI-like algorithm, 2DRQI, for
solving the 2DEVP. The computational kernel of the 2DRQI involves the solution of
linear systems of equations. The efficiency of the 2DRQI is demonstrated for solving
the large scale 2DEVP arising from the minmax problem of two Rayleigh quotients
and the computation of the distance to instability of a stable matrix. A rigorous
convergence analysis of the proposed 2DRQI is presented in [30].

The 2DRQI Algorithm 4.1 is designed to compute a stationary point of the eigen-
curve \lambda j(\mu ) of H(\mu ) for some j. Since the 2DRQI is a local algorithm, there is a lack
of control on j other than the initialization. It is a subject of further study on how
to combine the 2DRQI with other global search schemes so that it is guaranteed to
compute a stationary point of \lambda j(\mu ) for a prescribed j.

Acknowledgments. The authors are grateful to Ding Lu for valuable discus-
sions during the course of this work. They would like to thank the anonymous referees,
whose comments helped to significantly improve the quality of the paper.
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