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We present a technique for the iterative diagonalization of random-phase approximation (RPA) matri-
ces, which are encountered in the framework of time-dependent density-functional theory (TDDFT)
and the Bethe-Salpeter equation. The non-Hermitian character of these matrices does not permit
a straightforward application of standard iterative techniques used, i.e., for the diagonalization of
ground state Hamiltonians. We first introduce a new block variational principle for RPA matrices.
We then develop an algorithm for the simultaneous calculation of multiple eigenvalues and eigen-
vectors, with convergence and stability properties similar to techniques used to iteratively diagonalize
Hermitian matrices. The algorithm is validated for simple systems (Na2 and Na4) and then used to
compute multiple low-lying TDDFT excitation energies of the benzene molecule. © 2012 American
Institute of Physics. [doi:10.1063/1.3677667]

I. INTRODUCTION

Time-dependent density-functional theory (TDDFT) and
the Bethe-Salpeter equation (BSE) are widely used to com-
pute the optical excitations of a wide range of systems.1 In
the adiabatic approximation using local or hybrid exchange-
correlation functionals, TDDFT is considered an accurate ap-
proach for molecular systems.2 The BSE has been mostly
used for extended periodic systems3–5 but its utilization is be-
coming increasingly popular also for the calculation of molec-
ular spectra.6–8 In the widely used particle-hole formulation5, 9

or in the density matrix perturbation theory formulation,8, 10, 11

the calculation of TDDFT, and BSE excitation energies and
polarizabilities are formulated in terms of a non-Hermitian
eigenproblem with the structure of a random-phase approxi-
mation (RPA) matrix:12

HRPA

(
x

y

)
=

(
A B

−B∗ −A∗

) (
x

y

)
= ω

(
x

y

)
, (1)

where the block matrices A and B are Hermitian and posi-
tive definite. In this work we will assume that the matrices
A and B are real, which is always the case for molecular
systems with time reversal symmetry. Although in electronic
structure theory RPA usually defines a specific approximation
used for constructing HRPA, in the following we will indicate
a generic eigenvalue problem with the structure of Eq. (1) as
RPA eigenvalue problem. The theory presented in this work
is general and does not depend on the specific approximation
used to build HRPA, such as TDDFT or BSE.

The non-Hermitian character of HRPA does not allow for
the application of standard iterative techniques used, i.e., in

a)Electronic mail: drocca@ucdavis.edu.
b)Electronic mail: bai@cs.ucdavis.edu.

ground state DFT calculations.13 For this reason, the Tamm-
Dancoff approximation,14, 15 that approximates the RPA op-
erator in terms of a Hermitian matrix by discarding the cou-
pling blocks B and −B*, has been widely used in the solution
of both TDDFT and the BSE;1 while this approximation is
considered accurate for bulk systems, its validity is still con-
troversial in the case of molecules.7, 8

In recent implementations the non-Hermitian RPA prob-
lem of TDDFT and BSE has been solved by directly com-
puting the electronic polarizability using a Lanczos algorithm
without direct diagonalization of the RPA operator.7, 8, 10, 11

This approach is computationally efficient and allows one to
compute spectra in a wide energy range. However, it does not
allow for a direct assignment of excitation energies in terms
of transitions between single particle states.

For the case of TDDFT in the electron-hole formulation,9

if one uses a local exchange correlation functional it is pos-
sible to reformulate the RPA problem in terms of a pseudo-
Hermitian operator, and standard iterative techniques are
then applicable.13, 16 However, this simplification cannot be
easily applied to the case of the BSE, TDDFT with hy-
brid functionals or the density matrix perturbation theory
formulation.8, 10, 11

For the case of RPA matrices of the form of HRPA in
Eq. (1), a minimization principle for the lowest lying eigen-
value has been introduced by Thouless in 1961.12 This varia-
tional principle and its variants have been exploited by the al-
gorithms introduced in Refs. 17–21. However, Thouless’ vari-
ational principle is valid only for the lowest lying eigenvalue.
For this reason only one eigenvalue and eigenvector at a time
can be calculated and used to build a constraint for the next
eigenvalue calculation. In contrast, efficient Hermitian itera-
tive methods are based on a block form of the minimization
principle of Hermitian matrices.
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In this work we introduce a new block minimization prin-
ciple for RPA non-Hermitian matrices HRPA and then derive a
block steepest descent (SD) algorithm to diagonalize matri-
ces HRPA. We implemented this algorithm in the framework of
TDDFT with local exchange correlation, within the approach
of Refs. 10, 11, and 22. After validating the method on sim-
plified examples (small sodium nanoclusters), we present an
application to the low-lying excitation spectrum of the ben-
zene molecule. In this latter case, the dimension of the non-
Hermitian matrix associated with the TDDFT problem is up
to about 5.6 × 106. The application of this method to the so-
lution of the BSE and the study of preconditioning schemes
will be subject of future work.

The rest of this paper is organized as follows. In Sec. II
we introduce the equations of the non-Hermitian RPA eigen-
value problem for the case of TDDFT in the local and semi-
local adiabatic approximations. In Sec. III we briefly review
the Thouless minimization principle for RPA matrices and
then introduce the new block form of this principle. In Sec. IV
we use the block minimization principle to develop conjugate
gradient-like (CG-like) algorithms that allow for the iterative
calculation of multiple eigenvalues simultaneously. Applica-
tions to the diagonalization of exactly solvable RPA matrices
and to the low-lying TDDFT spectrum of benzene are pre-
sented in Secs. V and VI, respectively. Section VII contains
our conclusions.

II. THEORETICAL BACKGROUND

A detailed review of the theoretical background of the
TDDFT and the BSE approaches can be found in Ref. 1.
In the frequency domain formulation and in the adiabatic
approximation, the TDDFT and BSE excitations energies
are obtained by solving a RPA eigenproblem, as defined in
Eq. (1). In the usual approximations used in TDDFT and BSE
calculations, the matrices A and B in Eq. (1) are Hermitian and
positive definite and thus the eigenvalues of HRPA are real. Fur-
thermore, it is easy to demonstrate that if ω is an eigenvalue of
HRPA corresponding to the right eigenvector (xT, yT)T, then −ω

is an eigenvalue corresponding to the eigenvector (yT, xT)T. If
in Eq. (1) the coupling matrices B and −B* are set to zero,
the so-called Tamm-Dancoff approximation is obtained.14, 15

In the following we consider the explicit TDDFT equa-
tions for the case of molecular systems with time-reversal
symmetry (no magnetic fields are applied to the system). In
this case the molecular orbitals can be chosen to be real and,
as a consequence, the matrices A and B are real and symmet-
ric. We focus on the TDDFT formalism in the (semi-)local
adiabatic approximation2 and we present examples at this
level of theory. A detailed presentation of the BSE or the hy-
brid functional formalism can be found, e.g., in Refs. 2, 5,
and 8. Since the BSE may be cast into the form of Eq. (1), in
principle the following discussion and methodology are ap-
plicable also to the solution of this equation and this will be
subject of future work.

Most practical approaches to solve Eq. (1) for TDDFT
and BSE make use of an electron-hole (e-h) basis set;5, 9 in the
case of TDDFT this leads to the Casida’s equations. Within

this approach, in the spin-restricted case, Eq. (1) is

Avc,v′c′ = (ε◦
c − ε◦

v)δvv′δcc′ + Kvc,v′c′ , (2)

Bvc,v′c′ = Kvc,c′v′ , (3)

where the kernel

Kvc,v′c′ = 2
∫

φ◦
c (r)φ◦

v (r)

(
1

|r − r′| + δVxc(r)

δn(r′)
δ(r − r′)

)
×φ◦

v′(r′)φ◦
c′(r′)drdr′, (4)

describes the local field effects and the exchange-correlation
(xc) effects; in Eq. (4), δVxc/δn is the functional derivative of
the exchange and correlation potential Vxc with respect to the
density n. The indexes v and v′ label occupied energy levels ε

and orbitals φ, while c and c′ denote empty states. The dimen-
sion of the RPA matrix in the electron-hole representation is
2 × Nv × Nc, where Nv is the number of valence and Nc is the
number of conduction states. Atomic units have been used in
the previous equations and will be used throughout the paper.
Since in this formulation the (A − B) matrix is diagonal, the
RPA eigenvalue problem in Eq. (1) can be easily reduced to
an Hermitian form

(A − B)1/2(A + B)(A − B)1/2|z〉 = ω2|z〉, (5)

where we have defined z = (A − B)−1/2|x + y〉. Unfortu-
nately, such simplification is convenient only when the
electron-hole basis set is used with a local approximation
for Vxc in the kernel. In the case of BSE, hybrid functional
TDDFT or density matrix perturbation theory, the (A − B)
matrix is not diagonal and the evaluation of (A − B)1/2 is
computationally prohibitive. In order to solve Eq. (5) also in
the case of hybrid functionals, in Ref. 16 a method was pro-
posed to systematically approximate (A − B)1/2 in a small di-
mensional iterative subspace.

In this work we do not rely on the Hermitian form of
Eq. (5). However, the theory and algorithms proposed here for
the RPA eigenvalue problem have close similarities to those
for Hermitian matrices.13

The electron-hole formulation of TDDFT and BSE re-
quires the explicit calculation of the empty electronic states
φ◦

c . In principle, all the empty states should be included but
in most practical implementations only a limited number of
them are used, and the convergence with respect to their num-
ber has to be carefully tested. The inclusion of a large num-
ber of conduction states is particularly important when a large
portion of the spectrum is needed or when there is a strong
coupling between low and high energy levels.8, 23

Recently, a method has been introduced to solve the
equations of TDDFT and the BSE within density matrix per-
turbation theory.8, 10, 11 This approach enables the inclusion of
the full conduction subspace without the explicit diagonal-
ization of the ground state Hamiltonian. This is achieved by
generalizing concepts of density functional perturbation the-
ory to the case of time dependent linear response.24, 25 Within
this formalism the TDDFT equations can be cast into the form
of the RPA matrix Eq. (1), with the following definition of the
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operators A and B:

Av,v′ |av′ 〉 = (Ĥ ◦ − εv′ ) δvv′ |av′ 〉

+2Q̂

(∫
KHXC(r, r′)φ◦

v′(r′)av′ (r′)dr′
)

|φ◦
v〉,

(6)

Bv,v′ |bv′ 〉 = 2Q̂

(∫
KHXC(r, r′)bv′(r′)φ◦

v′(r′)dr′
)

|φ◦
v〉,

(7)

where

KHXC(r, r′) = 1

|r − r′| + δVxc(r)

δn(r′)
δ(r − r′), (8)

and Ĥ ◦ is the ground state Hamiltonian; av′ (r) and bv′ (r) de-
note two generic sets of Nv orbitals orthogonal to the occu-
pied ground state orbitals φ◦

v . The projector onto the conduc-
tion state subspace Q̂ can be computed as Î − P̂ , where Î

is the identity operator and P̂ is the projector onto the oc-
cupied state subspace. It is important to note that the total
number of orbitals involved (φ◦

v , av, bv) in Eqs. (6) and (7) is
equal to Nv, and the operations required to solve this equation
are similar to those required by a ground state calculation: for
example, one needs to evaluate the application of the ground
state Hamiltonian Ĥ ◦ to Nv orbitals and to compute a Hartree-
exchange-correlation term in the kernel. Furthermore, by us-
ing well established techniques for ground state calculations,
the operators A and B in Eqs. (6) and (7) can be applied to
the set of orbitals av′ and bv′ without explicitly building the
corresponding matrices.26

In this formulation the dimension of the explicit RPA ma-
trix HRPA is 2 × Nv × Nbasis, where Nbasis is the dimension of
the basis set used to expand the orbitals. Since in general Nc

� Nv, we have Nbasis = Nc + Nv ≈ Nc, namely, the dimen-
sion of the matrix in Eq. (1) is approximately the same both in
the e-h hole formalism including all the empty states, and in
the density matrix perturbation theory formalism. As already
mentioned, by using Eqs. (6) and (7), it is not necessary to
build the full matrix Eq. (1), and all the empty states are au-
tomatically included without diagonalizing the ground state
Hamiltonian. This formalism can be extended to the case of
the BSE and TDDFT using hybrid functionals.8

In Secs. III and IV a new algorithm to iteratively diago-
nalize the RPA eigenvalue problem is presented.

III. MINIMIZATION PRINCIPLES FOR THE RPA
EIGENVALUE PROBLEM

In this section we discuss minimization principles for the
RPA eigenvalue problem Eq. (1). We consider the case in
which the m × m A and B matrices in Eq. (1) are real and sym-
metric positive definite. The spectrum of the matrix in Eq. (1)
is characterized by 2m real eigenvalues, symmetric with re-
spect to 0, i.e., ±ωi for i = 1, 2, . . . , m. We are interested
in the k smallest positive eigenvalues 0 < ω1 ≤ ω2 ≤ . . . ≤
ωk, where the number k depends on the specific problem of

interest but in general is limited to a relatively small number
compared to m.

In 1961, a variational principle was introduced by Thou-
less to determine the lowest eigenvalue of the RPA eigenvalue
problem.12 Thouless showed that the lowest eigenvalue ω1 of
HRPA can be obtained by minimizing the functional

�(x, y) =

(
x

y

)T (
A B

B A

)(
x

y

)
|xT x − yT y| ,

among all vectors x, y such that xTx − yTy 	= 0, namely,

ω1 = min �(x, y), (9)

where the superscript ( · )T transposes a matrix or vector. In-
troducing the symmetric orthogonal matrix

J = 1√
2

(
Im Im

Im −Im

)
,

where Im is a m × m identity matrix, we can convert the eigen-
value problem (1) into

H′
RPA

(
p

q

)
=

(
0 K

M 0

)(
p

q

)
= ω

(
p

q

)
, (10)

where K = A − B and M = A + B, p = 1/
√

2(x + y) and
q = 1/

√
2(x − y). From the definition of A and B in

Eqs. (2) and (3) and Eqs. (6) and (7), we have that both K and
M are symmetric positive definite, and the two eigenvalue
problems (1) and (10) are equivalent.

As shown by Tsiper,17 the equivalent of the Thouless
minimization principle for the matrix H′

RPA in Eq. (10) is

ω1 = min ρ(p, q), (11)

where

ρ(p, q) = 1

2
· qT Kq + pT Mp

|qT p| .

The minimization principles, Eqs. (9) and (11), have been ex-
ploited to compute the smallest (positive) eigenpair by us-
ing the nonlinear conjugate gradient (CG) method.18–21 On
the other hand, a Lanczos-like algorithm has been developed
based on the variational form Eq. (11).17 In the CG-like ap-
proach, only one eigenvalue at a time was computed. In or-
der to compute higher energy eigenvalues, in Refs. 19 and 20
the so-called Wilkinson shift (deflation) was used, while in
Ref. 17 the Lanczos vectors were kept orthogonal to the al-
ready converged eigenvectors. It is well known that such ex-
plicit deflation procedures to compute multiple eigenvalues
are numerically unstable and computationally inefficient. For
the Lanczos-like method, severe limitations were experienced
for large scale RPA eigenvalue problems due to the orthogo-
nality constraints.20

In order to develop efficient numerical methods for the
simultaneous calculation of multiple low lying eigenvalues of
H′

RPA (and equivalently HRPA), the Thouless-Tspier minimiza-
tion principles, Eqs. (9) and (11), have been recently gener-
alized to a block form to include the first few lowest lying
excitations.27 This theory generalizes the well-known trace-
minimization principle for the Hermitian eigenvalue problem,
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which is the theoretical foundation of block conjugate gra-
dient and Lanczos type methods. Specifically, for the RPA
eigenvalue problem one has

k∑
i=1

ωi = 1

2
min

UT V = Ik

Tr(V T KV + UT MU ), (12)

where ωi indicates the ith positive eigenvalue of H′
RPA, U and

V are m × k matrices and Tr is the trace operation. Further-
more, for U* and V* that attain the minimum, (UT

∗ , V T
∗ )T is a

basis matrix of an invariant subspace (eigenvector subspace)
of H′

RPA corresponding to the eigenvalues ω1, ω2, . . . , ωk.
As a consequence of this newly established minimization

principle in Eq. (12), it is natural to seek best approximations
to ω1, ω2, . . . , ωk of H′

RPA by solving the optimization problem
on the right hand side of Eq. (12). In Sec. IV, we will develop
a block steepest-descent algorithm to iteratively construct the
pair of matrices Û and V̂ such that (Û T , V̂ T )T spans an ap-
proximate eigenvector subspaces corresponding to the small-
est positive eigenvalues of H′

RPA.
For now, let us assume we already have computed such

a pair of matrices Û and V̂ . To find the approximations
ω̂1, ω̂2, . . . , ω̂k of the k smallest positive eigenvalues of H′

RPA,
let us define a structure-preserving projection of H′

RPA:

HSR =
(

V T 0
0 UT

)
H′

RPA

(
U 0
0 V

)
=

(
0 V T KV

UT MU 0

)
,

(13)
where U = ÛW−1

1 and V = V̂ W−1
2 , and W = Û T V̂ is as-

sumed to be nonsingular and factorized as W = WT
1 W2

(Ref. 33). Then by solving the reduced RPA eigenvalue
problem

HSR

(
p̂j

q̂j

)
= ω̂j

(
p̂j

q̂j

)
, (14)

for the k smallest positive eigenpairs
{
ω̂j ,

(
p̂j

q̂j

)}
for j = 1, 2,

. . . , k, we obtain the approximate eigenpairs for the k smallest
positive eigenvalues ω1, ω2, . . . , ωk of H′

RPA and the corre-
sponding approximate eigenvectors are given by(

p̃j

q̃j

)
=

(
Up̂j

V q̂j

)
=

(
ÛW−1

1 p̂j

V̂ W−1
2 q̂j

)
. (15)

The use of the minimization principle of Eq. (12) provides a
quantitative justification of the fact that ω̂1, ω̂2, . . . , ω̂k are the
best approximation to the k smallest positive eigenvalues ω1,
ω2, . . . , ωk of H′

RPA in the subspace spanned by the columns of
Û and V̂ .27

IV. CONJUGATE GRADIENT-LIKE ALGORITHMS

In this section, we construct the pair of matrices Û and V̂

in such a way that (Û T , V̂ T )T spans an approximate eigenvec-
tor subspace corresponding to the smallest positive eigenval-
ues of H′

RPA. Then by combining with the structure-preserving
subspace projection approximation in Eqs. (13)–(15), we are
able to develop conjugate gradient-like algorithms that can
compute several low-lying positive eigenvalues of H′

RPA (and
therefore HRPA) simultaneously.

Let us start with computing the smallest positive eigen-
value ω1. Let (pT, qT)T be the current approximation of the

eigenvector associated with ω1 and ρ(p, q) be the correspond-
ing Thouless functional. In a conjugate gradient-like method,
one usually performs a line search along the gradient of the
objective function ρ(p, q), namely, one looks for the best pos-
sible scalar argument t along the line{(

p

q

)
+ t

(
rp

rq

)
: t ∈ R

}
(16)

to minimize the Thouless functional ρ(p, q), where rp and rq

are properly chosen search directions. Such a line search ap-
proach has been developed in Refs. 18 and 19. To improve
convergence rates, in Ref. 21, a quasi-independent Rayleigh
quotient iteration (QUIRQI) scheme has recently been intro-
duced to generalize the line search by solving the minimiza-
tion problem

min
s,t

ρ(p + s rp, q + t rq), (17)

where the search directions rp and rq are selected as rp

= ∇pρ(p, q) and rq = ∇qρ(p, q), the partial gradients of ρ

with respect to p and q:

∇pρ(p, q) = 1

qT p
[Mp − ρ(p, q) q],

∇qρ(p, q) = 1

qT p
[Kq − ρ(p, q) p].

The QUIRQI scheme is a dual channel optimization scheme
with channels coupled only weakly through the line search
procedure. The minimization problem in Eq. (17) is solved
iteratively by freezing either s or t and minimizing the func-
tional ρ with respect to the other variable, in an alternative
manner until convergence is reached. With initial s and t
chosen sufficiently near the optimal parameters, convergence
should be attained.

To develop an efficient computational technique which
is able to compute simultaneously a set of low-lying positive
eigenvalues and eigenvectors of H′

RPA, we propose to look for
four arguments α, β, s, t that minimize

min
α,β,s,t

ρ(αp + s rp, βq + t rq). (18)

We call this technique a 4-D search since it involves a 4-
dimensional subspace search. Now let us show that the op-
timization problem Eq. (18) can be easily solved by solving a
reduced 4 × 4 RPA eigenvalue problem for its smallest pos-
itive eigenvalue. Specifically, let Û = (p, rp), V̂ = (q, rq),

u =
(

α

s

)
, and v =

(
β

t

)
, then the objective function in

Eq. (18) can be written as

ρ(αp + s rp, βq + t rq)

= ρ(Ûu, V̂ v)

= vT V̂ T KV̂ v + uT ÛT MÛu

2|uT ÛT V̂ v|

= ŷT W−T
2 V̂ T KV̂ W−1

2 ŷ + x̂T W−T
1 Û T MÛW−1

1 x̂

2|̂xT ŷ|

= ŷT V T KV ŷ + x̂T UT MUx̂

2|̂xT ŷ| , (19)
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where x̂ = W1u and ŷ = W2v, Û T V̂ = WT
1 W2 is assumed to

be nonsingular and both Wi are of dimension 2 × 2. Then the
minimization problem (18) becomes

min
α,β,s,t

ρ(αp + s rp, βq + t rq)

= min
x̂,̂y

ŷT V T KV ŷ + x̂T UT MUx̂

2|̂xT ŷ| = ω̂1(HSR), (20)

where the last equality derives from the minimization prin-
ciple Eq. (11), and HSR is a 4 × 4 structure-preserving pro-
jection of the RPA matrix H′

RPA on the search subspace U⊕V

defined by Eq. (13). Subsequently, if

(
x̂

ŷ

)
is the correspond-

ing eigenvectors of ω̂1 of HSR, namely,

HSR

(
x̂

ŷ

)
= ω̂1

(
x̂

ŷ

)
,

then the corresponding approximate eigenvector of the origi-
nal RPA matrix H′

RPA is given by(
p̃1

q̃1

)
=

(
Ux̂

V ŷ

)
.

This gives rise to the 4-D SD algorithm. Since it involves
a larger search space, such an algorithm is obviously faster
than the search schemes based on the minimization problems
Eqs. (16) and (17).

By applying the trace minimization principle Eq. (12)
and the structure-preserving subspace projection approxima-
tion discussed in Eqs. (13)–(15), we can immediately extend
this 4-D search scheme to the block case and derive the fol-
lowing algorithm to compute simultaneously a set of k small-
est positive eigenvalues and corresponding eigenvectors of
H′

RPA.

Block 4-D SD algorithm

1 Select initial approximations P0 = [p1, . . . , pk] and
Q0 = [q1, . . . , qk]

2 for 
 = 0, 1, . . . until convergence:
3 if 
 = 0, fj = ρ(pj, qj) else fj = λj for 1 ≤ j ≤ k;
4 RK = KQ
 − P 
 diag(f ); RM = MP 
 − Q
 diag(f );
5 convergence test;
6 compute the factorization W = ÛT V̂ = WT

1 W2, where
Û = (

P 
 RK

)
and V̂ = (

Q
 RM

)
;

7 compute the k smallest positive eigenvalues �
 = diag(λ1,
λ2, . . . , λk) and the associated eigenvectors [p̂T

j , q̂T
j ]T of

HSR defined in Eq. (13);
8 P 
+1 = ÛW−1

1 [p̂1, · · ·, p̂k];
Q
+1 = V̂ W−1

2 [̂q1, · · ·, q̂k];
9 normalize pj := pj/αj; qj := qj/αj; αj = ‖[pT

j , qT
j ]T ‖ for

1 ≤ j ≤ k;
10 end
11 return {�
, P
, Q
}

A few remarks are in order:

Line 4: RK and RM are residual vectors of the current
approximate eigenvalues and eigenvectors. It is easy to
see that each residual vector is proportional to the cor-
responding partial gradient of the objective function ρ.

Line 5: The convergence is tested by the condition on
the normalized residual:

‖H′
RPAz



j − λjz



j‖

‖r (0)
j ‖

≤ tol, where z

j =

(
p


j

q

j

)
,

(21)
p


j and q

j are the jth columns of P
 and Q
, re-

spectively. r0
j = H′

RPAz
0
j − λ0

j z
0
j is the initial residual,

and tol is a desired reduction of residual norms, say
tol = 10−4. The converged residuals (corresponding to
the columns of RK and RM) are not included in the next
steps, Lines 6 and 7. Hence, the number of columns in
RK and RM is i, with i ≤ k.

Line 6: A simple choice of the decomposition is W1

= WT and W2 = I. For a robust implementation, one
should also consider the case when W is singular. We
note that, unlike the Lanczos method, the iterative sub-
space used in the 4-D SD algorithm contains a fixed
number 2(k + i) of vectors; since the dimension of the
iterative subspace does not increase as a function of the
number of iterations, the 4-D algorithm does not suffer
from the numerical instabilities typical of the Lanczos
algorithm, such as the loss of (bi-)orthogonality.

Line 7: This is an eigenvalue problem with the same
matrix structure as the original RPA problem, but of
2(k + i) × 2(k + i) dimension, which is much smaller
than 2m × 2m. This small RPA eigenvalue problem
can be treated as a dense eigenvalue problem and
solved by using LAPACK routines.28

Finally, we note that one can incorporate a precondition-
ing scheme in the block 4-D algorithm for faster convergence
rate. In this case, at each iteration, we seek to pre-condition
the search direction(

RK

RM

)
:= 

(
RK

RM

)
(22)

between Lines 5 and 6, where  is a properly chosen precon-
ditioner. It is an important subject of future work. In Secs. V
and VI, we show that even without a preconditioner, the block
4-D algorithm shows satisfactory convergence property.

V. VALIDATION OF THE ALGORITHM

The block 4-D steepest descent algorithm has been im-
plemented in the plane wave-pseudopotential turboTDDFT
code,22 that is part of the QUANTUM ESPRESSO (QE)
package.26 The turboTDDFT code provides an implementa-
tion of the density matrix perturbation theory formulation of
TDDFT given in Eqs. (6) and (7). Using fast Fourier transform
techniques, the multiplication of the TDDFT matrix with a
vector can be efficiently performed without building explic-
itly or storing the full matrix.

To test the accuracy of the new algorithm, simplified
TDDFT matrices for the optical spectra of the Na2 and Na4

sodium clusters were built explicitly; the results of the di-
rect diagonalization using LAPACK libraries28 were compared
with the results of our iterative algorithm. We denote such
matrices as simplified since we used a plane-wave energy



034111-6 Rocca et al. J. Chem. Phys. 136, 034111 (2012)

FIG. 1. Iterative diagonalization of a simplified TDLDA eigenproblem (Na2
molecule; see text): Normalized residual (defined by Eq. (21)) as a function
of the number of iterations for the six lowest positive eigenvalues (top panel);
relative error of the eigenvalues computed iteratively with respect to the exact
diagonalization as a function of the number of iterations (bottom panel).

cutoff that does not correspond to a fully converged basis set
and relatively small unit cells. We had to resort to these sim-
plifications to be able to explicitly build and diagonalize the
matrices. The Na2 calculation was performed using a cubic
supercell of side 17 a0 and a cutoff of 8 Ry to expand the
wavefunctions (32 Ry for the charge density); in the Na4 cal-
culation we used a cubic supercell of side 22 a0 and a 4 Ry
cutoff. In Sec. VI we will consider a fully converged calcu-
lation for the benzene molecule; in this case the very large
dimension of the explicit matrix do not enable storage and di-
rect diagonalization using LAPACK routines. For the sodium
cluster calculations the local density approximation (LDA)
in the Perdew-Zunger parametrization29 was used and the
norm-conserving pseudopotentials were taken from the QE
library.30 For Na2 the dimension of the TDLDA matrix is

FIG. 2. Iterative diagonalization of a simplified TDLDA eigenproblem (Na4
molecule; see text): Normalized residual (defined by Eq. (21)) as a function
of the number of iterations for the six lowest positive eigenvalues (top panel);
relative error of the eigenvalues computed iteratively with respect to the exact
diagonalization as a function of the number of iterations (bottom panel).31

TABLE I. First six eigenvalues (eV) of a simplified TDLDA eigenproblem
(Na2 molecule; see text) computed by the 4-D steepest descent algorithm
described in this work. The calculation was stopped after 240 iterations.

Exact
diagonalization

Iterative
diagonalization

Relative
error

Absolute
error

Normalized
residual

2.663634 2.663740 4.0 × 10−5 −1.1 × 10−4 2.8 × 10−4

2.894810 2.895445 2.2 × 10−4 −6.4 × 10−4 5.5 × 10−4

2.983893 2.983947 1.8 × 10−5 −5.5 × 10−5 1.9 × 10−4

2.983893 2.985178 4.3 × 10−4 −1.3 × 10−3 7.8 × 10−4

3.173206 3.173396 6.0 × 10−5 −1.9 × 10−4 3.3 × 10−4

3.497192 3.498715 4.4 × 10−4 −1.5 × 10−3 7.4 × 10−4

1864 × 1864. The iterative calculations were performed with
a threshold tol of 10−3 in the convergence test Eq. (21). In
the top panel of Fig. 1 we show the behavior of the residual
defined in Eq. (21) as a function of the number of iterations.
Even without the help of a preconditioner the residual steadily
decreases. A similar behavior is shown by the relative error in
the bottom panel of Fig. 1. The relative error of the eigen-
values was computed by comparing the results of the itera-
tive calculation with those of the exact diagonalization with
LAPACK libraries. Below the convergence threshold of 10−3

we found that the residual can be used as an upper bound to
the relative error. In Table I we show explicitly the calculated
eigenvalues together with the relative and absolute errors after
240 iterations. The absolute errors in eV are definitely well
below the accuracy required by this kind of calculations (a
numerical accuracy in the diagonalization within 0.01 eV can
be considered satisfactory). In Fig. 2 and Table II we show
the same quantities for Na4. In this case the dimension of
the explicit matrix is 2840 × 2840. Considerations similar to
those of the Na2 case hold here, with the residual and the rel-
ative error steadily decreasing as a function of the number of
iterations.

VI. APPLICATION TO BENZENE

In this section we present an application of the 4-D SD
algorithm introduced in Sec. IV to a more challenging exam-
ple, namely, a fully converged calculation of the low-lying
TDLDA excitation spectrum of the benzene molecule. We
also provide an assignment of the transitions and we com-
pare our results with previous calculations.6, 16, 32 We consid-
ered the benzene molecule in a tetragonal cell of dimension

TABLE II. First six eigenvalues (eV) of a simplified TDLDA eigenproblem
(Na4 molecule; see text) computed by the 4-D steepest descent algorithm
described in this work. The calculation was stopped after 240 iterations.

Exact
diagonalization

Iterative
diagonalization

Relative
error

Absolute
error

Normalized
residual

0.6722296 0.6722369 1.1 × 10−5 −7.3 × 10−6 1.1 × 10−4

0.7585424 0.7585379 5.9 × 10−6 4.4 × 10−6 9.5 × 10−5

1.282119 1.282137 1.4 × 10−5 −1.8 × 10−5 1.5 × 10−4

1.613599 1.613626 1.6 × 10−5 −2.6 × 10−5 1.8 × 10−4

1.811909 1.812080 9.4 × 10−5 −1.7 × 10−4 3.4 × 10−4

2.147626 2.148505 4.1 × 10−4 −8.8 × 10−4 6.8 × 10−4
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FIG. 3. Iterative calculation of the low-lying TDLDA excitation energies of
benzene: Normalized residual (defined by Eq. (21)) as a function of the num-
ber of iterations.

30 × 30 × 20 a3
0 and we used a 60 Ry cutoff to expand the

wavefunctions, corresponding to 70597 plane-waves (PWs).
The LDA in the Perdew-Zunger parametrization29 was used.
The dimensions of the explicit TDLDA matrix are 2 117 910
× 2 117 910 and the direct diagonalization using LAPACK li-
braries or even the memory storage of the full matrix are pro-
hibitive. In order to test the convergence of our results with
respect to the basis set dimension we have performed a cal-
culation using a 70 Ry cutoff for the wavefunctions (corre-
sponding to a 2 670 150 × 2 670 150 explicit RPA matrix);
the results were not significantly different (differences smaller
than 0.01 eV) with respect to those of the 60 Ry calculation
and they will not be explicitly reported in this paper. Further-
more, we carefully tested the convergence of the excitation
energies with respect to the supercell size, considering a 40
× 40 × 30 a3

0 supercell (which corresponds to a 5 650 410
× 5 650 410 explicit RPA matrix). The differences in the ex-
citations computed for different cell sizes were within 0.1 eV.
The 4-D SD algorithm has been applied with a threshold tol of
10−4. In Fig. 3 we show the behavior of the normalized resid-
ual Eq. (21) for the first 14 eigenvalues, where the degenerate
13th and 14th eigenvalues correspond to the E1u excitation
in Table III (30 × 30 × 20 a3

0 cell and 60 Ry cutoff). Also
in this case, even without using a preconditioner, the residual
steadily decreases below the threshold. The calculations on

the larger matrices, corresponding to a larger wavefunction
cutoff (70 Ry) or a larger supercell (40 × 40 × 30 a3

0), have
shown a convergence rate of the normalized residual similar
to that shown in Fig. 3. This means that the convergence rate,
rather than depending on the matrix size, depends on the ma-
trix condition number.

In Table III we present our results for some low-lying
transitions and we compare them with other calculations in
the literature; for the sake of completeness the experimental
results are also reported in the last column. In order to as-
sign these transitions we have used a scheme similar to the
one proposed by Casida.9 The results of Refs. 16 and 32
were obtained using Gaussian-type localized basis sets with
added diffuse functions, such as 6-31+G*, AUG-cc-pVTZ,
and pVTZ+. In Ref. 6 a real space grid implementation was
used. The low energy spectrum of benzene is characterized
by a few valence and Rydberg excitations. We note that the
Rydberg excitations involve very delocalized orbitals and can
be strongly affected by the local basis set used.16, 32 For the
valence excitations with π → π* character our results are
in satisfactory agreement with the literature, with differences
of at most 0.13 eV. More challenging is the comparison for
the Rydberg excitations. In this case we find differences up to
0.3–0.4 eV. This discrepancy is likely due to the limited ac-
curacy of the basis sets used in Refs. 16 and 32. As shown
in Table III, the differences between the results obtained with
6-31+G* and the AUG-cc-pVTZ basis sets can be as large
as 0.17 eV for the π → 3s transition and as large as about
0.2 eV for the π → 3p excitations (results from Ref. 16).
As discussed in Ref. 32, the use of a basis set without dif-
fuse functions such as pVTZ completely misses the descrip-
tion of the π → 3p excitations. In our plane-wave implemen-
tation the basis set is large enough and particularly suitable
to describe delocalized states; its accuracy can be systemat-
ically tested by just increasing the wavefunction cutoff. By
increasing the wavefunction cutoff from 60 Ry to 70 Ry the
differences are smaller than 0.01 eV for all the excitation ener-
gies considered here. The effect of the supercell approach on
the accuracy of our calculation has also been considered. In
Table III we compare the results obtained using a 30 × 30
× 20 a3

0 cell and a 40 × 40 × 20 a3
0 cell. Small differences

are found but always within 0.1 eV. In conclusion, taking into
account the quality of convergence of our and other calcula-
tions, we consider our results in satisfactory agreement with
previously published data.

TABLE III. Comparison between TDLDA excitation energies (eV) of the benzene molecule as computed in this work and published results. The second row
specifies the cell sizes used in our work, the basis set used in Refs. 16 and 32 and the technique used in Ref. 6.

Transitions This work This work Ref. 16 Ref. 16 Ref. 32 Ref. 6 Expt. (Ref. 32)

30 × 30 × 20 a3
0 40 × 40 × 20 a3

0 6-31+G* AUG-cc-pVTZ pVTZ+ real space mesh
B2u (π → π*) 5.39 5.39 5.31 5.26 5.28 5.40 4.90
E1g (π → 3s) 5.95 6.03 6.36 6.19 5.99 n.a. 6.33
B1u (π → π*) 6.10 6.10 6.10 6.02 6.10 6.23 6.20
E2u (π → 3p) 6.58 6.56 6.98 6.80 6.45 n.a. 6.95
A2u (π → 3p) 6.58 6.56 6.99 6.80 6.44 n.a. 6.93
E1u (π → π*) 6.95 6.86 6.94 n.a. 6.92 6.9-7.2 6.94
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VII. CONCLUSIONS

In this paper we have established a block minimization
principle for the non-Hermitian RPA eigenvalue problem, as
defined by Eq. (1). This problem appears in the solution of the
TDDFT equations and the BSE. Within the proposed formal-
ism, we have developed a four dimensional steepest descent-
like algorithm that can compute simultaneously several low-
lying positive eigenvalues. We have first tested the accuracy
and stability of this approach on some simplified TDDFT cal-
culations of the excitation spectra of sodium clusters. The
small size of the matrices considered in these cases allowed
us to draw a systematic comparison between the results of
our iterative technique and those of exact diagonalization. The
agreement was found to be excellent. Then we have computed
the low-lying TDDFT spectrum of benzene, using the LDA;
we found good agreement with previously published data.
In all the examples considered here, our SD-like algorithm
has shown a steady variational convergence similar to that
of Hermitian matrix techniques. The principle and algorithm
presented here enable the assignment of excitation peaks to
specific transitions between single particle states, when us-
ing TDDFT without the Tamm-Damcoff approximation, and
when using techniques based on density functional perturba-
tion theory which do not require the explicit calculation of
empty electronic states. The study of suitable preconditioning
schemes and the application of this method to the BSE will be
subject of future work.
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