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EPIC: A PROVABLE ACCELERATED EIGENSOLVER BASED
ON PRECONDITIONING AND IMPLICIT CONVEXITY\ast 

NIAN SHAO\dagger , WENBIN CHEN\ddagger , AND ZHAOJUN BAI\S 

Abstract. This paper is concerned with the extraction of the smallest eigenvalue and its cor-
responding eigenvector of a symmetric positive definite matrix pencil. We reveal implicit convexity
of the eigenvalue problem in Euclidean space. A provable accelerated eigensolver based on precon-
ditioning and implicit convexity (EPIC) is proposed. Theoretical analysis shows the acceleration of
EPIC with a rate of convergence resembling the conjectured rate of convergence of the well-known
locally optimal preconditioned conjugate gradient. Numerical results confirm our theoretical findings
of EPIC.

Key words. eigenvalue problem, convexity, preconditioning, acceleration
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1. Introduction. Eigenvalue problems are cornerstones in scientific and engi-
neering computations. In this paper, we consider the following generalized eigenvalue
problem:

Au=Mu\lambda ,(1.1)

where A andM are given n\times n symmetric positive definite matrices, and (\lambda ,u) is a de-
sired eigenpair. Numerous algorithms for computing eigenvalues and their associated
eigenvectors have been developed [3, 10, 28, 30, 38]. Preconditioning techniques are
often necessary for large-scale problems and have been well studied for solving linear
systems of equations [4, 37]. For eigenvalue problems, preconditioning has also been
investigated extensively. There are the preconditioned steepest descent (PSD) method
[21, 31, 39] and preconditioned gradient-type methods [12, 16, 34, 40]. The conver-
gence analysis of these gradient-type eigensolvers is studied in [2, 8, 15, 25] and the
references therein. One of the most popular preconditioned iterative method for the ei-
genvalue problem (1.1) is locally optimal preconditioned conjugate gradient (LOPCG)
method and its block variant LOBPCG [13]. Compared with the PSD method, which
only uses a current approximation and a preconditioned residual, LOPCG involves
a previous approximation, which is called the momentum term. Numerical results
show that convergence of LOBPCG is satisfied under careful implementations [7, 14].
Despite its great success in practice, proving the conjectured rate of convergence and
acceleration of LOPCG in [13, eq. (5.5)] is still elusive.

There are preconditioned eigensolvers with momentum from perspectives of dif-
ferential equations; see [5] and the references therein. Numerical results show that
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46 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

momentum terms can significantly improve convergence but, theoretically, an accel-
eration is hard to prove.

Momentum methods are widely used in convex optimization, with their origins
dating back to the early 1960s [29]. One popular momentum method is Nesterov
accelerated gradient (NAG) flow [19]. In theoretical analysis of NAG flows, two main
approaches are prominent. The classical method, pioneered by Nesterov in [19], uti-
lizes estimating sequences. In contrast, a more contemporary approach, as investi-
gated in [36], involves the derivation of a second-order ordinary differential equation
(ODE) to delve into the dynamics of NAG flows. The connection between NAG flows
and ODEs has been studied extensively in recent years [17, 18, 26, 33]. For example,
by combining NAG flows with preconditioning, a preconditioned accelerated gradient
descent method for solving semilinear PDEs was proposed in [27].

The crux of the success of NAG flow approach is the convexity of the objective
function. Unfortunately, for the eigenvalue problem (1.1), the associated Rayleigh
quotient

Rq(x) =
xTAx

xTMx
, x \not = 0,

is not (strongly) convex in Euclidean space, due to the homogeneity Rq(tx) = Rq(x)
for all nonzero scalar t. One approach to investigate convexity in eigenvalue com-
putation is to consider the Rayleigh quotient on smooth manifolds [9]. Recently,
a Riemannian acceleration with preconditioning (RAP) has been proposed in [32],
providing a provable accelerated preconditioned eigensolver with an essentially sim-
ilar convergence rate to the conjecture of LOPCG. From the Riemannian manifold
viewpoint, the convexity structure, known as geodesic convexity, has been extensively
studied in the absence of preconditioning [1]. However, when incorporating precon-
ditioning, there is a need to transform the objective function from a quadratic to a
rational form and introduce intricate complexities to the convexity. The introduction
of new technical conditions for preconditioners, in addition to the traditional spectral
condition number \kappa (T - 1A) as in [15], where T is a symmetric positive precondi-
tioner for A, becomes essential for the theoretical analysis of acceleration induced by
operations on manifolds. While extra conditions can be verified for some popular
preconditioners, such as domain decomposition, it would be preferable if accelera-
tion could be achieved with only minimal requirements about the spectral condition
number. A viable alternative strategy is to explore convexity structures in Euclidean
space, a pursuit we will undertake in this work.

In this paper, we reveal a new structure, named as implicit convexity, of the
eigenvalue problem (1.1) with respect to the smallest eigenvalue and its associated
eigenvector. Compared with the treatment of geodesic convexity, the implicit con-
vexity only involves analysis in Euclidean space as commonly encountered in matrix
computations. A provable accelerated symmetric Eigensolver based on precondition-
ing and implicit convexity (EPIC) will be proposed. Theoretical analysis of EPIC is
presented and shows that the rate of convergence of EPIC resembles the conjectured
convergence of LOPCG in [13, eq. (5.5)]. Numerical results confirm our theoretical
findings.

For ease of reference, the following proposition provides some characterizations of
strongly convex functions. Taking into account the preconditioning to be discussed
later, we consider a P inner-product as

\langle x, y\rangle P = xTPy,(1.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ACCELERATED EIGENSOLVER BASED ON EPIC 47

where P is a symmetric positive definite matrix. The preconditioners P defined here
and T introduced previously are related but not the same, their relationships will be
discussed in section 5. In the next proposition, we use \langle \cdot , \cdot \rangle and \| \cdot \| to denote a general
inner-product and norm, respectively, such as the P inner-product and P norm.

Proposition 1.1 (see [20, sect. 2.1]). Suppose \phi is a smooth function on a
convex domain \scrY , and 0< \mu \leq L are positive scalars, the following three inequalities
for characterizing the strong convexity and Lipschitz smoothness of \phi are equivalent:

\mu 

2
\| y1  - y2\| 2 \leq \phi (y1) - \phi (y2) - \langle \nabla \phi (y2), y1  - y2\rangle \leq 

L

2
\| y1  - y2\| 2,(1.3)

\mu \| y1  - y2\| \leq \| \nabla \phi (y1) - \nabla \phi (y2)\| \leq L\| y1  - y2\| ,(1.4)

\mu P \preceq \nabla 2\phi (y)\preceq LP,(1.5)

where y, y1, y2 \in \scrY and M1 \preceq M2 means M2 - M1 is a symmetric positive semidefinite
matrix.

By convention in convex optimization [20, p. 77], the condition number of a
strongly convex function \phi is denoted by the ratio \kappa = L/\mu , where L and \mu are
the optimal bounds from Proposition 1.1. The condition number is closely tied to
fundamental properties of algorithms. For example, the rate of convergence of gradient
descent methods and accelerated gradient descent methods are bounded by 1 - c\kappa and
1 - c\kappa 1/2, respectively, for unconstrained convex minimization, where c is a universal
positive constant [20, Chap. 2.1].

The rest of this paper is organized as follows. In section 2, we introduce the
implicit convexity of the smallest eigenvalue problem by constructing an auxiliary
problem on the tangent plane of an approximation of an eigenvector on theM -sphere.
A novel locally optimal scheme of NAG (LONAG) flow will be proposed and analyzed
in section 3. In section 4, we will show that the auxiliary problem can be solved
by LONAG implicitly on the M -sphere, which only involves some cheap operations.
Such an implicit algorithm will be named as eigensolver based on implicit convexity
(EIC). Compared with the steepest descent method, an acceleration of EIC will be
proved. In section 5, a preconditioned version of EIC, which is called eigensolver
based on preconditioning and implicit convexity (EPIC), will be given by involving a
preconditioner P , which is associated with a copreconditioner T for A, for auxiliary
problem. Theoretical analysis shows that EPIC can achieve acceleration, whose rate
of convergence is faster than PSD and similar to the conjecture of LOPCG. Numerical
results, including a test for theoretical results and comparison with LOPCG will be
given in section 6.

2. Implicit convexity of symmetric eigenvalue problem. Suppose A and
M are n \times n symmetric positive definite matrices, 0 < \lambda 1 < \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n are
eigenvalues of (A,M), and u1, . . . , un are an M -orthonormal set of eigenvectors. We
consider the computation of the smallest eigenvalue and its associated eigenvector
(\lambda 1, u1) of (A,M):

Au1 =Mu1\lambda 1.(2.1)

It is well known [10, p. 441] that u1 is a global minimizer of Rayleigh quotient:

\lambda 1 =Rq(u1) =min
x\not =0

Rq(x).

2.1. Auxiliary problem. In this section, we will construct an auxiliary problem
of the eigenvalue problem (2.1) and then convert the eigenvalue problem (2.1) into

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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48 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

an optimization problem of a convex function over a convex domain. Let q be an
approximation of the eigenvector u1 satisfying qTMu1 > 0, such that \| q\| M = 1 and

\lambda 1 \leq Rq(q)<
\lambda 1 + \lambda 2

2
.(2.2)

Let \scrS n - 1
q be a hemisphere in \BbbR n determined by q:

\scrS n - 1
q :=

\bigl\{ 
x\in \BbbR n

\bigm| \bigm| \| x\| M = 1, qTMx> 0
\bigr\} 
.

Define an A-spherical cap \scrX of \scrS n - 1
q as

\scrX =
\bigl\{ 
x\in \scrS n - 1

q

\bigm| \bigm| Rq(x)\leq Rq(q)
\bigr\} 
\subset \scrS n - 1

q .(2.3)

It is obvious that \scrX is nonempty since u1 \in \scrX . Define operators \psi : \scrS n - 1
q \mapsto \rightarrow \BbbR n - 1

and \psi \dagger : \BbbR n - 1 \mapsto \rightarrow \scrS n - 1
q as

\psi (x) :=
QT

\bot Mx

qTMx
and \psi \dagger (y) :=

Q\bot y+ q

\| Q\bot y+ q\| M
,(2.4)

where Q\bot is an orthonormal basis of the M -orthogonal complement of q, i.e., the
matrix [q,Q\bot ] is M -orthonormal. Then denominators of \psi and \psi \dagger are both nonzero.
The following lemma shows that \psi \dagger is the inverse of \psi .

Lemma 2.1. For operators \psi and \psi \dagger defined in (2.4),
1. \psi and \psi \dagger are injections;
2. \psi \dagger \bigl( \psi (x)

\bigr) 
= x holds for all x\in \scrS n - 1

q ;
3. \psi 

\bigl( 
\psi \dagger (y)

\bigr) 
= y holds for all y \in \BbbR n - 1.

Proof. See Appendix A.

Define a projected A-spherical cap \scrY of \scrX as

\scrY :=
\bigl\{ 
y \in \BbbR n - 1

\bigm| \bigm| y=\psi (x), x\in \scrX 
\bigr\} 
.(2.5)

Relationships of \scrS n - 1
q , \scrX , \scrY , q, u1, and \psi (u1) are illustrated in Figure 1. The tangent

space of \scrS n - 1
q at q inM inner-product is

\bigl\{ 
Q\bot y+q

\bigm| \bigm| y \in \BbbR n - 1
\bigr\} 
\subset \BbbR n. For any x\in \scrS n - 1

q ,
since [q,Q\bot ] is M -orthonormal,

Q\bot \psi (x) + q=
Q\bot QT

\bot Mx+ qqTMx

qTMx
=

x

qTMx
.(2.6)

(a) 2D case (b) 3D case

Fig. 1. Relationships of \scrS n - 1
q , \scrX , \scrY , q, u1, and \psi (u1). Note: color appears only in the online

article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ACCELERATED EIGENSOLVER BASED ON EPIC 49

Therefore, Q\bot \psi (x) + q is a projection of x \in \scrX onto the tangent space at q. The
operator \psi maps a point x \in \scrX to the coordinates of its projection in the tangent
space with the basis Q\bot . The operator Q\bot \scrY + q is a projection of \scrX from the origin.

Let \phi : \BbbR n - 1 \mapsto \rightarrow \BbbR be defined by

\phi (y) := Rq(Q\bot y+ q) =
yTBy+ 2yTb+Rq(q)

\| y\| 2 + 1
,(2.7)

where B = QT
\bot AQ\bot and b = QT

\bot Aq. It is obvious that \phi is a smooth function.
A connection between Rayleigh quotient Rq(\cdot ) and auxiliary function \phi (\cdot ) can be
established as follows.

Proposition 2.1. Let x\in \scrS n - 1
q and y=\psi (x). Then

Rq(x) = \phi (y).(2.8)

Proof. The result is a direct consequence of the identities

Rq(x) =Rq
\bigl( 
\psi \dagger (y)

\bigr) 
=Rq(Q\bot y+ q) = \phi (y),

where we use Lemma 2.1, the homogeneity of the Rayleigh quotient, and (2.7), re-
spectively.

An auxiliary problem of the eigenvalue problem (2.1) is defined by

min
y\in \scrY 

\phi (y).(2.9)

In the rest of this section, we will show that if Rq(q) is chosen sufficiently close to \lambda 1,
the region \scrY is convex and the auxiliary function \phi is strongly convex on \scrY . Con-
sequently, by the theory of convex optimization concerning existence and uniqueness
of the solution (for example see [22, Thm. 2.4]), and properties of \psi \dagger in Lemma 2.1,
we can conclude that the auxiliary problem (2.9) has a unique minimizer y\ast , and the
eigenvector u1 of the eigenvalue problem (2.1) is given by u1 =\psi \dagger (y\ast ).

2.2. Convexity of \bfscrY and \bfitphi . First, we recall the following lemma from Notay
[23, Lem. 3.1].

Lemma 2.2. Let A be a real symmetric n\times n matrix with eigenvalues \lambda 1 \leq \lambda 2 \leq 
\cdot \cdot \cdot \leq \lambda n. For any vector u with norm unity,

min
z\bot u,\| z\| =1

zTAz \geq \lambda 1 + \lambda 2  - uTAu.

By Lemma 2.2, it is easy to see that for a symmetric matrix pair (A,M) with
eigenvalues \lambda 1 < \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n, and an M -orthonormal matrix [q,Q\bot ], if Rq(q) <
(\lambda 1 + \lambda 2)/2, then

\lambda min(B)\geq \lambda 1 + \lambda 2  - Rq(q)>Rq(q),(2.10)

where B =QT
\bot AQ\bot .

The following result shows that the region \scrY defined in (2.5) is convex.

Theorem 2.1. Under the condition (2.2), i.e., \lambda 1 \leq Rq(q)< (\lambda 1 + \lambda 2)/2,
1. \phi (y)\leq Rq(q) if and only if y \in \scrY ;
2. the set \scrY is convex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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50 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

Proof. For item 1, let x=\psi \dagger (y), by the definitions of \scrX and \scrY in (2.3) and (2.5)
and Proposition 2.1, we have

\phi (y)\leq Rq(q) \Leftarrow \Rightarrow Rq(x)\leq Rq(q) \Leftarrow \Rightarrow x\in \scrX \Leftarrow \Rightarrow y \in \scrY .

For item 2, we consider an equivalent definition of \scrY :

\scrY = \{ y \in \BbbR n - 1 | \phi (y)\leq Rq(q)\} .

Combining the estimation of eigenvalues of B in (2.10) and the assumption (2.2), we
have

\lambda min(B) - Rq(q)\geq \lambda 1 + \lambda 2  - 2Rq(q)> 0,

which means that B  - Rq(q)I is a symmetric positive definite matrix. Since

\phi (y)\leq Rq(q) \Leftarrow \Rightarrow yTBy+ 2yTb+Rq(q)

yTy+ 1
\leq Rq(q)

\Leftarrow \Rightarrow yT(B  - Rq(q)I)y+ 2yTb\leq 0

\Leftarrow \Rightarrow (y+ z)T(B  - Rq(q)I)(y+ z)\leq zT(B  - Rq(q)I)z,

where z = (B  - Rq(q)I) - 1b, we know that \scrY is a closed ball in (B  - Rq(q)I) inner-

product with center ( - z) and radius
\bigl( 
zT(B - Rq(q)I)z

\bigr) 1/2
. Therefore, \scrY is a convex

set.

Next we show that the auxiliary function \phi is convex on \scrY by proving that \phi is
a strongly convex function satisfying the second-order characterization (1.5).

Theorem 2.2. Given a vector q for the auxiliary problem (2.9), let Q\bot be an
M -orthonormal basis of q's M -orthogonal complement, and B = QT

\bot AQ\bot . For any
(n - 1)\times (n - 1) symmetric positive definite matrix P , let

\chi P =
8\lambda 2
\lambda 1

\xi max

\xi min

\biggl( 
\lambda 2 + \lambda 1

2(\lambda 2  - \lambda 1)

\biggr) 1/2

> 0,(2.11)

where \xi min and \xi max are the smallest and largest eigenvalues of P - 1B, respectively.
Suppose that the Rayleigh quotient of q satisfies

\lambda 1 \leq Rq(q)<\lambda 1 +
\lambda 2  - \lambda 1
2 + \chi P

.(2.12)

Then the second-order characterization of the convexity of \phi in the auxiliary problem

\mu PP \preceq \nabla 2\phi (y)\preceq LPP(2.13)

holds for all y \in \scrY , where

\mu P = 2\xi min

\Biggl( 
1 - 2

\bigl( 
Rq(q) - \lambda 1

\bigr) 

\lambda 2  - \lambda 1

\Biggr) 2\biggl( 
1 - \lambda 1

\lambda 2
 - (2 + \chi P )

\lambda 2
(Rq(q) - \lambda 1)

\biggr) 
> 0,(2.14a)

LP = 2\xi max

\biggl( 
1 - \lambda 1

\lambda n
+
\chi P

\lambda 2

\xi min

\xi max
(Rq(q) - \lambda 1)

\biggr) 
.(2.14b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ACCELERATED EIGENSOLVER BASED ON EPIC 51

For the proof of Theorem 2.2, we note that for any y \in \BbbR n - 1, the Hessian of \phi is
given by

\nabla 2\phi (y) =
2

\| y\| 2 + 1

\Bigl( 
B  - \phi (y)I  - y

\bigl( 
\nabla \phi (y)

\bigr) T  - \nabla \phi (y)yT
\Bigr) 
.(2.15)

By the lower bound of \lambda min(B) established in (2.10) and the upper bound of \phi (y)
given in Theorem 2.1, we know that the matrix B  - \phi (y)I is positive definite. The

following lemma provides bounds of the term y
\bigl( 
\nabla \phi (y)

\bigr) T
+\nabla \phi (y)yT.

Lemma 2.3. Under the condition (2.2), for any y \in \scrY , relationships

1

1 + \| y\| 2 \geq 
\Biggl( 
1 - 2

\bigl( 
Rq(q) - \lambda 1

\bigr) 

\lambda 2  - \lambda 1

\Biggr) 2

(2.16)

and

 - \chi gB \preceq \nabla \phi (y)yT + y
\bigl( 
\nabla \phi (y)

\bigr) T \preceq \chi gB(2.17)

hold, where

\chi g =
8(Rq(q) - \lambda 1)

\lambda 1

\Bigl( \lambda 1 + \lambda 2
2(\lambda 2  - \lambda 1)

\Bigr) 1/2
.(2.18)

Proof. See Appendix B.

Proof of Theorem 2.2. First, we prove the positive definiteness of the matrix
B  - \phi (y)I in P inner-product. In fact, by \phi (y)\leq Rq(q), we have

max
s\in \BbbR n - 1

sT(B  - \phi (y)I)s

\| s\| 2P
\leq 
\bigl( 
1 - \phi (y)\lambda  - 1

max(B)
\bigr) 
\xi max \leq 

\Bigl( 
1 - \lambda 1

\lambda n

\Bigr) 
\xi max,

min
s\in \BbbR n - 1

sT(B  - \phi (y)I)s

\| s\| 2P
\geq 
\bigl( 
1 - \phi (y)\lambda  - 1

min(B)
\bigr) 
\xi min \geq 

\Bigl( 
1 - Rq(q)

\lambda 1 + \lambda 2  - Rq(q)

\Bigr) 
\xi min,

where we use \lambda max(B)\leq \lambda n and \lambda min(B)\geq \lambda 1 + \lambda 2  - Rq(q) in (2.10). Since Rq(q)<
(\lambda 1 + \lambda 2)/2, we have

Rq(q)

\lambda 1 + \lambda 2  - Rq(q)
=
\lambda 1
\lambda 2

+
(\lambda 2 + \lambda 1)(Rq(q) - \lambda 1)

\lambda 2(\lambda 1 + \lambda 2  - Rq(q))
\leq \lambda 1
\lambda 2

+
2(Rq(q) - \lambda 1)

\lambda 2
< 1.

Consequently, the positive definiteness of B - \phi (y)I is verified by the following bounds:

\biggl( 
1 - \lambda 1

\lambda 2
 - 2(Rq(q) - \lambda 1)

\lambda 2

\biggr) 
\xi minP \preceq B  - \phi (y)I \preceq 

\Bigl( 
1 - \lambda 1

\lambda n

\Bigr) 
\xi maxP.(2.19)

Second, by Lemma 2.3 and the definition of \xi max, we immediately have

 - \chi g\xi maxP \preceq  - \chi gB \preceq \nabla \phi (y)yT + y
\bigl( 
\nabla \phi (y)

\bigr) T \preceq \chi gB \preceq \chi g\xi maxP,(2.20)

where \chi g is defined in (2.18). Combining (2.15), (2.19), and (2.20), we know the
following bounds for the Hessian \nabla 2\phi (y):

2\xi min

\| y\| 2 + 1

\Bigl( 
1 - \lambda 1

\lambda 2
 - 2(Rq(q) - \lambda 1)

\lambda 2
 - \chi g\xi max

\xi min

\Bigr) 
P \preceq \nabla 2\phi (y)\preceq 2\xi max

\| y\| 2 + 1

\Bigl( 
1 - \lambda 1

\lambda n
+ \chi g

\Bigr) 
P.
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Note that

\chi P =
\chi g\lambda 2\xi max

(Rq(q) - \lambda 1)\xi min
.

Therefore, we have the coefficient LP of an upper bound of \nabla 2\phi (y):

2\xi max

\| y\| 2 + 1

\biggl( 
1 - \lambda 1

\lambda n
+ \chi g

\biggr) 
\leq 2\xi max

\biggl( 
1 - \lambda 1

\lambda n
+
\chi P \xi min

\lambda 2\xi max
(Rq(q) - \lambda 1)

\biggr) 
:=LP .

On the other hand, by Lemma 2.3 again, we have the coefficient \mu P of a lower bound
of \nabla 2\phi (y):

2\xi min

\| y\| 2 + 1

\biggl( 
1 - \lambda 1

\lambda 2
 - 2(Rq(q) - \lambda 1)

\lambda 2
 - \chi g\xi max

\xi min

\biggr) 

\geq 2\xi min

\Biggl( 
1 - 2

\bigl( 
Rq(q) - \lambda 1

\bigr) 

\lambda 2  - \lambda 1

\Biggr) 2\biggl( 
1 - \lambda 1

\lambda 2
 - (2 + \chi P )(Rq(q) - \lambda 1)

\lambda 2

\biggr) 
:= \mu P .

We have the following two corollaries of Theorem 2.2.

Corollary 2.1. Up to the first-order of Rq(q) - \lambda 1, \mu P and LP are

\mu P = 2\xi min

\Bigl( 
1 - \lambda 1

\lambda 2

\Bigr) 
+\scrO (Rq(q) - \lambda 1) and LP = 2\xi max

\Bigl( 
1 - \lambda 1

\lambda n

\Bigr) 
+\scrO (Rq(q) - \lambda 1).

The condition number \kappa P =LP /\mu P of the auxiliary function is given by

\kappa P =
LP

\mu P
= \iota \xi 

1 - \lambda 1/\lambda n
1 - \lambda 1/\lambda 2

+\scrO (Rq(q) - \lambda 1),

where \iota \xi = \xi max/\xi min. When the standard inner-product is applied, i.e., P = I, by the
estimation of the smallest eigenvalue of B in (2.10), we have

\kappa I =
\lambda n  - \lambda 1
\lambda 2  - \lambda 1

+\scrO (Rq(q) - \lambda 1).

Proof. The proof is shown by a direct expansion of \mu P and LP from (2.14) in
terms of Rq(q) - \lambda 1.

Corollary 2.2. Under condition (2.12), for any y \in \scrY ,

\phi (y) - \phi (y\ast )\leq 
LP

2
\| y - y\ast \| 2P .(2.21)

Reversely, for any y \in \BbbR n - 1, the relationship y \in \scrY holds if

\| y - y\ast \| 2P \leq 2(Rq(q) - \lambda 1)

LP
.(2.22)

Proof. See Appendix C.

2.3. Implicit convexity of eigenvalue problem. The main result on implicit
convexity of the eigenvalue problem (2.1) is stated in the following theorem.
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ACCELERATED EIGENSOLVER BASED ON EPIC 53

Theorem 2.3. Given a positive definite matrix pair (A,M) with a simple smallest
eigenvalue, i.e., 0<\lambda 1 <\lambda 2, suppose the Rayleigh quotient of q satisfies

\lambda 1 \leq Rq(q)<\lambda 1 +
\lambda 2  - \lambda 1
2 + \chi P

,(2.23)

where \chi P is defined in (2.11); then
1. the region \scrY defined in (2.5) is a convex set;
2. the auxiliary function \phi defined in (2.7) is convex in \scrY with P inner-product;
3. the auxiliary problem (2.9) has a unique minimizer y\ast ;
4. the eigenvector u1 of the eigenvalue problem (2.1) is given by u1 =\psi \dagger (y\ast ).

Proof. The first two items have been proved in Theorems 2.1 and 2.2. For item
3, according to the theory of existence and uniqueness of an optimizer for convex
optimization [22, Thm. 2.4], the auxiliary problem (2.9) has a unique solution y\ast =
\psi (x\ast ). For item 4, let y\ast \ast = \psi (u1), by u1 \in \scrX and the connection of the auxiliary
function and Rayleigh quotient in Proposition 2.1,

\phi (y\ast )\leq \phi (y\ast \ast ) =Rq(u1)\leq Rq(x\ast ) = \phi (y\ast ),

which implies y\ast = y\ast \ast = \psi (u1). The theorem is proved by u1 = \psi \dagger (\psi (u1)) =
\psi \dagger (y\ast ).

3. LONAG descent methods for convex optimization. In this section, we
discuss the following general convex optimization problem:

min
y\in \scrY 

\phi (y),(3.1)

where \phi (y) is a smooth strongly convex function defined on a convex set \scrY . Similarly
to Proposition 1.1, we use \langle \cdot , \cdot \rangle and \| \cdot \| to denote a general inner-product and norm,
such as P inner-product and P norm. Following the presentation in [17], we will review
some results about NAG methods with a dynamical system analogy first proposed in
[36]. Then, we propose a new discretization scheme and analyze its convergence.

3.1. NAG methods with a dynamical system analogy. Consider the fol-
lowing first-order dynamical system of

\bigl( 
y(t), s(t)

\bigr) 
:

dy(t)

dt
= s(t) - y(t),(3.2a)

ds(t)

dt
= y(t) - s(t) - 1

\mu 
\nabla \phi (y(t))(3.2b)

with initial conditions y(0) = y0 and s(0) = s0, where t > 0, \phi and \mu satisfy (1.3).
To establish a connection between solution of the optimization problem (3.1) and the
dynamical system (3.2), let us consider the following so-called Lyapunov function:

\scrL (t) = \phi 
\bigl( 
y(t)

\bigr) 
 - \phi (y\ast ) +

\mu 

2
\| s(t) - y\ast \| 2 \geq 0,(3.3)

where y\ast is the unique minimizer of (3.1). Note that \scrL (t) \geq 0. It is shown in
[17, Lem. 2] that the Lyapunov function exponentially decays:
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54 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

\scrL (t)\leq e - t\scrL (0).(3.4)

Combining (3.3) and (3.4), we know

lim
t\rightarrow \infty 

\phi 
\bigl( 
y(t)

\bigr) 
 - \phi (y\ast )\leq lim

t\rightarrow \infty 
\scrL (t) = 0.

Consequently, y(t)\rightarrow y\ast as t\rightarrow \infty since y\ast is the unique minimizer.
There are a number of discretization schemes for the dynamical system (3.2)

[17, 18, 26, 33, 36]. To balance efficiency and stability, we have chosen the following
corrected semi-implicit scheme from [17, eqs. (96--97)]. Given initial (s0, y0)\in (\scrY ,\scrY ),
\mu and L as defined in (1.3), step size \tau > 0, the corrected semi-implicit scheme
generates the iterates (sk, yk) for k= 0,1,2, . . . , by the recursions

yk  - yk
\tau 

= sk  - yk,(3.5a)

sk+1  - sk
\tau 

= (yk  - sk) - 
1

\mu 
\nabla \phi (yk),(3.5b)

update yk+1 satisfying \phi (yk+1)\leq \phi (yk) - 
1

2L
\| \nabla \phi (yk)\| 2.(3.5c)

When the first-order characterization (1.3) of the convexity of \phi holds globally, a
popular choice for yk+1 in step (3.5c) is the following gradient step [20, eq. (2.2.19)]:

yk+1 = yk  - 
1

L
\nabla \phi (yk).

The following theorem from [17, Thm. 7] proves a convergence rate of the scheme
(3.5).

Theorem 3.1 (see [17, Thm. 7]). Let y0 \in \scrY and s0 \in \scrY be initials and \tau > 0 be
a step size of the corrected semi-implicit scheme (3.5). Assume that

\bullet the step size \tau satisfies 0 < \tau \leq \kappa  - 1/2, where \kappa = L/\mu , and \mu and L are as
defined in (1.3);

\bullet all iterates (sk, yk) lie in \scrY .
Then

\scrL k+1 \leq (1 - \tau )\scrL k, where \scrL k = \phi (yk) - \phi (y\ast ) +
\mu 

2
\| sk  - y\ast \| 2.(3.6)

By the inequality (3.6), the convergence of discrete Lyapounov function \scrL k implies
the convergence of yk to y\ast . Taking an optimal step size as \tau = \kappa  - 1/2, an acceleration
is achieved by improving the rate of convergence from 1  - 2(\kappa + 1) - 1 of gradient
methods [20, Thm. 2.1.15] to 1 - \kappa  - 1/2.

3.2. LONAG scheme and convergence analysis. There are two issues with
the corrected semi-implicit scheme (3.5): there is no guarantee for a monotonically
decreasing property of \phi (yk), which actually may fluctuate [27], and assumptions
about all iterates (sk, yk) in \scrY are necessary for proving convergence. In this part, we
propose a new scheme to guarantee \phi (yk) decreasing monotonically and analyze its
convergence with conditions only about initial values (s0, y0).

Given initials (s0, y0) \in (\scrY ,\scrY ), \mu and L as defined in (1.3), step size \tau > 0, we
propose to replace the update (3.5c) with a locally optimal correction, and generate
(sk, yk) for k= 0,1,2, . . . , by the recursions
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ACCELERATED EIGENSOLVER BASED ON EPIC 55

yk  - yk
\tau 

= sk  - yk,(3.7a)

sk+1  - sk
\tau 

= (yk  - sk) - 
1

\mu 
\nabla \phi (yk),(3.7b)

yk+1 = argmin
y\in span\{ yk,yk,\nabla \phi (yk)\} 

\phi (y).(3.7c)

The update (3.7c) for yk+1 is inspired by LOPCG [13]. Since the scheme (3.7) is a
combination of a locally optimal step and an NAG flow, we name it LONAG. The
following result states the monotonicity of the function values \phi (yk).

Proposition 3.1. The iterates \{ yk+1\} from the LONAG (3.7) satisfy

\phi (yk+1)\leq \phi (yk)\leq \cdot \cdot \cdot \leq \phi (y0).

Proof. The result is a direct consequence of the locally optimal step (3.7c).

Remark 3.1. As a consequence of Proposition 3.1, when the level set property\bigl\{ 
y | \phi (y)\leq \phi (y0)

\bigr\} 
\subset \scrY holds with a proper choice of the initial y0, the locally optimal

step (3.7c) is equivalent to

yk+1 = argmin
y\in \scrY \cap span\{ yk,yk,\nabla \phi (yk)\} 

\phi (y).

For the convergence of the LONAG, we would like to use the convergence of
the corrected semi-implicit scheme (3.5) in Theorem 3.1. The challenge arises from
the absence of prior assumptions on containment of iterates (sk, yk). However, we
know that once the convergence of \scrL k is proved as (3.6), iterates yk and sk cannot
be too far from the minimizer y\ast . Fortunately, the following theorem shows that we
can prove these two properties, i.e., containment and convergence, recursively when
initials (y0, s0) and step size \tau are properly selected.

Theorem 3.2. Given L and \mu defined in (1.3). Let \scrL 0 = \phi (y0) - \phi (y\ast ) +
\mu 
2 \| s0  - 

y\ast \| 2 and

R1 = (2\scrL 0/\mu )
1/2 and R2 =max

\bigl\{ 
2R1, (1 + \tau \kappa )R1

\bigr\} 
.(3.8)

Assume that initials (s0, y0) satisfy

s0 \in \scrB R1 and
\bigl\{ 
y | \phi (y)\leq \phi (y0)

\bigr\} 
\subset \scrB R1 \subset \scrB R2 \subset \scrY ,(3.9)

where \scrB R is a closed ball with center y\ast , the unique optimizer of (3.1), and radius R:

\scrB R :=
\bigl\{ 
y | \| y - y\ast \| \leq R

\bigr\} 
.

If the step size \tau satisfies 0 < \tau \leq \kappa  - 1/2, where \kappa = L/\mu , then iterates (sk, yk) with
k > 0 generated by LONAG (3.7) satisfy

(a) yk \in \scrB R1 yk+1 \in \scrB R1 ;
(b) yk+1 satisfies the sufficient decrease property (3.5c);
(c) \scrL k+1 \leq (1 - \tau )\scrL k, where \scrL k is defined in (3.6);
(d) sk+1 \in \scrB R1

.
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56 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

Proof. The conclusions will be proved recursively. Let us assume that both yk
and sk are in \scrB R1 , which are satisfied if k= 0. Then by (3.7a) and \| \nabla \phi (y\ast )\| = 0, we
have

yk =
yk

1 + \tau 
+

\tau sk
1 + \tau 

\in \scrB R1
and

\| \nabla \phi (yk)\| = \| \nabla \phi (yk) - \nabla \phi (y\ast )\| \leq L\| yk  - y\ast \| \leq LR1.
(3.10)

According to the recurrence of sk+1 in (3.7b), we have

\| sk+1  - y\ast \| = \| (1 - \tau )sk + \tau yk  - 
\tau 

\mu 
\nabla \phi (yk) - y\ast \| 

= \| (1 - \tau )(sk  - y\ast ) + \tau (yk  - y\ast ) - 
\tau 

\mu 
\nabla \phi (yk)\| 

\leq (1 - \tau )\| sk  - y\ast \| + \tau \| yk  - y\ast \| +
\tau 

\mu 
\| \nabla \phi (yk)\| 

\leq (1 - \tau )R1 + \tau R1 + \tau \kappa R1 \leq R2,

where for the second inequality, we use the inequality (3.10) and \kappa =L/\mu , and for the
last inequality we use (3.8). Therefore, sk+1 \in \scrB R2

\subset \scrY .
Now according to the monotonically decreasing property in Proposition 3.1, we

know that

\phi (yk+1)\leq \phi (yk)\leq \phi (y0).(3.11)

Therefore, by containment property (3.9), yk+1 \in \scrB R1
is true.

We can also show that yk+1 of LONAG satisfies the sufficient decrease of \phi (yk)
in the corrected semi-implicit scheme (3.5c). Let

\widetilde yk = yk  - 
1

L
\nabla \phi (yk)\in span\{ yk, yk,\nabla \phi (yk)\} .

First, since yk \in \scrB R1
, by (3.10), we have

\| \widetilde yk  - y\ast \| \leq \| yk  - y\ast \| +
1

L
\| \nabla \phi (yk)\| \leq 2R1 \leq R2,

which means \widetilde yk \in \scrB 2R1 \subset \scrB R2 \subset \scrY . Now using (1.3), we have

\phi (yk+1)\leq \phi (\widetilde yk)\leq \phi (yk) + \langle \nabla \phi (yk), \widetilde yk  - yk\rangle +
L

2
\| \widetilde yk  - yk\| 2

= \phi (yk) - 
1

L
\| \nabla \phi (yk)\| 2 +

1

2L
\| \nabla \phi (yk)\| 2 = \phi (yk) - 

1

2L
\| \nabla \phi (yk)\| 2,

(3.12)

where the first inequality comes from the locally optimal step (3.7c) and the second
inequality comes from the first-order characterization (1.3).

Thus we have proved that yk, yk+1 \in \scrB R1
\subset \scrY , sk+1 \in \scrB R2

\subset \scrY , and yk+1 of
LONAG satisfies the sufficient decrease of \phi (y1) in (3.5c). Now we are ready to apply
the convergence of the corrected semi-implicit scheme in Theorem 3.1 to obtain

\scrL k+1 = \phi (yk+1) - \phi (y\ast ) +
\mu 

2
\| sk+1  - y\ast \| 2 \leq (1 - \tau )\scrL k \leq \cdot \cdot \cdot \leq (1 - \tau )k+1\scrL 0.(3.13)

Note that \phi (yk+1) - \phi (y\ast )\geq 0 always holds since y\ast is the minimizer of \phi . Therefore,
we have
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\mu 

2
\| sk+1  - y\ast \| 2 \leq \phi (yk+1) - \phi (y\ast ) +

\mu 

2
\| sk+1  - y\ast \| 2 =\scrL k+1 \leq \scrL 0,

which implies that sk+1 \in \scrB R1
. This completes the proof.

Remark 3.2. Let us highlight a major difference between Theorems 3.1 and 3.2.
In Theorem 3.1, iterates (sk, yk) are assumed to lie within \scrY , which is a domain
where \phi satisfies the first-order characterization (1.3). However, for the auxiliary
problem (2.9), the objective function is locally convex with respect to the choice of
q, an approximate eigenvector of u1. There is no prior assumption about locations
of iterates (sk, yk). In this scenario, we need to prove a containment similar to (3.9),
which is inspired by the work of Park, Salgado, and Wise [27] on a preconditioned
NAG method for solving semilinear partial differential equations.

By the monotonical decrease property in Proposition 3.1 and convergence in The-
orem 3.2, we have the following results on the convergence of the LONAG scheme.

Theorem 3.3. With the assumptions of Theorem 3.2, the sequence \{ yk\} generated
by LONAG (3.7) satisfies that

\phi (yk)\leq \phi (yk - 1)\leq \cdot \cdot \cdot \leq \phi (y0)(3.14)

and

\phi (yk) - \phi (y\ast )\leq (1 - \tau )k\scrL 0,(3.15)

where 0< \tau \leq \kappa  - 1/2, y\ast is the minimizer of (3.1), and \scrL 0 = \phi (y0) - \phi (y\ast )+ \mu 
2 \| s0 - y\ast \| 2.

It is clear that LONAG, similarly to the corrected semi-implicit scheme in Theo-
rem 3.1, achieves an acceleration by improving the rate of convergence to 1 - \kappa  - 1/2.

4. EIC: A symmetric eigensolver based on implicit convexity. In this
section, we propose an algorithm for solving the original eigenvalue problem (2.1) by
transforming LONAG (3.7) for the auxiliary function (2.9) on \scrY onto \scrX . The new
algorithm is called EIC. In addition, we will discuss convergence of EIC and needs of
preconditioning.

4.1. EIC. Let us return to the auxiliary problem (2.9). As shown in Theorem
2.3, the auxiliary problem (2.9) is a locally convex optimization problem, and we can
apply LONAG (3.7) for solving (2.9). With initials (s0, y0) \in (\scrY ,\scrY ), LONAG (3.7)
generates iterates (sk, yk) by the following recursions:

yk =
yk + \tau sk
1 + \tau 

,(4.1a)

sk+1 = (1 - \tau )sk + \tau yk  - 
\tau 

\mu 
\nabla \phi (yk),(4.1b)

yk+1 = argmin
y\in \scrY \cap span\{ yk,yk,\nabla \phi (yk)\} 

\phi (y),(4.1c)

where the step size \tau satisfies 0 < \tau \leq \kappa  - 1/2, \kappa = L/\mu , \mu and L are convexity
parameters of \phi (y) defined in Theorem 2.2 with P = I.

In (4.1), we solve the auxiliary problem (2.9) on \scrY , and assume that Q\bot is ex-
plicitly available. This is impractical since using Q\bot is too expensive. To circumvent
Q\bot , we propose a scheme by transforming computation on \scrY into \scrX without using
Q\bot . To do so, for k\geq 0, denote

zk =\psi \dagger (sk), xk =\psi \dagger (yk), xk =\psi \dagger (yk),(4.2)
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where the operator \psi \dagger is defined as in (2.4). By Lemma 2.1, it is clear that

zk, xk, xk \in \scrX .

The following proposition, which can be easily verified, shows that the explicit
reference to Q\bot can be avoided after applying \psi \dagger due to the relationship \scrY = \psi (\scrX )
established in Lemma 2.1.

Proposition 4.1. Let [q,Q\bot ] be M -orthonormal. For any x\in \BbbR n,

\psi \dagger (QT
\bot Mx) =

q+ (I  - qqTM)x\bigm\| \bigm\| q+ (I  - qqTM)x
\bigm\| \bigm\| 
M

.

The gradients of \phi (\cdot ) and Rq(\cdot ) are connected by

\nabla \phi 
\bigl( 
\psi (x)

\bigr) 
=
QT

\bot \nabla Rq(x)

qTMx
.

Now let us reveal expressions of xk, zk+1, xk+1 without explicit reference to Q\bot .
First, for xk, by Proposition 4.1 and the definition of \psi \dagger in (2.4),

xk =\psi \dagger (yk) =\psi \dagger 
\Bigl( yk + \tau sk

1 + \tau 

\Bigr) 
=\psi \dagger 

\Bigl( \psi (xk) + \tau \psi (zk)

1 + \tau 

\Bigr) 
(4.3)

=\psi \dagger 
\biggl( 
QT

\bot M
\Bigl( xk
(1 + \tau )(qTMxk)

+
\tau zk

(1 + \tau )(qTMzk)

\Bigr) \biggr) 

=
1

\eta 1

\biggl( 
xk

qTMxk
+

\tau zk
qTMzk

\biggr) 
,

where \eta 1 ensures \| xk\| M = 1.
Next, consider zk+1. According to the definition of \psi in (2.4), and using Propo-

sition 4.1 and zk+1 =\psi \dagger (sk+1), we have

zk+1 =\psi \dagger (sk+1) =\psi \dagger 
\Bigl( 
(1 - \tau )sk + \tau yk  - (\tau /\mu )\nabla \phi (yk)

\Bigr) 

=\psi \dagger 
\Bigl( 
(1 - \tau )\psi (zk) + \tau \psi (xk) - 

\tau (qTMxk)

\mu 
QT

\bot rk
\Bigr) 

=\psi \dagger 
\biggl( 
QT

\bot M
\Bigl( (1 - \tau )zk
qTMzk

+
\tau xk

qTMxk
 - \tau (qTMxk)M

 - 1rk
\mu 

\Bigr) \biggr) 

=
1

\eta 2

\biggl( 
(1 - \tau )zk
qTMzk

+
\tau xk

qTMxk
 - \tau (qTMxk)(I  - qqTM)M - 1rk

\mu 

\biggr) 
,(4.4)

where rk =\nabla Rq(xk) = 2
\bigl( 
Axk  - Rq(xk)Mxk

\bigr) 
and \eta 2 ensures \| zk+1\| M = 1.

Finally for xk+1, consider the local optimization problem (4.1c),

yk+1 = argmin
y\in \scrV \scrY 

\phi (y),

where \scrV \scrY =\scrY \cap span\{ yk, yk,\nabla \phi (yk)\} . Let

\scrV \scrX =\scrX \cap span\{ q,xk, xk,M - 1\nabla Rq(xk)\} .

Then from the connection between gradients in Proposition 4.1, we know

\psi (\scrV \scrX )\subset \scrV \scrY and \psi \dagger (\scrV \scrY )\subset \scrV \scrX ,
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ACCELERATED EIGENSOLVER BASED ON EPIC 59

which means \psi (\scrV \scrX ) = \scrV \scrY . Now consider the following local optimization problem
on \scrX :

x\ast = argmin
x\in \scrV \scrX 

Rq(x).

By the minimization property of x\ast and yk+1, and Proposition 2.1, we have

Rq(x\ast )\leq Rq
\bigl( 
\psi \dagger (yk+1)

\bigr) 
= \phi (yk+1)\leq \phi 

\bigl( 
\psi (x\ast )

\bigr) 
=Rq(x\ast ).

Due to the uniqueness of x\ast and yk+1, we obtain

xk+1 =\psi \dagger (yk+1) = x\ast = argmin
x\in \scrV \scrX 

Rq(x).(4.5)

Combining (4.3)--(4.5), we derive an equivalent iteration of (4.1) with all compu-
tations on \scrX . The recursions (4.3)--(4.5) with initials z0, x0 \in \scrX are called EIC.

4.2. Convergence analysis of EIC.

Theorem 4.1. Given a positive definite matrix pair (A,M) with a simple smallest
eigenvalue \lambda 1, i.e., 0< \lambda 1 < \lambda 2, assume that the initial vector z0 = x0 \in \scrX of EIC is
chosen such that

0\leq Rq(x0) - \lambda 1 \leq 
1

max
\bigl\{ 
8\kappa ,2\kappa (1 + \tau \kappa )2

\bigr\} (Rq(q) - \lambda 1),(4.6)

where Rq(q) satisfies the condition (2.23), and q is the vector in (2.2) to define the
auxiliary problem (2.9), \kappa = L/\mu , \mu and L are convexity parameters of \phi (y) defined
in Theorem 2.2 with P = I. If the step size satisfies 0< \tau \leq \kappa  - 1/2, then the Rayleigh
quotient sequence of xk generated by EIC satisfies

Rq(xk)\leq Rq(xk - 1)\leq \cdot \cdot \cdot \leq Rq(x0)(4.7)

and

Rq(xk) - \lambda 1 \leq 2(1 - \tau )k
\bigl( 
Rq(x0) - \lambda 1

\bigr) 
.(4.8)

Proof. The proof is based on the verification of all conditions of Theorem 3.2.
Details are presented in Appendix D.

Combining the convergence analysis of EIC in Theorem 4.1 with the estimation
for the condition number of the auxiliary function in Corollary 2.1, neglecting the
term \scrO (Rq(q) - \lambda 1), the rate of convergence of EIC is

Rq(xk) - \lambda 1 \leq 2

\biggl( 
1 - 

\Bigl( \lambda 2  - \lambda 1
\lambda n  - \lambda 1

\Bigr) 1/2\biggr) k\bigl( 
Rq(x0) - \lambda 1

\bigr) 
.(4.9)

Compared with the convergence rate of the steepest descent method [11, Thm. 2.1],

tan\Theta (xk, u1)\leq 
\Bigl( 
1 - \lambda 2  - \lambda 1

\lambda n  - \lambda 1

\Bigr) k
tan\Theta (x0, u1),

EIC achieves an acceleration by improving the exponent of \lambda 2 - \lambda 1

\lambda n - \lambda 1
from 1 to 1/2.

However, the bound (4.9) is not satisfactory in practice. When the relative spectral
gap \lambda 2 - \lambda 1

\lambda n - \lambda 1
is small, such as the relative spectral gap \scrO (h2) of the discrete Laplacian

operator \Delta h, where h is mesh size, the convergence rate of EIC is close to 1, which
leads to slow convergence of EIC. Meanwhile, we observe that in Corollary 2.1, the
condition number \kappa P will be improved to \lambda 2/(\lambda 2  - \lambda 1) when P is a good spectral
approximation of B such that the ratio \iota \xi defined in (2.2) is close to 1, which leads to
fast convergence of EIC. In the next section, we will derive a preconditioning technique
in EIC to improve the condition number \kappa P by using a properly chosen preconditioner
P . The resulting algorithm is called EPIC.
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60 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

5. EPIC. Let us again start with the auxiliary problem (2.9) on \scrY . Given a
symmetric positive definite matrix P and initials s0 and y0 in \scrY , LONAG (4.1) in P
inner-product is as follows:

yk =
yk + \tau P sk
1 + \tau P

,(5.1a)

sk+1 = (1 - \tau P )sk + \tau P yk  - 
\tau P
\mu P

P - 1\nabla \phi (yk),(5.1b)

yk+1 = argmin
y\in \scrY \cap span\{ yk,yk,P

 - 1\nabla \phi (yk)\} 
\phi (y),(5.1c)

where the step size \tau P satisfies 0 < \tau P \leq \kappa 
 - 1/2
P , \kappa P = LP /\mu P , \mu P and LP are

convexity parameters of \phi (y) defined in Theorem 2.2. In [27], such a strategy is
called preconditioning since the level sets of objective \phi look more circular when a
good P is applied. Throughout this section, we will also call P as a preconditioner
and the scheme (5.1) as a preconditioned LONAG.

Similarly to subsection 4.1, we would like to compute the preconditioned LONAG
flow (5.1) on \scrX . Recall variables defined in (4.2) as

zk =\psi \dagger (sk), xk =\psi \dagger (yk), xk =\psi \dagger (yk).

By the identity (4.3), xk can be updated as

xk =
1

\eta 1

\Bigl( xk
qTMxk

+
\tau P zk
qTMzk

\Bigr) 
,(5.2)

where \eta 1 ensures \| xk\| M = 1.
For zk+1, similar to the identity (4.4), we know

zk+1 =
1

\eta 2

\Bigl( (1 - \tau P )zk
qTMzk

+
\tau Pxk
qTMxk

 - \tau P (q
TMxk)(I  - qqTM)Q\bot P - 1QT

\bot rk
\mu P

\Bigr) 

=
1

\eta 2

\Bigl( (1 - \tau P )zk
qTMzk

+
\tau Pxk
qTMxk

 - \tau P (q
TMxk)Q\bot P - 1QT

\bot rk
\mu P

\Bigr) 
,(5.3)

where \eta 2 ensures \| zk+1\| M = 1 and

rk =\nabla Rq(xk) = 2
\bigl( 
Axk  - Rq(xk)Mxk

\bigr) 
.(5.4)

Note that computation for the vector zk+1 of (5.3) is unattainable due to the term
Q\bot P - 1QT

\bot rk involving Q\bot . To circumvent Q\bot , we introduce a symmetric positive
definite copreconditioner T of P , where T \in \BbbR n\times n, and enforce the form of P as

P =QT
\bot TQ\bot .(5.5)

The following lemma shows that the term Q\bot P - 1QT
\bot rk can be computed without

explicit reference to Q\bot .

Lemma 5.1. Suppose T is symmetric positive definite and P = QT
\bot TQ\bot . Then

for any z \in \BbbR n,

Q\bot P
 - 1QT

\bot z =\Pi T - 1z,(5.6)

where \Pi is a complementation of the oblique projector \widetilde qqTM/(qTM\widetilde q) defined as

\Pi = I  - \widetilde qqTM
qTM\widetilde q ,(5.7)

and \widetilde q= T - 1Mq.
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ACCELERATED EIGENSOLVER BASED ON EPIC 61

Proof. Since [q,Q\bot ] is M -orthonormal, it is sufficient to prove

qTM
\bigl( 
Q\bot P

 - 1QT
\bot z
\bigr) 
= qTM\Pi T - 1z,(5.8)

QT
\bot M

\bigl( 
Q\bot P

 - 1QT
\bot z
\bigr) 
=QT

\bot M\Pi T - 1z.(5.9)

For (5.8), the left side is zero due to theM -orthogonality of [q,Q\bot ], and the right
side is also zero due to \Pi TMq= 0.

For (5.9), multiplying P on both sides, it is sufficient to prove

QT
\bot z = PQT

\bot M
\Bigl( 
I  - \widetilde qqTM

qTM\widetilde q
\Bigr) 
T - 1z.

By P =QT
\bot TQ\bot and \Pi TMq= 0, we have

PQT
\bot M\Pi T - 1z =QT

\bot TQ\bot Q
T
\bot M\Pi T - 1z =QT

\bot T (I  - qqTM)\Pi T - 1z

=QT
\bot z  - 

zT\widetilde q
qTM\widetilde qQ

T
\bot TT

 - 1Mq=QT
\bot z,

which means (5.9) holds. Then the lemma is proved by the identities (5.8) and
(5.9).

By Lemma 5.1, the updating formula (5.3) can be rewritten as

zk+1 =
1

\eta 2

\biggl( 
(1 - \tau P )zk
qTMzk

+
\tau Pxk
qTMxk

 - \tau P (q
TMxk)\widetilde rk
\mu P

\biggr) 
,(5.10)

where \widetilde rk =Q\bot P - 1QT
\bot rk =\Pi T - 1rk, \Pi is defined in (5.7), and \eta 2 ensures \| zk+1\| M = 1.

Finally, for the vector xk+1, let us consider the local optimization problem

yk+1 = argmin
y\in \scrV \scrY 

\phi (y),

where

\scrV \scrY =\scrY \cap span\{ yk, yk, P - 1\nabla \phi (yk)\} .

First by Proposition 4.1 and (5.4), we have

P - 1\nabla \phi (yk) =
P - 1QT

\bot \nabla Rq(xk)\sqrt{} 
1 + \| yk\| 2

=
P - 1QT

\bot rk\sqrt{} 
1 + \| yk\| 2

.

Combining the above equation with Lemma 5.1 and (2.4), we have

span
\bigl\{ 
q,\psi \dagger \bigl( P - 1\nabla \phi (yk)

\bigr) \bigr\} 
= span\{ q,Q\bot P

 - 1\nabla \phi (yk)\} = span\{ q,\widetilde rk\} .

Using the same arguments as (4.5), let

\scrV \scrX =\scrX \cap span\{ q,xk, xk,\widetilde rk\} .

We know \psi (\scrV \scrX ) = \scrV \scrY and the expression of xk+1 is

xk+1 =\psi \dagger (yk+1) = argmin
x\in \scrV \scrX 

Rq(x).(5.11)

Combining (5.2), (5.3), and (5.11), we have a preconditioned LONAG on \scrX out-
lined in Algorithm 1, which is called EPIC.
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62 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

Algorithm 1: EPIC.

Input: Matrices A,M , a vector q, a preconditioner T , an initial vector x0,
and parameters 0 < μP ≤ LP .

1 Compute T q̃ = Mq for q̃ and τP =
√

μP /LP ;

2 Set z0 = x0 and α0 = γ0 = qTMx0;
3 for k = 0, 1, 2, . . . , do

4 Compute xk =
xk

αk
+

τP zk
γk

;

5 Normalize xk by xk = xk/‖xk‖M ;

6 Compute βk = qTMxk, ρk = Rq(xk) and rk = 2(Axk − ρkMxk);

7 Compute r̃k = ΠT−1rk, where Π = I − qqTM
qTMq

;

8 Compute zk+1 =
(1− τP )zk

γk
+

τPxk

βk
− τPβk˜

˜
˜

˜

rk
μP

;

9 Normalize zk+1 by zk+1 = zk+1/‖zk+1‖M ;

10 Compute γk+1 = qTMzk+1;
11 Solve a local optimization problem xk+1 = argmin

x∈X∩span{q,xk,xk,rk}
Rq(x);

12 Compute αk+1 = qTMxk+1;

13 end

Remark 5.1. According to Stewart's analysis of oblique projectors in [35], the
cancellation may happen during computing the complementation \Pi . A remedy is to
repeat the process, which is called recomplementation.

Each iteration of EPIC involves one matrix-vector multiplication of A for com-
puting the residual vector rk = 2(Axk  - \rho kMxk), one preconditioned linear system
T - 1rk, and one Rayleigh--Ritz procedure. The main difference with LOPCG is that
the Rayleigh--Ritz procedure of LOPCG is carried out in a three-dimensional subspace
while EPIC is in a four-dimensional subspace. When taking matrix-vector multiplica-
tions ofM into account, asMq can be computed in advance, we only need to compute
two M -orthogonalizations, i.e., xk and zk+1, and one M matrix-vector multiplication
for residual vector rk, while LOPCG only needs one matrix-vector multiplication.
Since the main cost comes from the preconditioned linear systems and matrix-vector
multiplications of A, the cost of EPIC and LOPCG are essentially the same.

5.1. Convergence analysis of EPIC. Similarly to Theorem 4.1, we can es-
tablish the convergence of EPIC as follows.

Theorem 5.1. Given a positive definite matrix pair (A,M) with a simple smallest
eigenvalue \lambda 1, i.e., 0<\lambda 1 <\lambda 2, assume that the initial vector z0 = x0 \in \scrX of EPIC is
chosen such that

0\leq Rq(x0) - \lambda 1 \leq 
1

max
\bigl\{ 
8\kappa P ,2\kappa P (1 + \tau P\kappa P )2

\bigr\} (Rq(q) - \lambda 1),

where Rq(q) satisfies the condition (2.23), and q is the vector in (2.2) to define the
auxiliary problem (2.9), \kappa P = LP /\mu P , \mu P and LP are convexity parameters of \phi (y)

defined in Theorem 2.2. If the step size \tau P satisfies 0< \tau P \leq \kappa 
 - 1/2
P , then the Rayleigh

quotient sequence of xk generated by EPIC (Algorithm 1) satisfies

Rq(xk)\leq Rq(xk - 1)\leq \cdot \cdot \cdot \leq Rq(x0)(5.12)
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ACCELERATED EIGENSOLVER BASED ON EPIC 63

and

Rq(xk) - \lambda 1 \leq 2(1 - \tau P )
k
\bigl( 
Rq(x0) - \lambda 1

\bigr) 
.(5.13)

The proof of Theorem 5.1 is analogous to the proof of Theorem 4.1. The only
difference is replacing the standard inner-product by P inner-product.

Now let us discuss the quantification of the quality of preconditioner P and co-
preconditioner T . First, from practical viewpoints, the linear system Tx = b should
be easy to solve. From theoretical viewpoints, based on the convergence of EPIC in
(5.15), the ratio \iota \xi should be close to 1. Since

\iota \xi :=
\xi max

\xi min
=
\lambda max(P

 - 1B)

\lambda min(P - 1B)
\leq \nu max

\nu min
=
\lambda max(T

 - 1A)

\lambda min(T - 1A)
:= \iota \nu ,(5.14)

the copreconditioner T should be chosen as a good spectral approximation of A, i.e.,
\iota \nu is close to 1. As a by-product, a good preconditioner P (therefore, the coprecondi-
tioner T ) enlarges the permissible region for the choice of q, since the requirement of
Rq(q) in (2.12) is

\lambda 1 \leq Rq(q)<\lambda 1 +
\lambda 2  - \lambda 1
2 + \chi P

, where \chi P =
8\lambda 2
\lambda 1

\Bigl( \lambda 2 + \lambda 1
2(\lambda 2  - \lambda 1)

\Bigr) 1/2
\iota \xi .

According to (5.14), we know \iota \xi \leq \iota \nu . Thus, when T is a good preconditioner for
A, i.e., \iota \nu is close to 1, the parameter \chi P will be significantly contracted, and the
permissible region for Rq(q) is enlarged. However, even taking \iota \xi = \iota \nu = 1, the
region is still very limited, which is even smaller than the condition Rq(x0)<\lambda 2 from
Knyazev and Neymeyr [15].

To end this section, let us compare the convergence rate of EPIC with other
methods. Neglecting the term \scrO (Rq(q) - \lambda 1) of \mu P and LP in Corollary 2.1, the rate
of convergence of EPIC is

Rq(xk) - \lambda 1 \leq 2(1 - \surd 
\eta \nu )

k
\bigl( 
Rq(x0) - \lambda 1

\bigr) 
, where \eta \nu =

1 - \lambda 1/\lambda n
\iota \nu (1 - \lambda 1/\lambda 2)

.(5.15)

Clearly, the bound (5.15) is better than the following sharp estimation for the pre-
conditioned inverse iteration in [2]1 :

Rq(xk+1) - \lambda 1
\lambda 2  - Rq(xk+1)

\leq (1 - \eta \nu )
2Rq(xk) - \lambda 1
\lambda 2  - Rq(xk)

,

since the exponent of \eta \nu is 1/2 rather than 1. For LOPCG, Knyazev conjectured the
following rate of convergence in [13, eq. (5.5)], which is essentially same as our result
(5.15):

Rq(xk+1) - \lambda 1
\lambda 2  - Rq(xk+1)

\leq 
\Bigl( 
1 - 2

\surd 
\eta \nu 

1 +
\surd 
\eta \nu 

\Bigr) 2Rq(xk) - \lambda 1
\lambda 2  - Rq(xk)

.(5.16)

To the best of our knowledge, a proof of upper bound (5.16) is elusive so far.
Recently, a provable accelerated eigensolver with preconditioning named RAP

is proposed in [32]. The RAP achieves an acceleration similar to (5.15), but the
analysis is different. For RAP, due to the operations on a manifold, precondition-
ing will significantly change problems since the objective function is modified. The
theoretical guarantee of acceleration involves additional terms, beyond \eta \nu , related
to the preconditioner T . In contrast, EPIC benefits from the natural incorporation
of preconditioning, facilitated by the subtle structure of implicit convexity and the
transformation between the eigenvalue problem and the auxiliary problem.

1The result in [2] is slightly different, where there is no \lambda n in \eta \nu .
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64 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

6. Numerical experiments. In this section, numerical results are presented
to support our theoretical analysis in the previous sections. In the first example, we
examine the sharpness of the convergence rate 1 - \kappa  - 1/2

P of EPIC in Theorem 5.1. Our

focus will be on the exponent  - 1/2 in \kappa 
 - 1/2
P . In the second example, we select a set

of matrix pairs from SuiteSparse matrix collection to compare convergence behaviors
of EPIC and LOPCG.

6.1. Sharpness of the estimated convergence rate of EPIC. Following
the setting in [13, sect. 6], let

A=Diag(\lambda 1, \lambda 2, . . . , \lambda n) and M = I,

where \lambda i = \omega i - 1 for some \omega > 1. Then the relative spectral gap of (A,M) is

\lambda n  - \lambda 1
\lambda 2  - \lambda 1

=
\omega n - 1  - 1

\omega  - 1
\geq \omega n - 2.

When \omega > 1, the gap grows exponentially and the eigenvalue problem is ill-conditioned.
Let the preconditioner P be given by P = QT

\bot TQ\bot , where q is an approximation of
the eigenvector u1, the matrix [q,Q\bot ] is M -orthonormal, and the copreconditioner T
is constructed as

T =A1/2S - 1D - 1SA1/2,

where S and S - 1 are the discrete sine transformation matrix and its inverse, which
can be implemented by the MATLAB built-in functions dst and idst, respectively,
and

D= Diag
\bigl( 
logspace(0,log10(\iota \nu ),n)

\bigr) 
,

where \iota \nu > 1 is a parameter.
By variational characterizations of eigenvalues, we know that

\nu min := \lambda min(T
 - 1A) = 1\leq \lambda min(Q

T
\bot AQ\bot ,Q

T
\bot TQ\bot ) = \lambda min(P

 - 1B) := \xi min,

\nu max := \lambda max(T
 - 1A) = \iota \nu \geq \lambda max(Q

T
\bot AQ\bot ,Q

T
\bot TQ\bot ) = \lambda max(P

 - 1B) := \xi max.

Consequently, by Corollary 2.1, up to the first order of Rq(q)  - \lambda 1, parameters \mu P

and LP for convexity of function \phi in Theorem 2.2 are

\mu P = 2\xi min

\Bigl( 
1 - \lambda 1

\lambda 2

\Bigr) 
\geq 2(\omega  - 1)

\omega 
+\scrO (Rq(q) - \lambda 1),(6.1a)

LP = 2\xi max

\Bigl( 
1 - \lambda 1

\lambda n

\Bigr) 
\leq 2\iota \nu (\omega 

n - 1  - 1)

\omega n - 1
+\scrO (Rq(q) - \lambda 1).(6.1b)

Then, the condition number of the auxiliary function \phi in P inner-product is

\kappa P =
LP

\mu P
\leq \omega n - 1  - 1

\omega n - 2(\omega  - 1)
\iota \nu +\scrO (Rq(q) - \lambda 1) =

\omega \iota \nu 
\omega  - 1

+\scrO (Rq(q) - \lambda 1).

For fixed \omega and n, neglecting the term \scrO (Rq(q)  - \lambda 1), the condition number \kappa P is
bounded by

\iota \nu \leq \kappa P \leq 
\biggl( 

\omega 

\omega  - 1

\biggr) 
\iota \nu .(6.2)
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ACCELERATED EIGENSOLVER BASED ON EPIC 65

Therefore, we can modify \iota \nu for different condition numbers \kappa P of convex
function \phi .

Let \epsilon k =Rq(xk) - \lambda 1, where \{ xk\} are iterates of EPIC. By the rate of convergence
of EPIC in (5.13), with initial value x0 and stopping criteria \epsilon k \leq \epsilon \ast , we have

ln
\Bigl( \epsilon \ast 
2\epsilon 0

\Bigr) 
\leq mP \cdot ln(1 - \tau P ),(6.3)

where mP is the iteration number of EPIC to the convergence. Therefore, when the
step size is chosen as \tau P = \kappa 

 - 1/2
P , by the first-order expansion of ln(1 - \tau P ) and (6.2),

we have

 - ln(1 - \tau P )\approx \tau P = \kappa 
 - 1/2
P \approx \iota  - 1/2

\nu .(6.4)

By combining (6.3) and (6.4), the relationship between \iota \nu and mP should be

mP \leq 
ln
\bigl( 

\epsilon \ast 
2\epsilon 0

\bigr) 

 - ln(1 - \tau P )
\leq C \cdot \iota 1/2\nu \cdot ln

\Bigl( \epsilon \ast 
2\epsilon 0

\Bigr) 
,(6.5)

where C is an absolute constant from the approximation (6.4). With (6.5), we expect
iteration numbers of EPIC, and LOPCG based on its conjectured rate, will be at the
order of \iota 

1/2
\nu .

For numerical examples, we set n= 512 and \omega n - 1 = 1010. The resulting eigenvalue
problem is highly ill-conditioned since the relative spectral gap is as large as

\lambda n  - \lambda 1
\lambda 2  - \lambda 1

=
\omega n - 1  - 1

\omega  - 1
\geq \omega n - 2 \geq 109.

The vector q for the auxiliary problem is constructed as

q= \eta [1, (\omega  - 1)2, . . . , (\omega  - 1)2n - 2]T,

where \eta ensures \| q\| = 1. In this case, the vector q is super close to the eigenvector u1
since Rq(q) - \lambda 1 \approx 2\times 10 - 7. The initial vector of the EPIC is x0 = q, the step size \tau P
is set as \tau P = \kappa 

 - 1/2
P , where \kappa P =LP /\mu P , and parameters \mu P and LP are selected by

dropping the first-order term of Rq(q) - \lambda 1 in (6.1). The stopping criteria are set to
when relative errors of approximate eigenvalues are less than 10 - 14, i.e., \epsilon \ast = 10 - 14\lambda 1.

The number of iterations of EPIC and LOPCG depicted in Table 1 are for pa-
rameters \iota \nu = (10k)2 with k = 1,2, . . . ,12. These parameters represent the effective
condition numbers of auxiliary functions \phi in the P -inner product due the bounds
(6.2). The data in Table 1 validate the theoretical linear relationship between \iota 

1/2
\nu ,

and thus the condition number \kappa P , and iteration numbers mP in (6.5) for EPIC.
Meanwhile, we observe that such a linear relationship also holds for LOPCG.

The discrepancy in the actual number of iterations of EPIC and LOPCG is due
to the suboptimal choice of the parameters \mu P and LP of EPIC. It is a subject of
future study to develop an adaptive strategy to adjust these parameters to minimize
the number of the iteration of EPIC.

Table 1
Iteration numbers of EPIC and LOPCG with respect to the square roots of condition numbers \kappa P .

\iota 
1/2
\nu (\approx \kappa 

1/2
P ) 10 20 30 40 50 60 70 80 90 100 110 120

EPIC 170 330 476 618 759 929 1074 1217 1351 1481 1612 1744

LOPCG 78 142 201 257 312 365 416 467 518 566 615 664
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66 NIAN SHAO, WENBIN CHEN, AND ZHAOJUN BAI

Table 2
Iteration numbers and elapsed times.

Matrices (A,M) n LOPCG Time (\tts ) EPIC Time (\tts )

\tttwo \ttc \ttu \ttb \tte \tts \tts \ttp \tth \tte \ttr \tte 101492 82 1.8985 62 1.6748

\ttb \tto \ttn \tte \ttS \ttzero \ttone 127224 \times \times 516 27.0412
\ttD \ttu \ttb \ttc \tto \ttv \tta \ttthree 146689 217 7.7819 150 6.2790

\ttf \tti \ttn \tta \ttn \ttfive \ttone \tttwo 74752 74 0.9762 52 0.7907

\ttG \tttwo \ttc \tti \ttr \ttc \ttu \tti \ttt 150102 18 0.4572 22 0.6808

(\ttb \ttc \tts \tts \ttt \ttk \ttzero \ttnine ,\ttb \ttc \tts \tts \ttt \ttm \ttzero \ttnine ) 1083 52 0.1154 52 0.1209
(\ttb \ttc \tts \tts \ttt \ttk \tttwo \ttone ,\ttb \ttc \tts \tts \ttt \ttm \tttwo \ttone ) 3600 97 0.2354 95 0.2487

(\ttK \ttu \ttu ,\ttM \ttu \ttu ) 7102 49 0.2667 51 0.3166

6.2. Test matrices from the SuiteSparse matrix collection. In this part,
we compare numerical behaviors of EPIC and LOPCG with a set of test matrices
(A,M) from the SuiteSparse matrix collection [6].

The vector q is chosen as a random Gaussian vector with normalization. For both
methods, initial vectors are set to x0 = q. Since the choice of q will affect the behavior
of EPIC, and the probability of a random Gaussian vector satisfying the condition in
Theorem 2.2 is extremely low, a restart strategy will be applied to EPIC. Specifically,
when | xTkMq| < 0.5, we restart EPIC with q = xk. Actually, such a restart scheme
will significantly improve the behavior of EPIC in our experiments.

For the copreconditioner T , we employ the aggregation-based algebraic multigrid
preconditioner [24]. Differently from previous experiments, less attention will be paid
to the choice of \mu and L in EPIC. We just set \mu =L= 6 for all test matrices.

The stopping criteria of EPIC and LOPCG are chosen as when the relative errors
of approximate eigenvalue are less than 10 - 8, i.e., Rq(xk) - \lambda 1 \leq 10 - 8\lambda 1, where \lambda 1 is
computed from the MATLAB built-in function eigs.

Numerical results are depicted in Table 2 and Figure 2. We can see that conver-
gence histories of EPIC and LOPCG are very close, for both the Rayleigh quotient
and the components in u1. In terms of elapsed times per iteration, EPIC is slightly
longer than LOPCG. We observe that the restart of EPIC only happens in the very
early stages.

For the test matrix boneS01, LOPCG does not converge in 1000 iterations. In
this case, EPIC outperforms LOPCG significantly. It is observed from Figure 2(b)
that the LOPCG could converge linearly. In the last 600 iterations, the convergence
rate is roughly 0.9949, which aligns closely with the theoretical result for acceleration
as

1 - \surd 
\eta \nu \approx 1 - 

\biggl( 
1 - \lambda 1/\lambda n

\iota \nu (1 - \lambda 1/\lambda 2)

\biggr) 1/2

\approx 0.9945.

This experiment highlights that, beyond acceleration, EPIC may discover advanta-
geous pathways for achieving faster convergence.

7. Concluding remarks. We introduce the concept of implicit convexity of
symmetric eigenvalue problems. A symmetric EPIC with provable acceleration is
proposed. Numerical results verify the theoretical rate of convergence of EPIC, and
show similar rates of convergence of EPIC and LOPCG for a set of test matrices from
applications.

There are two research directions for future work. One is how to develop a
parameter-free variant similar to LOPCG, and the other one is the development of a
block version of EPIC.
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Fig. 2. Convergence history of LOPCG (red) and EPIC (blue). The x-axis is the iterations
number. Solid lines are relative errors of approximate smallest eigenvalues, and dashed lines are
1  - | xTkMu1| , where xk and u1 are both M-normalized. Restart points are marked by a circle.
Note: color appears only in the online article.

Appendix A. Proof of Lemma 2.1. For item 1: For any x1, x2 \in \scrS n - 1
q , if

\psi (x1) =\psi (x2), we have

QT
\bot M

\Bigl( x1
qTMx1

 - x2
qTMx2

\Bigr) 
= 0.

By the M -orthogonality of q and Q\bot , there exists \alpha \in \BbbR such that
x1

qTMx1
 - x2
qTMx2

= \alpha q.

Multiplying qTM on the left of both sides in the above equation, we have \alpha = 0, i.e.,

x1 =
qTMx1
qTMx2

x2.

Then x1 = x2 is obtained by qTMx> 0 and \| x\| M = 1 for all x\in \scrS n - 1
q .

For \psi \dagger , if \psi \dagger (y1) =\psi \dagger (y2), we have

Q\bot 
\Bigl( y1
\| Q\bot y1 + q\|  - y2

\| Q\bot y2 + q\| 
\Bigr) 
=
\Bigl( 1

\| Q\bot y2 + q\|  - 1

\| Q\bot y1 + q\| 
\Bigr) 
q.

Using the M -orthogonality of q and Q\bot , we know that y1 = y2.
For item 2, by direct computation, for any x\in \scrS n - 1

q ,

\psi \dagger \bigl( \psi (x)
\bigr) 
=

Q\bot QT
\bot Mx

qTMx
+ q

\bigm\| \bigm\| \bigm\| Q\bot QT
\bot Mx

qTMx
+ q
\bigm\| \bigm\| \bigm\| 
M

=

x - qqTMx

qTMx
+ q

\bigm\| \bigm\| \bigm\| x - qqTMx

qTMx
+ q
\bigm\| \bigm\| \bigm\| 
M

= x,

because of qTMx> 0 and qqTM +Q\bot QT
\bot M = I.

For item 3, for any y \in \BbbR n - 1, by \psi \dagger \bigl( \psi (x)
\bigr) 
= x, we know

\psi \dagger 
\Bigl( 
\psi 
\bigl( 
\psi \dagger (y)

\bigr) \Bigr) 
=\psi \dagger (y).

Then \psi 
\bigl( 
\psi \dagger (y)

\bigr) 
= y is obtained by \psi is an injection.
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Appendix B. Proof of Lemma 2.3. For the first bound (2.16), let us begin
with an upper bound of the angle between x1 and x2 \in \scrX . Suppose xj for j = 1 and
2 admit decomposition on the basis of the M -orthonormal eigenvectors ui:

xj =

n\sum 

i=1

ci,jui and

n\sum 

i=1

c2i,j = 1.(B.1)

Since xj \in \scrX , we have

Rq(q)\geq Rq(xj) =

n\sum 

i=1

c2i,j\lambda i \geq c21,j\lambda 1 + (1 - c21,j)\lambda 2.

Combining it with the assumption Rq(q)< (\lambda 1 + \lambda 2)/2, we know that

c21,j \geq 
\lambda 2  - Rq(q)

\lambda 2  - \lambda 1
>

1

2
,(B.2)

which means for any x \in \scrX , xTMu1 \not = 0. Since \scrX is connected on the hemisphere
\scrS n - 1
q and u1 \in \scrX , we have c1,j > 0. By the simple fact

n\sum 

i=2

ci,1ci,2 =
1

2

n\sum 

i=2

\bigl( 
(ci,1 + ci,2)

2  - (c2i,1 + c2i,2)
\bigr) 

\geq  - 1

2

n\sum 

i=2

(c2i,1 + c2i,2) =
1

2
(c21,1 + c21,2) - 1,

we have the following upper bound on the angle between x1 and x2 \in \scrX :

xT1Mx2 =

n\sum 

i=1

ci,1ci,2 \geq c1,1c1,2 +
1

2
(c21,1 + c21,2) - 1

=
(c1,1 + c1,2)

2

2
 - 1\geq 1 - 2(Rq(q) - \lambda 1)

\lambda 2  - \lambda 1
,(B.3)

where (B.2) is used in the last inequality. Note that

qTM\psi \dagger (y) =
qTM(Q\bot y+ q)

\| Q\bot y+ q\| M
=

1\sqrt{} 
yTy+ 1

holds for all y \in \BbbR n - 1. Taking x1 = q and x2 =\psi \dagger (y) in (B.3), we have

1

yTy+ 1
= (qTMx)2 \geq 

\Bigl( 
1 - 2(Rq(q) - \lambda 1)

\lambda 2  - \lambda 1

\Bigr) 2
,

which is the first desired bound (2.16).
For the second bound (2.17), it is sufficient to show

| sT\nabla \phi (y)yTs+ sTy
\bigl( 
\nabla \phi (y)

\bigr) T
s| \leq 2| sT\nabla \phi (y)| | sTy| \leq \chi g\| s\| 2B

holds for any s\in \BbbR n - 1. We will prove

| sT\nabla \phi (y)| \leq 2\| s\| B
\biggl( 
Rq(q)(Rq(q) - \lambda 1)

\lambda 1(1 + \| y\| 2)

\biggr) 1/2

,(B.4)

| sTy| \leq \| s\| B\| y\| \surd 
\lambda 1

.(B.5)
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First, consider the bound (B.4). The gradients of Rq(x) and \phi (y) are easily
computed as follows:

\nabla Rq(x) = 2
\bigl( 
Ax - Rq(x)Mx

\bigr) 
,

\nabla \phi (y) = 2

\| y\| 2 + 1

\bigl( 
By - \phi (y)y+QT

\bot Aq
\bigr) 
.

(B.6)

Let x = \psi \dagger (y), and noting that B = QT
\bot AQ\bot , Rq(x) = \phi (y), Q\bot QT

\bot M + qqTM = I,
and

1 + \| y\| 2 = 1+
xTMQ\bot QT

\bot Mx

(qTMx)2
=

xTMx

(qTMx)2
=

1

(qTMx)2
,

we have

\nabla \phi (y) = 2

\| y\| 2 + 1

\Bigl( QT
\bot AQ\bot QT

\bot Mx

qTMx
 - Rq(x)QT

\bot Mx

qTMx
+QT

\bot Aq
\Bigr) 

=
2\sqrt{} 

1 + \| y\| 2
\bigl( 
QT

\bot A(Q\bot Q
T
\bot M + qqTM)x - Rq(x)QT

\bot Mx
\bigr) 

=
2\sqrt{} 

1 + \| y\| 2
\bigl( 
QT

\bot Ax - Rq(x)QT
\bot Mx

\bigr) 
=
QT

\bot \nabla Rq(x)\sqrt{} 
1 + \| y\| 2

.

Then by the Cauchy--Schwarz inequality,

| sT\nabla \phi (y)| =
\bigm| \bigm| (Q\bot s)T\nabla Rq(x)

\bigm| \bigm| 
\sqrt{} 
1 + \| y\| 2

\leq \| Q\bot s\| A\| \nabla Rq(x)\| A - 1\sqrt{} 
1 + \| y\| 2

=
\| s\| B\| \nabla Rq(x)\| A - 1\sqrt{} 

1 + \| y\| 2
.

(B.7)

Let \rho =Rq(x) = \phi (y), and assuming x=
\sum n

i=1 ciui like (B.1), we know that

\| \nabla Rq(x)\| 2A - 1 = 4

n\sum 

i=1

c2i (\lambda i  - \rho )2

\lambda i
.

Since x\in \scrX , we have \rho \leq Rq(q)<\lambda 2; then

n\sum 

i=1

c2i (\lambda i  - \rho )2

\lambda i
\leq c21(\rho  - \lambda 1)

2

\lambda 1
+

n\sum 

i=2

c2i (\lambda i  - \rho ) =
c21\rho (\rho  - \lambda 1)

\lambda 1
\leq \rho (\rho  - \lambda 1)

\lambda 1
,

where the equation is based on the fact
\sum n

i=1 c
2
i = 1 and

\sum n
i=1 c

2
i\lambda i = \rho . Combining

these two relationships above, we know

\| \nabla Rq(x)\| 2A - 1 \leq 4\rho (\rho  - \lambda 1)

\lambda 1
.(B.8)

Then (B.4) is proved by \rho \leq Rq(q), (B.7), and (B.8).
For the bound (B.5), by the Cauchy--Schwarz inequality and the Courant--Fischer

minimax theorem, we have

sTy= (Q\bot s)
TMQ\bot y\leq \| Q\bot s\| A\| MQ\bot s\| A - 1 \leq \| s\| B\| MQ\bot y\| M - 1\surd 

\lambda 1
=

\| s\| B\| y\| \surd 
\lambda 1

.

Then the bound (2.17) is proved by the assumption Rq(q)< (\lambda 1 + \lambda 2)/2, (B.4), and
(B.5), and the first result in (2.16).
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Appendix C. Proof of Corollary 2.2. In Theorem 2.1, it has been proved
that

\scrY = \{ y \in \BbbR n - 1 | \lambda 1 \leq \phi (y)\leq Rq(q)\} .

By \nabla \phi (y\ast ) = 0, estimation (2.21) is directly obtained from Theorem 2.2.
Now if condition (2.22) is satisfied, let \scrD be a set for y satisfying (2.22) as

\scrD :=

\biggl\{ 
y
\bigm| \bigm| \bigm| \| y - y\ast \| 2P \leq 2(Rq(q) - \lambda 1)

LP

\biggr\} 
.

We will show that \scrD \subset \scrY . Otherwise, there exists a \widehat y1 \in \scrD but \phi (\widehat y1)>Rq(q). Note
that \phi (y\ast ) \leq Rq(q); by the intermediate value theorem and convexity of \scrD , there
exists a \widehat y2 \in \scrD such that \phi (\widehat y2) =Rq(q) and

\| \widehat y2  - y\ast \| 2P < \| \widehat y1  - y\ast \| 2P \leq 2(Rq(q) - \lambda 1)

LP
,

where the last inequality uses the fact \widehat y1 \in \scrD . Noticing that \widehat y2 \in \scrY due to \phi (\widehat y2) =
Rq(q), we can obtain

\phi (\widehat y2) - \lambda 1 \leq 
LP

2
\| \widehat y2  - y\ast \| 2P <Rq(q) - \lambda 1

by (2.21), which is in contradiction to \phi (\widehat y2) =Rq(q).

Appendix D. Proof of Theorem 4.1. The monotonically decreasing property
of the Rayleigh quotient sequence Rq(xk) in (4.7) is a direct consequence of the local
optimization problem (4.5).

For the convergence of the Rayleigh quotient sequence Rq(xk) in (4.8), since EIC is
equivalent to applying the LONAG (4.1) for auxiliary problem (2.9), the convergence
of EIC can be concluded by verifying that the assumption (3.9) of Theorem 3.3 is
satisfied if the initial vector x0 is chosen to satisfy (4.6). Therefore, for the rest of the
proof, we need to show that

(i) if the initial vector x0 of EIC is chosen to satisfy (4.6), then the assumption
(3.9) of Theorem 3.2 holds, i.e.,

\bigl\{ 
y | \phi (y)\leq \phi (y0)

\bigr\} 
\subset \scrB R1

\subset \scrB R2
\subset \scrY ,

where R1 = (2\scrL 0/\mu )
1/2 and R2 =max\{ 2R1, (1 + \tau \kappa )R1\} .

(ii) From the decrease (3.13) of the discrete Lyapounov function \scrL k of Theorem
3.2, we show the convergence of the Rayleigh quotient sequence \{ Rq(xk)\} as
in (4.8).

For item (i), by Proposition 2.1, we know that Rq(x0) = \phi (y0). Therefore we need to
show that if

\phi (y0) - \lambda 1 \leq 
1

max
\bigl\{ 
8\kappa ,2\kappa (1 + \tau \kappa )2

\bigr\} \bigl( Rq(q) - \lambda 1
\bigr) 
,(D.1)

then the assumption (3.9) of Theorem 3.2 holds. Let us first show that
\bigl\{ 
y | \phi (y)\leq \phi (y0)

\bigr\} 
\subset \scrB R1

.(D.2)

In fact, by Theorem 2.1 and Rq(x0)\leq Rq(q), we have
\bigl\{ 
y | \phi (y)\leq \phi (y0)

\bigr\} 
=
\bigl\{ 
y | \phi (y)\leq Rq(x0)

\bigr\} 
\subset 
\bigl\{ 
y | \phi (y)\leq Rq(q)

\bigr\} 
=\scrY .
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Furthermore, for any y satisfying \phi (y) \leq \phi (y0), by the convexity of \phi on \scrY , the
first-order characterization (1.3), and \nabla \phi (y\ast ) = 0, we have

\| y - y\ast \| 2 \leq 
2

\mu 

\bigl( 
\phi (y) - \phi (y\ast )

\bigr) 
\leq 2

\mu 

\bigl( 
\phi (y0) - \phi (y\ast )

\bigr) 
\leq 2\scrL 0

\mu 
,(D.3)

which means y \in \scrB R1
. Therefore, (D.2) is proved.

For the other two relationships, i.e.,

\scrB R1
\subset \scrB R2

and \scrB R2
\subset \scrY ,(D.4)

the first one comes from R1 \leq R2. For the second one, noting that

\scrL 0 = \phi (y0) - \phi (y\ast ) +
\mu 

2
\| y0  - y\ast \| 2 \leq 2

\bigl( 
\phi (y0) - \phi (y\ast )

\bigr) 
= 2(Rq(x0) - \lambda 1),

we can obtain \scrB R2 \subset \scrY by

R2
2 =max\{ 8,2(1 + \tau \kappa )2\} \scrL 0

\mu 
\leq max\{ 16,4(1 + \tau \kappa )2\} Rq(x0) - \lambda 1

\mu 
\leq 2(Rq(q) - \lambda 1)

L

and Corollary 2.2. Combining (D.2) and (D.4), we conclude (3.9).
For item (ii), since the assumption (3.9) of Theorem 3.2 holds when Rq(x0) sat-

isfies (4.6), we have the convergence of LONAG in (3.15) as

\phi (yk) - \lambda 1 \leq (1 - \tau )k\scrL 0.

Combining it with Proposition 2.1, we have

Rq(xk) - \lambda 1 = \phi (yk) - \phi (y\ast )\leq 2(1 - \tau )k(Rq(x0) - \lambda 1),

which is the result (4.8).
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