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Abstract
Gradient-type iterative methods for solving Hermitian eigenvalue problems can
be accelerated by using preconditioning and deflation techniques. A precondi-
tioned steepest descent iteration with implicit deflation (PSD-id) is one of such
methods. The convergence behavior of the PSD-id is recently investigated based
on the pioneering work of Samokish on the preconditioned steepest descent
method (PSD). The resulting non-asymptotic estimates indicate a superlin-
ear convergence of the PSD-id under strong assumptions on the initial guess.
The present paper utilizes an alternative convergence analysis of the PSD by
Neymeyr under much weaker assumptions. We embed Neymeyr’s approach into
the analysis of the PSD-id using a restricted formulation of the PSD-id. More
importantly, we extend the new convergence analysis of the PSD-id to a prac-
tically preferred block version of the PSD-id, or BPSD-id, and show the cluster
robustness of the BPSD-id. Numerical examples are provided to validate the
theoretical estimates.
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1 INTRODUCTION

Determining the smallest eigenvalues and the associated eigenfunctions of a self-adjoint elliptic partial differential
operator is a common task in many application areas. The computational costs are usually high due to large dimensions
of discretized problems. By considering an equivalent minimization problem for the Rayleigh quotient, one can develop
suitable eigensolvers based on gradient iterations. The performance can be significantly improved by preconditioning
techniques for better descent directions,1 and by a blockwise implementation for computing clustered eigenvalues.2,3

A further acceleration is enabled by modifying the preconditioners with certain shifts after deflation. These methodolog-
ical improvements are particularly necessary for ill-conditioned eigenvalue problems arising from applications, such as
the partition-of-unity finite element method for solving the Kohn-Sham equation in electronic structure calculations,
where the target eigenvalues are not well separated from the rest of the spectrum; see Reference 4 and references therein.

In this article, we consider the generalized Hermitian definite matrix eigenvalue problem

Hu = 𝜆Su, (1)

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2023;30:e2498. wileyonlinelibrary.com/journal/nla 1 of 27
https://doi.org/10.1002/nla.2498

https://orcid.org/0000-0001-7096-1649
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/NLA
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2498&domain=pdf&date_stamp=2023-03-15


2 of 27 ZHOU et al.

where H, S ∈ Cn×n are Hermitian, and S is positive definite. The eigenvalues of (H, S) are all real. We denote them by
𝜆1, … , 𝜆n and arrange them as 𝜆1 ≤ · · · ≤ 𝜆n. We aim at computing the first m eigenvalues together with the associated
eigenvectors. Typically, m ≪ n.

When m = 1, the task can be restated as minimizing the Rayleigh quotient

𝜌 ∶ C
n ⧵ {0}→ R, 𝜌(z) = z∗Hz

z∗Sz
, (2)

where the superscript ∗ denotes conjugate transpose. The preconditioned steepest descent iteration (PSD)

z(𝓁+1) = z(𝓁) − 𝜔(𝓁)Kr(𝓁), (3)

is applicable to the minimization problem of (2). Therein K ∈ Cn×n is a Hermitian preconditioner, and the residual r(𝓁) =
Hz(𝓁) − 𝜌(z(𝓁))Sz(𝓁) is collinear with the gradient vector ∇𝜌(z(𝓁)) of the Rayleigh quotient 𝜌(z(𝓁)). The descent direction
−Kr(𝓁) generalizes −∇𝜌(z(𝓁)), and is expected to enable an acceleration. An optimal stepsize 𝜔(𝓁) can be determined by
the Rayleigh-Ritz procedure applied on the subspace span{z(𝓁),Kr(𝓁)}.

The choice of K significantly affects the convergence rate of the PSD. Setting K equal to the n × n identity matrix
I leads to a slow and mesh-dependent convergence for discretized operator eigenvalue problems.5 A shift-and-invert
preconditioner K = (H − 𝜎S)−1 with 𝜎 < 𝜆1 is much more efficient. According to the analyses of gradient eigensolvers in
References 6 and 7, one can derive the single-step convergence factor

𝜅 =
(
𝜆1 − 𝜎
𝜆2 − 𝜎

)(
𝜆n − 𝜆2

𝜆n − 𝜆1

)
,

for approximate eigenvectors (with respect to tangent values of error angles) and additionally 𝜅2∕(2 − 𝜅)2 for approxi-
mate eigenvalues in the final phase (with respect to relative positions between 𝜆1 and 𝜆2). These convergence factors are
bounded away from 1 when 𝜆1 ≪ 𝜆2 and can be improved by empirically increasing 𝜎.

In practice, the shift-and-invert preconditioner K is often implemented approximately, for example, by iteratively
solving linear systems of the form

H̃p = r with H̃ = H − 𝜎S. (4)

Thus it is more important to analyze a preconditioner K ≈ H̃−1. The analysis from Reference 8 begins with a convergence
argument for (4) with respect to the error propagation matrix I − KH̃. By using a quality parameter 𝜀 defined in the
condition

||I − KH̃||H̃ ≤ 𝜀 < 1, (5)

the eigenvalue convergence factor 𝜅2∕(2 − 𝜅)2 for the special case K = H̃−1 (where 𝜀 = 0) is generalized as

(𝜅 + 𝜀(2 − 𝜅))2∕((2 − 𝜅) + 𝜀𝜅)2. (6)

As we can see, the convergence rate of the PSD can be deteriorated by 𝜀 ≈ 1 or 𝜅 ≈ 1. One can reduce 𝜀 by using a proper
linear system solver. However, reducing 𝜅 is difficult if 𝜆1 and 𝜆2 are tightly clustered. In this case, the PSD needs to
be modified, for example, by a blockwise implementation or certain subspace extensions. The resulting iterations also
provide approximations of further eigenvalues.

For m > 1, computing the m smallest eigenvalues of the matrix pair (H, S) corresponds to the trace minimization of
Z∗HZ among all S-orthonormal matrices Z ∈ Cn×m; compare Reference 9. A typical approach is the block version of the
PSD, BPSD in short. Therein each iterate Z(𝓁) is an S-orthonormal Ritz basis matrix, and Θ(𝓁) = (Z(𝓁))∗HZ(𝓁) is a diagonal
matrix whose diagonal consists of the Ritz values in span{Z(𝓁)}. The next iterate Z(𝓁+1) is determined by applying the
Rayleigh-Ritz procedure to the trial subspace

span{Z(𝓁),KR(𝓁)} with R(𝓁) = HZ(𝓁) − SZ(𝓁)Θ(𝓁).
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The columns of Z(𝓁+1) are S-orthonormal Ritz vectors associated with the m smallest Ritz values in span{Z(𝓁),KR(𝓁)}.
The convergence behavior of the BPSD with respect to individual Ritz values has been analyzed in Reference 10. The
convergence factor for the ith Ritz value in the final phase is given by (6) with the generalized parameter

𝜅 =
(
𝜆i − 𝜎
𝜆i+1 − 𝜎

)(
𝜆n − 𝜆i+1

𝜆n − 𝜆i

)
.

An alternative convergence factor presented in Reference 11 concerns the non-optimized version Z(𝓁+1) = Z(𝓁) − KR(𝓁) of
the BPSD, and depends on the ratio (𝜆i − 𝜎)∕(𝜆m+1 − 𝜎) instead of (𝜆i − 𝜎)∕(𝜆i+1 − 𝜎). This reflects the cluster robustness
of the BPSD for 𝜆i ≪ 𝜆m+1 which can be ensured by enlarging the block size m.

Deflation is required for block iterative eigensolvers if the number of target eigenvalues exceeds the block size. In
the (B)PSD, once the residual of an approximate eigenvector is sufficiently small, one can store it in a basis matrix U
consisting of accepted S-orthonormal approximate eigenvectors. The further iterates are S-orthogonalized against U so
that they converge toward eigenvectors associated with the next eigenvalues. Such an orthogonalization is called implicit
deflation; see Section 6.2.3 in Reference 12.

Recently, a combination of the PSD with implicit deflation (PSD-id) has been investigated in Reference 4. A remarkable
feature of the PSD-id is that the preconditioner is variable depending on the current approximate eigenvalue, somewhat
similarly to the Jacobi-Davidson method or an inexact Rayleigh quotient iteration.13 This accelerates the convergence in
the final phase in comparison to a fixed preconditioner.

The convergence behavior of the PSD-id is analyzed in Reference 4 based on the pioneering work of Samokish on
the PSD.1 In particular, Theorem 3.2 in Reference 4 extends a non-asymptotic reformulation of the classical estimate
(10) in Reference 1 presented by Ovtchinnikov; see Theorem 2.1 in Reference 14. Precisely, a convergence rate bound
for approximating an interior eigenvalue 𝜆i (> 𝜆i−1) with the PSD-id and a variable preconditioner K is derived by using
the matrix M = Q∗(H − 𝜆iS)Q, where Q is an S-orthogonal projector onto the invariant subspace associated with the
eigenvalues 𝜆i, … , 𝜆n. The resulting estimate contains an essential parameter

q = 𝛽 − 𝛼
𝛽 + 𝛼

,

where 𝛼 and 𝛽 are the smallest positive and largest eigenvalues of the matrix product KM. A corresponding asymptotic esti-
mate then uses q2 as the convergence factor. It is possible to reduce q2 by modifying K with proper shifts for a superlinear
convergence.

A drawback of Theorem 3.2 in Reference 4 is its technical assumption on parameters associated with K and M. The
assumption is rather restricted as the current approximate eigenvalue has to be sufficiently close to 𝜆i. More significantly,
it would be extremely difficult, if possible, to generalize the analysis to a block version of the PSD-id, or BPSD-id, which
is the algorithm used in practice.

In this article, we first recast the PSD-id as the PSD applied to a restricted eigenvalue problem, and then utilize the
approaches proposed in Reference 8 to provide a convergence analysis of the PSD-id. More importantly, we are able
to present a convergence analysis of the BPSD-id by extending the convergence analysis of the BPSD in Reference 10.
The resulting sharp single-step estimates of the PSD-id and the BPSD-id are presented in Theorems 2 and 3. Further
estimates in Sections 3.3 and 4 deal with larger shifts and clustered eigenvalues. Numerical examples are provided to
verify the sharpness of convergence estimates. These theoretical results and numerical experiments advance our in-depth
understanding of the convergence behaviors of the PSD-id and the BPSD-id.

For ease of references, we restate the estimates of the PSD and the BPSD in References 8 and 10 for a standard Hermi-
tian eigenvalue problem with notation that are compatible with a restricted formulation of the PSD-id and the BPSD-id
in Section 2.

Theorem 1 (References 8,10). Consider a Hermitian positive definite matrix A ∈ Cd×d together with its
eigenvalues 𝜁1 ≤ · · · ≤ 𝜁d and a Hermitian positive definite preconditioner T ∈ Cd×d satisfying

||I − TA||A ≤ 𝜀 < 1. (7)

If 𝜂 = (x∗Ax)∕(x∗x) for a nonzero vector x ∈ Cd is located in an eigenvalue interval (𝜁j, 𝜁j+1), then it holds for the
smallest Ritz value 𝜂′ of A in span {x,T(Ax − 𝜂x)} that
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𝜂
′ − 𝜁j

𝜁j+1 − 𝜂′
≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2
𝜂 − 𝜁j

𝜁j+1 − 𝜂
with 𝜅 =

𝜁j(𝜁d − 𝜁j+1)
𝜁j+1(𝜁d − 𝜁j)

. (8)

The equality in (8) is attainable in the limit case 𝜂 → 𝜁j in an invariant subspace associated with the eigenvalues
𝜁j, 𝜁j+1 and 𝜁d.

Consider further a c-dimensional subspace  ⊂ Cd and orthonormal Ritz vectors x1, … , xc associated with
the Ritz values 𝜂1 ≤ · · · ≤ 𝜂c of A induced by . Denote by 𝜂′1 ≤ · · · ≤ 𝜂

′
c the c smallest Ritz values of A induced by

span {X ,T(AX − XD)}with X = [x1, … , xc] and D = diag(𝜂1, … , 𝜂c). For each t ∈ {1, … , c}, if 𝜂t is located in
an eigenvalue interval (𝜁j, 𝜁j+1), then it holds that

𝜂
′
t − 𝜁j

𝜁j+1 − 𝜂′t
≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2
𝜂t − 𝜁j

𝜁j+1 − 𝜂t
with 𝜅 =

𝜁j(𝜁d − 𝜁j+1)
𝜁j+1(𝜁d − 𝜁j)

. (9)

The equality in (9) is attainable in the limit case 𝜂t → 𝜁j in an invariant subspace associated with the eigenvalues
𝜁j, 𝜁j+1 and 𝜁d.

The remaining part of this article is organized as follows. In Section 2, we introduce the algorithmic structure of
the (B)PSD-id, and present a restricted formulation as the starting point of our analysis. In Section 3, the estimates of
the (B)PSD in Theorem 1 are applied to certain representations of the (B)PSD-id in an invariant subspace in order to
derive sharp single-step estimates. Multi-step estimates are presented in Section 4 for the cluster robustness of the
BPSD-id. The theoretical convergence estimates of the BPSD-id are demonstrated by numerical experiments in Section 5.

2 PSD-ID AND BPSD-ID ALGORITHMS AND RESTRICTED
FORMULATIONS

2.1 PSD-id and BPSD-id algorithms

In this section, we reformulate the original algorithm of the PSD-id from Reference 4 in Algorithm 1. Therein we drop the
step indices of the iterates since they are not needed in the derivation of our new estimates. A few remarks of Algorithm 1
are in order.

• Line 1: The S-orthogonalization against the i − 1 accepted approximate eigenvectors is made once at initialization and
then satisfied automatically in the following while-loop.

• Line 2: The stopping criterion uses the norm || ⋅ ||S−1 . It implies that there exists an eigenvalue 𝜆 of (H, S)which fulfills

|𝜆 − 𝜌(z)| ≤ ||r||S−1∕||z||S,
compare Theorem 15.9.1 in Reference 15.

• Line 3: The preconditioner K is constructed to be effectively positive definite for ensuring the convergence; see
Definition 1. In practice, p = Kr can be implemented by approximate solution of the linear system (H − 𝜎S)p = r. The
shift 𝜎 will be discussed in the convergence analysis and the numerical experiments. In principle we set 𝜎 slightly
smaller than the ith smallest eigenvalue 𝜆i, or equal to the current approximate eigenvalue 𝜌(z) if it is close to 𝜆i.
Algorithm 2 describes the BPSD-id. Therein the usage of a suitable block size k̃ can overcome the possible convergence

stagnation of the PSD-id for clustered eigenvalues; see Section 4. A few remarks of Algorithm 2 are in order.

• Line 4: The block residual R actually consists of the residuals of individual Ritz vectors. The first k columns of R are
considered in the stopping criterion.

• There are two implementations with different choices of the block size for computing the smallest eigenvalues of (H, S)
and the associated eigenvectors, beginning with a random initial guess W ∈ Cn×m where m is larger than the number
of target eigenvalues. A straightforward implementation with a fixed block size k̃ < m has the form

BPSD-id
(

W(∶, 1 ∶ i − 1),W(∶, i ∶ i − 1 + k̃), k
)
,
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Algorithm 1. z = PSD-id(U, z)

Input: S-orthonormal matrix U ∈ Cn×(i−1) whose columns are accepted approximate eigenvectors associated with the
i − 1 smallest eigenvalues; initial guess z ∈ Cn.

Output: approximate eigenvector z associated with the ith smallest eigenvalue.
1: S-orthogonalize z against U: z = z − UU∗Sz; z = z∕‖z‖S; r = Hz − 𝜌(z)Sz;
2: while ‖r‖S−1 not sufficiently small do
3: compute a preconditioned residual p = Kr;
4: update z by an S-normalized Ritz vector associated with the ith smallest Ritz value in the subspace span{U, z, p};
5: r = Hz − 𝜌(z)Sz;
6: end while

that is, each outer step only treats k̃ columns of W . The leading index i of these columns is initially 1 and will be updated
together with W(∶, 1 ∶ i − 1) by using already converged columns. An alternative implementation uses the block size
k̃ = m − i + 1 depending on the current index i. Thus W is entirely modified as early as in the first outer step. The latter
columns of W can provide more accurate initial data for the inner loop in the next outer step.

Algorithm 2. Z = BPSD-id(U,Z, k)

Input: S-orthonormal matrix U ∈ Cn×(i−1) whose columns are accepted approximate eigenvectors associated with the
i − 1 smallest eigenvalues; initial guess Z ∈ Cn×k̃, k̃ is the block size.

Output: matrix Z ∈ Cn×k(k ≤ k̃) consisting of approximate eigenvectors associated with the ith to the (i−1+k)th smallest
eigenvalues.

1: S-orthogonalize Z against U;
2: update Z by S-orthonormal Ritz vectors in span{Z};
3: R = HZ − SZ(Z∗HZ);
4: while ‖R(∶, 1∶ k)‖S−1 not sufficiently small do
5: compute a block preconditioned residual P = KR;
6: update Z by S-orthonormal Ritz vectors associated with the ith to the (i−1+k̃)th smallest Ritz values in the

subspace span{U,Z,P};
7: R = HZ − SZ(Z∗HZ);
8: end while
9: Z = Z(∶, 1 ∶ k);

2.2 Restricted formulations of the PSD-id and the BPSD-id

As in Reference 4, we assume by ignoring sufficiently small numerical errors that the columns u1, … , ui−1 of the matrix
U in the PSD-id (Algorithm 1) and the BPSD-id (Algorithm 2) are exact S-orthonormal eigenvectors associated with the
i − 1 smallest eigenvalues 𝜆1 ≤ · · · ≤ 𝜆i−1 of (H, S), and the iterate z or Z after the first S-orthogonalization against U has
full rank.

As the starting point of our new convergence analysis, we represent the PSD-id by the PSD applied to a restricted eigen-
value problem. Let us first extend U by V = [ui, … ,un] as an S-orthonormal basis of Cn where ui, … ,un are eigenvectors
associated with the remaining eigenvalues 𝜆i ≤ · · · ≤ 𝜆n, that is,

HV = SVΛ with Λ = diag(𝜆i, … , 𝜆n) and span{V} = span{U}⊥S . (10)

For the PSD-id, an arbitrary z̃ ∈ span{V} ⧵ {0} can be represented by

z̃ = Vc̃ with c̃ = V∗Sz̃. (11)
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By using the identity (10), a relation between the Rayleigh quotient 𝜌(⋅) of (H, S) defined in (2) and the restricted Rayleigh
quotient of Λ:

𝜌̃ ∶ C
n−i+1 ⧵ {0}→ R, 𝜌̃(w) = w∗Λw

w∗w
, (12)

is given by

𝜌(z̃) = 𝜌(Vc̃) = c̃∗V∗HVc̃
c̃∗V∗SVc̃

(10)
= c̃∗V∗SVΛc̃

c̃∗c̃
= c̃∗Λc̃

c̃∗c̃
= 𝜌̃(c̃). (13)

Consequently, the target eigenvalue of the PSD-id (Algorithm 1) can be interpreted by

min
z̃∈Cn⧵{0}, U∗Sz̃=0

𝜌(z̃) = min
z̃∈span{V}⧵{0}

𝜌(z̃) = min
c̃∈Cn−i+1⧵{0}

𝜌̃(c̃).

It implies that the PSD-id for computing the ith smallest eigenvalue of (H, S) is equivalent to the PSD for computing the
smallest eigenvalue of Λ. The following lemma presents such relationship in detail.

Lemma 1. Denote by z and z′ two successive iterates of the PSD-id.

(i) If z belongs to span{V} ⧵ {0}, then also z′.
(ii) Let c = V∗Sz and c′ = V∗Sz′ be the coefficient vectors of z and z′ with respect to the representation (11). Then c′ is

a minimizer of 𝜌̃(⋅) in span{c, K̃r̃} with K̃ = V∗SKSV and r̃ = Λc − 𝜌̃(c)c.

Proof. (i) If z belongs to span{V} ⧵ {0}, then the dimension of the trial subspace span{U, z, p} is at least i. This
verifies the existence of the ith smallest Ritz value in span{U, z, p} and the existence of the next iterate z′ which
is an associated Ritz vector. Moreover, the columns of U are eigenvectors associated with the i − 1 smallest
eigenvalues and automatically Ritz vectors associated with the i − 1 smallest Ritz values in span{U, z, p}. Thus
z′ is S-orthogonal to span{U} and belongs to span{V} ⧵ {0}.

(ii) By using the representation z = Vc and the projector Q = VV∗S onto span{V}, we get

span{U, z, p} = span{U}⊕ span{Vc,Qp},

and

Qp = (VV∗S)Kr = VV∗SK (Hz − 𝜌(z)Sz)
(13)
= VV∗SK (HVc − 𝜌̃(c)SVc)

(10)
= VV∗SK (SVΛc − 𝜌̃(c)SVc) = VV∗SKSV (Λc − 𝜌̃(c)c) = VK̃r̃.

Therefore

span{U, z, p} = span{U}⊕ span{Vc,VK̃r̃} = span{U}⊕ V ⋅ span{c, K̃r̃}.

Recall that the columns of U are Ritz vectors associated with the i − 1 smallest Ritz values in span{U, z, p},
the ith smallest Ritz value is just the smallest Ritz value in V ⋅ span{c, K̃r̃}. The associated Ritz vector z′ is thus
a minimizer of 𝜌(⋅) therein. The relation (13) ensures that minimizing 𝜌(⋅) in the subspace V ⋅ span{c, K̃r̃} is
equivalent to minimizing 𝜌̃(⋅) in the “coefficient subspace” span{c, K̃r̃}. Consequently, the coefficient vector
c′ of z′ is a minimizer of 𝜌̃(⋅) in span{c, K̃r̃}. ▪

Lemma 1 indicates that c′ is a Ritz vector associated with the smallest Ritz value of Λ in span{c, K̃r̃}. Thus c and c′
can be regarded as two successive iterates of a PSD iteration for minimizing 𝜌̃(⋅) with K̃ as preconditioner. Consequently,
we can analyze the PSD-id in terms of the PSD iteration with successive iterates c and c′.

Now let us represent the BPSD-id by the BPSD applied to a restricted eigenvalue problem. For an arbitrary matrix
Z̃ ∈ Cn×l having full rank and satisfying span{Z̃} ⊆ span{V}, one can define C̃ = V∗SZ̃ so that Z̃ = VC̃. Based on the
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relations

Z̃∗HZ̃ = C̃∗V∗HVC̃
(10)
= C̃∗V∗SVΛC̃ = C̃∗ΛC̃ and Z̃∗SZ̃ = C̃∗V∗SVC̃ = C̃∗C̃, (14)

the Ritz values of (H, S) in span{Z̃} coincide with those of Λ in span{C̃}. The respective Ritz vectors can be converted by
multiplications with V or V∗S analogously to (11).

Lemma 2. Denote by Z and Z′ two successive iterates of the BPSD-id.

(i) If Z has full rank and all its k̃ columns belong to span{V}, then also Z′.
(ii) Define the coefficient matrices C = V∗SZ and C′ = V∗SZ′. Then the columns of C are orthonormal Ritz vectors of

Λ in span{C}, that is, Θ = C∗ΛC is a diagonal matrix whose diagonal entries are the corresponding Ritz values.
Furthermore, the columns of C′ are orthonormal Ritz vectors associated with the k̃ smallest Ritz values of Λ in
span{C, K̃R̃} for K̃ = V∗SKSV and R̃ = ΛC − CΘ.

Proof. (i) The dimension of span{U,Z,P} is at least i − 1 + k̃ so that Z′ is constructed by S-orthonormal
Ritz vectors associated with the ith to the (i − 1 + k̃)th smallest Ritz values of (H, S) in span{U,Z,P},
and has full rank. These Ritz vectors (columns of Z′) are S-orthogonal to those associated with
the i − 1 smallest eigenvalues and thus belong to the S-orthogonal complement of span{U}, that is,
span{V}.

(ii) The statement for C is simply based on (14) applied to Z and C together with the fact that the
columns of Z are S-orthonormal Ritz vectors of (H, S) in span{Z}. In order to verify the statement for C′, the
relation

span{U,Z,P} = span{U}⊕ span{Z,QP}

with the projector Q = VV∗S onto span{V} indicates that the columns of Z′ are S-orthonormal Ritz vectors
associated with the k̃ smallest Ritz values of (H, S) in span{Z,QP}. Moreover, by using Θ = C∗ΛC = Z∗HZ, it
holds that

QP = (VV∗S)KR = VV∗SK (HZ − SZΘ) = VV∗SK (HVC − SVCΘ)
= VV∗SK (SVΛC − SVCΘ) = VV∗SKSV (ΛC − CΘ) = VK̃R̃,

so that span{Z,QP} = V ⋅ span{C, K̃R̃}. Applying (14) to span{Z,QP} and span{C, K̃R̃} completes the verifi-
cation. ▪

By Lemma 2, we can analyze the convergence behavior of the BPSD-id in terms of the BPSD iteration with successive
iterates C and C′.

3 SHARP SINGLE-STEP ESTIMATES

In this section, we first analyze the convergence behavior of the PSD-id and the BPSD-id. Section 3.1 presents an alter-
native convergence analysis of the PSD-id (Algorithm 1) in comparison to Reference 4. The estimate (8) of the PSD with
weaker assumptions is applied to the restricted formulation of the PSD-id introduced in Lemma 1. This results in a sharp
single-step estimate of the PSD-id. In Section 3.2, the convergence of the BPSD-id (Algorithm 2) is investigated by using
the estimate (9) together with Lemma 2. In Section 3.3, we discuss an extension of the main results under the notion of
so-called larger shifts.

In preparation for the main analysis in this section, we characterize the preconditioner K for the PSD-id and the
BPSD-id with respect to its restricted form K̃ arising from Lemmas 1 and 2.

Definition 1 (Definition 2.1 in Reference 4). A preconditioner K is called effectively positive definite, if K̃ =
V∗SKSV ∈ C(n−i+1)×(n−i+1) is positive definite, where V is defined in (10). K̃ is called an effective form of K.
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8 of 27 ZHOU et al.

A typical example of effectively positive definite preconditioners is the shift-invert preconditioner K = (H − 𝜎S)−1

where the shift 𝜎 is smaller than 𝜆i, and not an eigenvalue of (H, S). In this case, the corresponding effective form K̃ is
actually a diagonal matrix since by (10),

K̃ = V∗SKSV = V∗S(H − 𝜎S)−1SV = V∗SV(Λ − 𝜎Ĩ)−1 = (Λ − 𝜎Ĩ)−1
, (15)

where Ĩ = In−i+1. K̃ is positive definite since (𝜆j − 𝜎)−1
> 0 for each j ≥ i due to 𝜎 < 𝜆i.

3.1 Sharp single-step estimate of the PSD-id

We first provide a simple proof on the monotonicity of the approximate eigenvalues, which has been proven in a
cumbersome way; see Proposition 2.2 in Reference 4.

Lemma 3. Denote by z and z′ two successive iterates of the PSD-id (Algorithm 1) where z ∈ span{V} ⧵ {0}. Let
the preconditioner K be effectively positive definite. If z is not an eigenvector, then 𝜌(z′) < 𝜌(z).

Proof. We use the coefficient vectors c and c′ defined in Lemma 1. Since c′ is a minimizer of 𝜌̃(⋅) in span{c, K̃r̃},
we get 𝜌̃(c′) ≤ 𝜌̃(c). Therein the equality does not hold, since otherwise c would also be a minimizer of 𝜌̃(⋅) and
thus a Ritz vector in span{c, K̃r̃}. Then the residual r̃ = Λc − 𝜌̃(c)c would be orthogonal to span{c, K̃r̃} so that
r̃∗K̃r̃ = 0. Subsequently, the positive definiteness of the restricted form K̃ of K leads to r̃ = 0 and

0 = SVr̃ = SV (Λc − 𝜌̃(c)c)
(10)
= HVc − 𝜌̃(c)SVc

(13)
= Hz − 𝜌(z)Sz,

that is, z would be an eigenvector. Thus 𝜌̃(c′) < 𝜌̃(c) holds and implies 𝜌(z′) < 𝜌(z) by (13). ▪

The following lemma provides a quantitative measure on the quality of an effectively positive definite preconditioner.

Lemma 4. Consider an effectively positive definite preconditioner K, its restricted form K̃ = V∗SKSVand the
diagonal matrix Λ𝜈 = Λ − 𝜈Ĩ, where Λ is from (10), Ĩ = In−i+1, and 𝜈 is a parameter such that 𝜈 < 𝜆i. Denote by
𝛼 and 𝛽 the smallest and largest eigenvalues of K̃Λ𝜈 . Then 𝛽 ≥ 𝛼 > 0, and

‖‖‖Ĩ − 𝜔K̃Λ𝜈
‖‖‖Λ

𝜈

≤ 𝜀 < 1, (16)

where 𝜔 = 2∕(𝛽 + 𝛼) and 𝜀 = (𝛽 − 𝛼)∕(𝛽 + 𝛼).

Proof. The matrices K̃ and Λ𝜈 are evidently Hermitian positive definite so that their square root matrices are
available. By usingΛ1∕2

𝜈 , the matrix K̃Λ𝜈 is similar to K̂ = Λ1∕2
𝜈 K̃Λ1∕2

𝜈 which is Hermitian positive definite. This
shows the positiveness of all eigenvalues of K̃Λ𝜈 and K̂. Moreover, the norm ‖‖‖Ĩ − 𝜔K̃Λ𝜈

‖‖‖Λ
𝜈

= ‖‖‖Ĩ − 𝜔K̂‖‖‖2
is

actually the maximum of |1 − 𝜔𝜆| among all eigenvalues 𝜆 of K̂. Then the quality condition (16) is verified by

0 < 𝛼 ≤ 𝜆 ≤ 𝛽 ⇒
2𝛼
𝛽 + 𝛼

≤ 𝜔𝜆 ≤
2𝛽
𝛽 + 𝛼

⇒
𝛼 − 𝛽
𝛽 + 𝛼

≤ 1 − 𝜔𝜆 ≤ 𝛽 − 𝛼
𝛽 + 𝛼

.

▪

The diagonal matrix Λ𝜈 in Lemma 4 is motivated by the special case K = (H − 𝜎S)−1 with a shift 𝜎 < 𝜆i. Therein the
restricted form K̃ coincides with (Λ − 𝜎Ĩ)−1 as shown in (15). Then K can be viewed as an optimal preconditioner by
setting 𝜈 = 𝜎 for which K̃Λ𝜈 = Ĩ holds so that 𝛼 = 𝛽 = 1 = 𝜔, and 𝜀 = 0. Consequently, a natural choice of 𝜈 is 𝜈 = 𝜎 if we
construct K by approximating (H − 𝜎S)−1. However, for evaluating an arbitrary effectively positive definite preconditioner
K, the parameter 𝜈 is not necessarily related to a shift from a certain algorithm.

The quantity 𝜔 is determined by 𝛼 and 𝛽 and serves to scale the restricted form K̃ so that (16) is compatible with the
quality condition (7) from Theorem 1 where T corresponds to 𝜔K̃.

The following lemma interprets the coefficient vectors from Lemma 1 as iterates of a PSD iteration for a shifted matrix.
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ZHOU et al. 9 of 27

Lemma 5. With the diagonal matrix Λ𝜈 from Lemma 4 and the corresponding Rayleigh quotient

𝜌̃𝜈 ∶ C
n−i+1 ⧵ {0}→ R, 𝜌̃𝜈(w) =

w∗Λ𝜈w
w∗w

, (17)

the coefficient vector c′ of z′ for the PSD-id (Algorithm 1) is a minimizer of 𝜌̃𝜈(⋅) in span{c, K̃r̃𝜈}, where K̃ =
V∗SKSV and r̃𝜈 = Λ𝜈c − 𝜌̃𝜈(c)c.

Proof. For an arbitrary c̃ ∈ Cn−i+1 ⧵ {0}, it holds that

𝜌̃𝜈(c̃) =
c̃∗Λ𝜈 c̃

c̃∗c̃
= c̃∗Λc̃ − 𝜈c̃∗c̃

c̃∗c̃
= 𝜌̃(c̃) − 𝜈.

Thus minimizing 𝜌̃𝜈(⋅) is equivalent to minimizing 𝜌̃(⋅). Moreover, the relation

r̃𝜈 = Λ𝜈c − 𝜌̃𝜈(c)c =
(
Λ − 𝜈Ĩ

)
c − (𝜌̃(c) − 𝜈) c = Λc − 𝜌̃(c)c = r̃,

implies span{c, K̃r̃𝜈} = span{c, K̃r̃} so that the statement for c′ from Lemma 1 is directly reformulated in terms
of 𝜌̃𝜈(⋅) and r̃𝜈 . ▪

By Lemmas 4 and 5, the following theorem shows that by a reverse transformation, the PSD estimate (8) in Theorem 1
leads to a sharp single-step estimate of the PSD-id based on relations of Rayleigh quotients in (13).

Theorem 2. Denote by z and z′ two successive iterates of the PSD-id (Algorithm 1) where z ∈ span{V} ⧵ {0}.
Let the preconditioner K be effectively positive definite with the quality parameter 𝜀 defined in (16) for any 𝜈 < 𝜆i.

If 𝜌(z) ∈ (𝜆j, 𝜆j+1) for certain j ≥ i, then

𝜌(z′) − 𝜆j

𝜆j+1 − 𝜌(z′)
≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2
𝜌(z) − 𝜆j

𝜆j+1 − 𝜌(z)
(18)

with

𝜅 =
(
𝜆j − 𝜈
𝜆j+1 − 𝜈

)(
𝜆n − 𝜆j+1

𝜆n − 𝜆j

)
.

The equality in (18) is attainable in the limit case 𝜌(z) → 𝜆j in an invariant subspace associated with the
eigenvalues 𝜆j, 𝜆j+1 and 𝜆n.

Proof. We use coefficient vectors c and c′ introduced in Lemma 1. According to Lemma 5, c′ is a minimizer
of 𝜌̃𝜈(⋅) in span{c, K̃r̃𝜈} concerning the matrix Λ𝜈 .

By applying Theorem 1 to

A → Λ𝜈, x → c, T → 𝜔K̃, 𝜂 → 𝜌̃𝜈(c), 𝜂
′ → 𝜌̃𝜈(c′),

and substituting the eigenvalues, the estimate (8) is specified as

𝜌̃𝜈(c′) − (𝜆j − 𝜈)
(𝜆j+1 − 𝜈) − 𝜌̃𝜈(c′)

≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2
𝜌̃𝜈(c) − (𝜆j − 𝜈)
(𝜆j+1 − 𝜈) − 𝜌̃𝜈(c)

with

𝜅 =
(𝜆j − 𝜈)

(
(𝜆n − 𝜈) − (𝜆j+1 − 𝜈)

)
(𝜆j+1 − 𝜈)

(
(𝜆n − 𝜈) − (𝜆j − 𝜈)

) =
(
𝜆j − 𝜈
𝜆j+1 − 𝜈

)(
𝜆n − 𝜆j+1

𝜆n − 𝜆j

)
.
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10 of 27 ZHOU et al.

Therein the terms 𝜌̃𝜈(c) and 𝜌̃𝜈(c′) coincide with 𝜌(z) − 𝜈 and 𝜌(z′) − 𝜈 due to the relation

𝜌̃𝜈(c̃) = 𝜌̃(c̃) − 𝜈
(13)
= 𝜌(z̃) − 𝜈.

Thus (18) is shown. Furthermore, the sharpness statement in Theorem 1 is specified for the limit case
𝜌̃𝜈(c) → 𝜆j − 𝜈 and the matrix Λ𝜈 . The corresponding invariant subspace is associated with the eigenvalues
𝜆j − 𝜈, 𝜆j+1 − 𝜈 and 𝜆n − 𝜈. Denoting this subspace by ̃, then ̃ = V ̃ is an invariant subspace of (H, S)
associated with the eigenvalues 𝜆j, 𝜆j+1 and 𝜆n due to (10), and the limit case 𝜌̃𝜈(c) → 𝜆j − 𝜈 is converted
into 𝜌(z) → 𝜆j. ▪

Remark 1. The assumption 𝜌(z) ∈ (𝜆j, 𝜆j+1) in Theorem 2 does not cover the case that 𝜌(z) is equal to 𝜆j or
𝜆j+1. Applying Lemma 3 to for example, 𝜌(z) = 𝜆j provides the following supplement: if z is an eigenvector,
then the iteration is simply terminated; otherwise Lemma 3 ensures that 𝜌(z) is smaller in the next step and
can match the assumption 𝜌(z) ∈ (𝜆j, 𝜆j+1) for a smaller index j so that Theorem 2 is applicable. In summary,
𝜌(z) either converges to an eigenvalue 𝜆j with j > i or reaches the interval (𝜆i, 𝜆i+1) in the final phase. In the
latter (and usual) case, two possible phenomena can be interpreted by the ratio (𝜆i − 𝜈)∕(𝜆i+1 − 𝜈) from the
convergence bound: the convergence rate is deteriorated for 𝜆i ≈ 𝜆i+1; for well-separated 𝜆i and 𝜆i+1, a fast
convergence can be obtained by (proper approximations of) the shift-invert preconditioner K = (H − 𝜎S)−1

with 𝜎 ≈ 𝜆i since 𝜅 → 0 for 𝜈 = 𝜎 → 𝜆i. In Section 5 in Reference 4, it is shown that an efficient shift 𝜎 can
be chosen from the interval (𝜆i−1, 𝜆i), for example, by initially setting 𝜎 slightly larger than the computed
𝜆i−1 and then enlarging it with a weighted mean of 𝜆i−1 and the current approximation of 𝜆i. The sharp-
ness statement in Theorem 2 can be illustrated similarly to Figure 4.5 in Reference 10. One can notice that
the numerical maxima of the single-step convergence rate of the PSD-id form a monotonically decreasing
function g(𝜃) against 𝜃 = 𝜌(z) ∈ (𝜆j, 𝜆j+1) for various j, and the limit lim𝜃→𝜆j g(𝜃) coincides with the conver-
gence factor in (18). Moreover, g(𝜃) for arbitrary 𝜃 ∈ (𝜆j, 𝜆j+1) can be calculated based on certain lengthy
implicit representations; compare Page 3204 in Reference 8. Determining an explicit form of g(𝜃) is still
challenging.

Remark 2. In comparison to Theorem 3.2 in Reference 4, the current approximate eigenvalue 𝜌(z) in
Theorem 2 is located in an arbitrary eigenvalue interval so that the statement is much more flexible. Moreover,
the bound in (18) has a simpler form where only one technical term is used, namely the quality parameter 𝜀
of preconditioning. With a dynamic shift 𝜎 approximating 𝜆i from below, the parameter 𝜅 in Theorem 2 with
𝜈 = 𝜎 can be close to zero in the final phase and indicates a superlinear convergence. The limit case 𝜅 → 0
corresponds to an optimal shift-invert preconditioner which allows a one-step convergence in the sense that
computing the preconditioned residual p = Kr by solving the linear system (H − 𝜎S)p = r for 𝜎 ≈ 𝜆i, that is,
for almost singular H − 𝜎S, already gives a good approximate eigenvector associated with 𝜆i. The convergence
factor in (18) is close to 𝜀2 for 𝜅 → 0 and thus mainly depends on the solution quality of the linear system. How-
ever, this approach is usually not optimal with respect to the total computational time. In addition, Theorem
4.1 in Reference 4 can be improved by Theorem 2 with the convergence factor 𝜅2∕(2 − 𝜅)2 arising from the
special case 𝜀 = 0, that is, K = (H − 𝜎S)−1.

3.2 Sharp single-step estimate of the BPSD-id

Let us now analyze the evolution of Ritz values of the BPSD-id within two successive subspace iterates. We first interpret
the coefficient matrices of the BPSD-id from Lemma 2 as iterates of a BPSD iteration for the shifted matrix Λ𝜈 introduced
in Lemma 4.

Lemma 6. Denote by Z and Z′ two successive iterates of the BPSD-id (Algorithm 2) where Z has full rank
and all its k̃ columns belong to span{V}. With the diagonal matrix Λ𝜈 from Lemma 4, the columns of the
coefficient matrix C = V∗SZ are orthonormal Ritz vectors of Λ𝜈 in span{C}. Moreover, by using the cor-
responding Ritz value matrix Θ𝜈 = C∗Λ𝜈C, the columns of the coefficient matrix C′ = V∗SZ′ are orthonor-
mal Ritz vectors associated with the k̃ smallest Ritz values of Λ𝜈 in span{C, K̃R̃𝜈} for K̃ = V∗SKSV and
R̃𝜈 = Λ𝜈C − CΘ𝜈 .
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ZHOU et al. 11 of 27

Proof. The statements are verified by using Lemma 2 and the transformations

Θ𝜈 = C∗Λ𝜈C = C∗ (Λ − 𝜈Ĩ
)

C = Θ − 𝜈Ik̃,

and the fact that

R̃𝜈 =
(
Λ − 𝜈Ĩ

)
C − C

(
Θ − 𝜈Ik̃

)
= ΛC − CΘ = R̃,

implies that

span{C, K̃R̃𝜈} = span{C, K̃R̃}.
▪

The following lemma shows a strict reduction of Ritz values concerning the coefficient subspaces span{C} and
span{C′}.

Lemma 7. Let the preconditioner K of the BPSD-id be effectively positive definite. Following Lemma 6, denote
by 𝜑1 ≤ · · · ≤ 𝜑k̃ and 𝜑′1 ≤ · · · ≤ 𝜑

′
k̃

the Ritz values of Λ𝜈 in span{C} and span{C′}, respectively. If span{C}
contains no eigenvectors of Λ𝜈 , then 𝜑′t < 𝜑t holds for each t ∈ {1, … , k̃}.

Proof. Let us apply Lemma 4 to K, and define the auxiliary matrix

C̃ = C − 𝜔K̃R̃𝜈 .

Then C̃ has full rank since otherwise there would exist a g ∈ Ck̃ ⧵ {0} satisfying 0 = C̃g = Cg − 𝜔K̃(Λ𝜈C −
CΘ𝜈)g, that is,

Λ−1
𝜈 CΘ𝜈g = (Ĩ − 𝜔K̃Λ𝜈)(Λ−1

𝜈 CΘ𝜈g − Cg).

Moreover, the condition 𝜈 < 𝜆i from Lemma 4 ensures that Λ−1
𝜈 CΘ𝜈 has full rank so that Λ−1

𝜈 CΘ𝜈g ≠ 0.
Applying (16) implies

||Λ−1
𝜈 CΘ𝜈g||Λ

𝜈
≤ ||Ĩ − 𝜔K̃Λ𝜈||Λ

𝜈
||Λ−1

𝜈 CΘ𝜈g − Cg||Λ
𝜈
< ||Λ−1

𝜈 CΘ𝜈g − Cg||Λ
𝜈
, (19)

where ||Λ−1
𝜈 CΘ𝜈g − Cg||Λ

𝜈
= 0 is excluded due to the first inequality and Λ−1

𝜈 CΘ𝜈g ≠ 0. However, the orthog-
onality

(Cg)∗Λ𝜈(Λ−1
𝜈 CΘ𝜈g − Cg) = g∗C∗CΘ𝜈g − g∗C∗Λ𝜈Cg = 0,

leads to

||Λ−1
𝜈 CΘ𝜈g||2Λ

𝜈

= ||Cg||2Λ
𝜈

+ ||Λ−1
𝜈 CΘ𝜈g − Cg||2Λ

𝜈

≥ ||Λ−1
𝜈 CΘ𝜈g − Cg||2Λ

𝜈

,

which contradicts (19). Thus C̃ has full rank.
Consequently, there are k̃ Ritz values in span{C̃}. We denote them by 𝜑̃1 ≤ · · · ≤ 𝜑̃k̃. Then𝜑′t ≤ 𝜑̃t holds for

each t ∈ {1, … , k̃} due to span{C̃} ⊆ span{C, K̃R̃𝜈} and the Courant-Fischer principles. For proving 𝜑′t < 𝜑t,
it remains to be shown

𝜑̃t < 𝜑t. (20)

For this purpose, we use a submatrix Et of Ik̃ such that the columns of CEt are Ritz vectors associated with the
Ritz values 𝜑1 ≤ · · · ≤ 𝜑t. Then 𝜑t is the largest Ritz value in span{CEt}. Correspondingly, we consider the
largest Ritz value 𝜑̂t in span{C̃Et}. The relation span{C̃Et} ⊆ span{C̃} ensures 𝜑̃t ≤ 𝜑̂t. In addition, we use a
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12 of 27 ZHOU et al.

Ritz vector ĉ = C̃Etĝ associated with 𝜑̂t and the auxiliary vector

c = CΘ𝜈Etĝ = CEtΘ𝜈,tĝ with Θ𝜈,t = diag(𝜑1, … , 𝜑t).

Then by using the definitions of C̃ and R̃𝜈 , we have

Λ−1
𝜈 c − ĉ = Λ−1

𝜈 CΘ𝜈Etĝ −
(

C − 𝜔K̃(Λ𝜈C − CΘ𝜈)
)

Etĝ = (Ĩ − 𝜔K̃Λ𝜈)(Λ−1
𝜈 c − CEtĝ),

so that

||Λ−1
𝜈 c − ĉ||Λ

𝜈

(16)
≤ 𝜀||Λ−1

𝜈 c − CEtĝ||Λ
𝜈
.

Therein ||Λ−1
𝜈 c − CEtĝ||Λ

𝜈
further fulfills

||Λ−1
𝜈 c − CEtĝ||Λ

𝜈
≤ ||Λ−1

𝜈 c − 𝜑−1c||Λ
𝜈
,

for 𝜑 = 𝜌̃𝜈(c) with (17) since the orthogonality

(CEtg̃)∗Λ𝜈(Λ−1
𝜈 c − CEtĝ) = g̃∗E∗t C∗CΘ𝜈Etĝ − g̃∗E∗t C∗Λ𝜈CEtĝ = 0,

for g̃ = ĝ − 𝜑−1Θ𝜈,tĝ leads to

||Λ−1
𝜈 c − CEtĝ||Λ

𝜈
≤

(||Λ−1
𝜈 c − CEtĝ||2Λ

𝜈

+ ||CEtg̃||2Λ
𝜈

)1∕2

= ||Λ−1
𝜈 c − CEt(𝜑−1Θ𝜈,tĝ)||Λ

𝜈
= ||Λ−1

𝜈 c − 𝜑−1c||Λ
𝜈
.

If span{C} contains no eigenvectors ofΛ𝜈 , then the differenceΛ−1
𝜈 c − 𝜑−1c is nonzero since otherwise c would

be an eigenvector of Λ𝜈 . Consequently, it holds that

||Λ−1
𝜈 c − ĉ||2Λ

𝜈

< ||Λ−1
𝜈 c − 𝜑−1c||2Λ

𝜈

.

By the definition of the norm || ⋅ ||Λ
𝜈
, we have

ĉ∗Λ𝜈 ĉ − c∗ĉ − ĉ∗c < 𝜑−2c∗Λ𝜈c − 2𝜑−1c∗c = −𝜑−1c∗c.

Multiplying both sides by 𝜑−1 yields

𝜑
−1ĉ∗Λ𝜈 ĉ < 𝜑−1(c∗ĉ + ĉ∗c) − 𝜑−2c∗c = ĉ∗ĉ − ||̂c − 𝜑−1c||22 ≤ ĉ∗ĉ,

so that 𝜌̃𝜈 (̂c) = (̂c∗Λ𝜈 ĉ)∕(̂c∗ĉ) < 𝜑. Thus the inequality (20) is verified by

𝜑̃t ≤ 𝜑̂t = 𝜌̃𝜈 (̂c) < 𝜑 = 𝜌̃𝜈(c) = 𝜌̃𝜈(CEtΘ𝜈,tĝ) ≤ 𝜑t.

▪

Lemma 7 can easily be adapted to successive iterates of the BPSD-id. Therein the relation (14) applied to C, Z
and C′, Z′ (introduced in Lemma 6) shows that 𝜑t + 𝜈 and 𝜑′t + 𝜈 are Ritz values of (H, S) in span{Z} and span{Z′},
respectively. Therefore a strict reduction of Ritz values occurs if span{Z} contains no eigenvectors of (H, S). This
actually generalizes Lemma 3 to the BPSD-id where the proof is however not a direct generalization of that of
Lemma 3.

The following theorem includes sharp single-step estimates on the convergence of the BPSD-id.

Theorem 3. Denote by Z and Z′ two successive iterates of the BPSD-id (Algorithm 2) where Z has full rank
and all its k̃ columns belong to span{V}. Let the preconditioner K be effectively positive definite with the quality
parameter 𝜀 defined in (16). Consider the Ritz values 𝜃1 ≤ · · · ≤ 𝜃k̃ and 𝜃′1 ≤ · · · ≤ 𝜃

′
k̃

in span{Z} and span{Z′},
respectively.
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ZHOU et al. 13 of 27

If 𝜃t ∈ (𝜆j, 𝜆j+1) for t ∈ {1, … , k̃} and certain j ≥ i − 1 + t, then

𝜃
′
t − 𝜆j

𝜆j+1 − 𝜃′t
≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2
𝜃t − 𝜆j

𝜆j+1 − 𝜃t
(21)

with

𝜅 =
(
𝜆j − 𝜈
𝜆j+1 − 𝜈

)(
𝜆n − 𝜆j+1

𝜆n − 𝜆j

)
.

The equality in (21) is attainable in the limit case 𝜃t → 𝜆j in an invariant subspace associated with the eigenvalues
𝜆j, 𝜆j+1 and 𝜆n.

Proof. We use the coefficient matrices C and C′ of Z and Z′ introduced in Lemma 2. Following the relation
(14), Lemmas 6 and 7, we apply Theorem 1 to

A → Λ𝜈 , X → C, T → 𝜔K̃, 𝜂t → 𝜑t = 𝜃t − 𝜈, 𝜂
′
t → 𝜑

′
t = 𝜃

′
t − 𝜈.

This results in

(𝜃′t − 𝜈) − (𝜆j − 𝜈)
(𝜆j+1 − 𝜈) − (𝜃′t − 𝜈)

≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2 (𝜃t − 𝜈) − (𝜆j − 𝜈)
(𝜆j+1 − 𝜈) − (𝜃t − 𝜈)

with

𝜅 =
(𝜆j − 𝜈)

(
(𝜆n − 𝜈) − (𝜆j+1 − 𝜈)

)
(𝜆j+1 − 𝜈)

(
(𝜆n − 𝜈) − (𝜆j − 𝜈)

) =
(
𝜆j − 𝜈
𝜆j+1 − 𝜈

)(
𝜆n − 𝜆j+1

𝜆n − 𝜆j

)
,

and further yields the estimate (21) including the sharpness statement. ▪

Similarly to Remark 1, we can additionally discuss the case 𝜃t = 𝜆j based on Lemma 7. This yields

𝜃
′
t − 𝜈 = 𝜑

′
t < 𝜑t = 𝜃t − 𝜈 ⇒ 𝜃

′
t < 𝜃t.

so that the limit of the Ritz value 𝜃t is either 𝜆i−1+t or some 𝜆j with j > i − 1 + t.
We note that the convergence factor in (21) is only meaningful for well-separated eigenvalues and cannot predict the

so-called cluster robustness of block iterations. Section 4 serves to fill this theoretical gap.

3.3 Larger shifts

The estimates in Theorems 2 and 3 are concerned with effectively positive definite preconditioners such as shift-invert
preconditioners of the form K = (H − 𝜎S)−1 as well as their approximations. Setting 𝜎 < 𝜆i easily ensures the effectively
positive definiteness of K; see (15). However, the practical implementation of the PSD-id in Section 5 in Reference 4 uses
the shift 𝜎 = 𝜌(z) after 𝜌(z) is sufficiently close to 𝜆i, that is, 𝜎 is larger than 𝜆i. Nevertheless, the convergence analysis
therein is still based on some estimates which actually treat the case that 𝜎 is slightly smaller than 𝜆i. Thus the resulting
bounds can only be applied in an asymptotic way. This section presents a direct analysis together with an extension to the
BPSD-id.

We begin with the condition 𝜆i < 𝜎 < (𝜆i + 𝜆i+1)∕2 in the PSD-id and the exact shift-invert preconditioner K =
(H − 𝜎S)−1.

Theorem 4. Let z be the current iterate of the PSD-id (Algorithm 1), and z′ the next iterate. Assume that
the columns u1, … ,ui−1 of U are S-orthonormal eigenvectors associated with the i − 1 smallest eigenvalues
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14 of 27 ZHOU et al.

𝜆1 ≤ · · · ≤ 𝜆i−1, define V = [ui, … ,un] such that [U,V] = [u1, … ,un] is an S-orthonormal eigenbasis associ-
ated with 𝜆1 ≤ · · · ≤ 𝜆n, and consider the case K = (H − 𝜎S)−1 for a shift 𝜎 ∈ (𝜆i, (𝜆i + 𝜆i+1)∕2).

If 𝜌(z) ≠ 𝜎 and 𝜌(z) ∈ (𝜆i, 𝜆i+1), then

𝜌(z′) − 𝜆i

𝜆i+1 − 𝜌(z′)
≤

(
𝜅

2 − 𝜅

)2 𝜌(z) − 𝜆i

𝜆i+1 − 𝜌(z)
(22)

with

𝜅 =
(
𝜆i − 𝜎
𝜆i+1 − 𝜎

)(
𝜆n − 𝜆i+1

𝜆n − 𝜆i

)
.

Proof. The condition 𝜌(z) ≠ 𝜎 excludes a stagnation caused by

p = (H − 𝜌(z)S)−1(Hz − 𝜌(z)Sz) = z ⇒ span{U, z, p} = span{U, z}.

For proving (22), we use a restricted formulation of the considered iteration with respect to z = Vc and z′ = Vc′,
namely,

c′ = RR
(
span{c, (Λ − 𝜎Ĩ)−1c}

)
, (23)

where the Rayleigh-Ritz procedure RR(⋅) extracts an orthonormal Ritz vector ofΛ associated with the smallest
Ritz value; compare Lemma 1. Evidently, (23) is an acceleration of

ĉ = (Λ − 𝜎Ĩ)−1c + 𝛽c,

for arbitrary 𝛽 ∈ R. By using the auxiliary matrix A = −Λ together with its eigenvalues 𝛼1 ≥ · · · ≥ 𝛼n−i+1 and
the corresponding Rayleigh quotient 𝛼(⋅), we get

𝛼j = −𝜆i−1+j, 𝛼(c) = −𝜌̃(c) = −𝜌(z) > −𝜆i+1 = 𝛼2, 𝛼(̂c) = −𝜌̃(̂c),

and ĉ = f (A)c with f (𝜂) = (−𝜂 − 𝜎)−1 + 𝛽.

Subsequently, we choose 𝛽 = − 1
2

(
(𝜆i+1 − 𝜎)−1 + (𝜆n − 𝜎)−1) so that

|f (𝛼1)| > |f (𝛼2)| ≥ |f (𝛼j)| ∀ j ∈ {2, … ,n − i + 1},

holds (by elementary comparison). Then ĉ = f (A)c can be analyzed as the power method for a matrix function;
see Section 1.1 in Reference 16. In particular, the estimate (1.9) in Reference 16 is applicable due to 𝛼(c) > 𝛼2,
and implies

𝛼1 − 𝛼(̂c)
𝛼(̂c) − 𝛼2

≤

(|f (𝛼2)|
|f (𝛼1)|

)2
𝛼1 − 𝛼(c)
𝛼(c) − 𝛼2

,

which is equivalent to

𝜌̃(̂c) − 𝜆i

𝜆i+1 − 𝜌̃(̂c)
≤

(
(𝜆i+1 − 𝜎)−1 + 𝛽
(𝜆i − 𝜎)−1 + 𝛽

)2
𝜌̃(c) − 𝜆i

𝜆i+1 − 𝜌̃(c)
.

This leads to (22) by inserting 𝛽 and using 𝜌̃(̂c) ≥ 𝜌̃(c′) = 𝜌(z′), 𝜌̃(c) = 𝜌(z). ▪

Theorem 4 relaxes the condition 𝜎 < 𝜆i. A reasonable interval for selecting the shift is (𝜆i−1, (𝜆i + 𝜆i+1)∕2) where the
lower bound can be determined by the previous outer step and the upper bound can be detected by the Rayleigh quotient
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ZHOU et al. 15 of 27

and the residual; compare Section 5.2 in Reference 17. The excluded case 𝜌(z) = 𝜎 in Theorem 4 can be treated by solving
the restricted linear system

Q̃∗(H − 𝜎S)Q̃p = r, p ∈ span{U, z}⊥S (24)

with the S-orthogonal projector Q̃ onto span{U, z}⊥S . Then the subspace span{U, z, p} can be shown to contain the vector
(H − 𝜎S)−1Sz as in Section 4 in Reference 13 so that the restricted formulation (23) is applicable. Therefore the estimate
(22) with j = i additionally holds for 𝜌(z) = 𝜎. Moreover, the special 𝛽 used for deriving (22) is determined by minimizing
|f (𝛼2)|∕|f (𝛼1)| among 𝛽 ∈ R. Thus setting 𝛽 = 0 yields a less accurate estimate than (22), namely,

𝜌(z′) − 𝜆i

𝜆i+1 − 𝜌(z′)
≤

(
𝜌(z) − 𝜆i

𝜆i+1 − 𝜌(z)

)3

. (25)

In this sense, (22) indicates a “supercubic” convergence.
For the PSD-id with inexact shift-invert preconditioners which are not effectively positive definite, an alternative of the

quality parameter 𝜀 from (16) is required so that (22) or (25) can be generalized as an estimate like (18). In particular, for
generalizing (25), an appropriate parameter can be constructed with respect to the restricted linear system (24). Therein
the restriction of H − 𝜎S to span{U, z}⊥S is positive definite; compare Lemma 3.1 in Reference 13 or the following simpler
verification: for an arbitrary w ∈ span{U, z}⊥S with ||w||S = 1, the matrix W = [U, z,w] fulfills W∗SW = Ii+1 so that the
Ritz values of (H, S) in span{W} are eigenvalues of W∗HW . The trace of W∗HW reads

𝜏 = 𝜌(u1) + · · · + 𝜌(ui−1) + 𝜌(z) + 𝜌(w) = 𝜆1 + · · · + 𝜆i−1 + 𝜌(z) + 𝜌(w).

Moreover, the Courant-Fischer principles ensure that 𝜏 is at least 𝜆1 + · · · + 𝜆i+1. Thus

𝜌(z) + 𝜌(w) ≥ 𝜆i + 𝜆i+1 ⇒ 𝜌(w) ≥ 𝜆i + 𝜆i+1 − 𝜎
⇒ w∗(H − 𝜎S)w = 𝜌(w) − 𝜎 ≥ 𝜆i + 𝜆i+1 − 2𝜎 > 0.

Correspondingly, the restricted formulation of PSD-id within span{V} includes the restriction of Λ − 𝜎Ĩ to span{c}⊥
which is also positive definite. Then the accuracy of the approximate solution p of (24) or its coefficient vector V∗Sp
can be interpreted by a vector norm induced by the restriction of H − 𝜎S or Λ − 𝜎Ĩ; compare Theorem 3.2 in Refer-
ence 13. A sufficiently accurate p is characterized by a quality parameter 𝜀 ∈ [0, 1) so that the estimate (25) can be
generalized as

𝜌(z′) − 𝜆i

𝜆i+1 − 𝜌(z′)
≤

(
𝜌(z) − 𝜆i + 𝜀 (𝜆i+1 − 𝜌(z))
𝜆i+1 − 𝜌(z) + 𝜀 (𝜌(z) − 𝜆i)

)2
𝜌(z) − 𝜆i

𝜆i+1 − 𝜌(z)
. (26)

Now we turn to the BPSD-id and analyze its convergence for the exact shift-inverse preconditioning.

Theorem 5. Let Z be the current iterate of the BPSD-id (Algorithm 2), and Z′ the next iterate. Assume that the
columns u1, … ,ui−1 of U are S-orthonormal eigenvectors associated with the i − 1 smallest eigenvalues 𝜆1 ≤

· · · ≤ 𝜆i−1, define V = [ui, … ,un] such that [U,V] = [u1, … ,un] is an S-orthonormal eigenbasis associated
with 𝜆1 ≤ · · · ≤ 𝜆n, and consider the case K = (H − 𝜎S)−1 for certain 𝜎 ∈ (𝜆i, (𝜆i + 𝜆i+1)∕2). Denote by 𝜃1 ≤ · · · ≤
𝜃k̃ and 𝜃′1 ≤ · · · ≤ 𝜃

′
k̃

the Ritz values in span{Z} and span{Z′}, respectively.
If 𝜃1 ≠ 𝜎 and 𝜃1 ∈ (𝜆i, 𝜆i+1), then

𝜃
′
1 − 𝜆i

𝜆i+1 − 𝜃′1
≤

(
𝜅

2 − 𝜅

)2 𝜃1 − 𝜆i

𝜆i+1 − 𝜃1
(27)

with

𝜅 =
(
𝜆i − 𝜎
𝜆i+1 − 𝜎

)(
𝜆n − 𝜆i+1

𝜆n − 𝜆i

)
.
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16 of 27 ZHOU et al.

If 𝜃t ∈ (𝜆j, 𝜆j+1) for t ∈ {2, … , k̃} and j = i − 1 + t, then

𝜃
′
t − 𝜆j

𝜆j+1 − 𝜃′t
≤

(
𝜅

2 − 𝜅

)2 𝜃t − 𝜆j

𝜆j+1 − 𝜃t
(28)

with

𝜅 =
(
𝜆j − 𝜎
𝜆j+1 − 𝜎

)(
𝜆n − 𝜆j+1

𝜆n − 𝜆j

)
.

Proof. By applying the PSD-id to a Ritz vector z1 in span{Z} associated with 𝜃1, the next iterate z′1 is
contained in span{Z′}. Then the estimate (22) for z = z1 and z′ = z′1 leads to (27) due to 𝜌(z′1) ≥ 𝜃

′
1 and

𝜌(z1) = 𝜃1.
The derivation of (28) for t = k̃ is analogous to the proof of Theorem 4 by using the generalization (2.22) of

(1.9) in Reference 16 concerning the block form of an abstract power method. Moreover, for t ∈ {2, … , k̃ − 1},
we can adapt this derivation to the BPSD-id applied to the subset t = span{z1, … , zt} of span{Z} spanned
by Ritz vectors associated with 𝜃1, … , 𝜃t. This yields an intermediate estimate for the largest (tth smallest)
Ritz value 𝜃t in the next iterate ′t of t. Subsequently, (28) is proved by considering that ′t is a subset of
span{Z′} so that 𝜃t ≥ 𝜃

′
t . ▪

For the BPSD-id with inexact shift-invert preconditioners, we particularly consider that the current 𝜃1 fulfills 𝜃1 <

(𝜆i + 𝜆i+1)∕2 and is used as the next shift 𝜎. Then the estimates (25) and (26) can be adapted to 𝜃1. It is also remarkable
that by using the positive definiteness of the restriction of H − 𝜎S, Theorem 3 can be modified for discussing the deviation
between the Ritz values in the subspace iterates and the Ritz values in the larger subspace span{U,Z(∶, 1)}⊥S . The latter
ones get closer to the eigenvalues 𝜆i+1, … , 𝜆n for the decreasing 𝜃1 toward 𝜆i. Then the corresponding estimates turn into
those in Theorem 3 with the index update i ← i + 1.

4 MULTI-STEP ESTIMATES ON THE CLUSTER ROBUSTNESS

A well-known feature of block eigensolvers is the cluster robustness, that is, fast convergence toward clustered eigenval-
ues can be guaranteed by sufficiently large block sizes. A classical estimate of the subspace iteration has been presented
by Parlett in Section 14.4 in Reference 15. Therein the block inverse iteration (also called inverse subspace iteration)
span{X (𝓁+1)} = span{A−1X (𝓁)} for a real symmetric positive definite matrix A with eigenvalues 𝛼1 ≤ · · · ≤ 𝛼n is investi-
gated. The convergence is measured by the angle between an eigenvector and the current subspace. The resulting bound
contains the term (𝛼j∕𝛼m+1)k for k steps with the block size m. A Ritz value estimate with the same ratio 𝛼j∕𝛼m+1 can be
derived based on the analysis of the block form of an abstract power method, see Section 2.2 in Reference 16.

These two estimates can be modified for the subspace iteration implemented with implicit deflation and the
exact shift-invert preconditioner K = (H − 𝜎S)−1 for 𝜎 < 𝜆i. Therein the current Ritz basis matrix Z ∈ Cn×k̃ is updated
by S-orthonormal Ritz vectors associated with the ith to the (i − 1 + k̃)th smallest Ritz values in the subspace
span{U, (H − 𝜎S)−1SZ}. By using a transformation with the representation Z = VC and the S-orthogonal projector Q =
VV∗S, we have

Q(H − 𝜎S)−1SZ = VV∗S(H − 𝜎S)−1SVC
(15)
= VV∗S

(
V(Λ − 𝜎Ĩ)−1)C = V(Λ − 𝜎Ĩ)−1C.

Consequently, we have

span{U, (H − 𝜎S)−1SZ} = span{U}⊕ V ⋅ span{(Λ − 𝜎Ĩ)−1C}.

Thus the restricted iteration within span{V} reads

span{C′} = span{(Λ − 𝜎Ĩ)−1C}, (29)
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ZHOU et al. 17 of 27

that is, the block inverse iteration for the diagonal matrix (Λ − 𝜎Ĩ)−1. Then applying the analysis from References 15
and 16 gives the ratio (𝜆i−1+t − 𝜎)∕(𝜆i+k̃ − 𝜎).

Furthermore, the restricted form of the BPSD-id (Algorithm 2) has the trial subspace span{C, (Λ − 𝜎Ĩ)−1C}
which is a superset of span{C′} from (29). Thus Ritz value estimates for (29) lead to indirect estimates for
BPSD-id.

A more accurate estimate of this kind for BPSD-id can be shown by using another auxiliary iteration whose restricted
form reads

span{C′} = span{(Λ − 𝜎Ĩ)−1C + 𝛽C}. (30)

The accuracy can benefit from the choice of 𝛽 ∈ R.
The following theorem predicts the cluster robustness of the BPSD-id.

Theorem 6. Consider the BPSD-id (Algorithm 2) with K = (H − 𝜎S)−1 and 𝜎 < 𝜆i. Denote by 𝜃(𝓁)1 ≤ · · · ≤ 𝜃(𝓁)
k̃

the Ritz values in the 𝓁th subspace span{Z(𝓁)}. Then

𝜃
(𝓁)
t − 𝜆i−1+t

𝜆n − 𝜃(𝓁)t

≤

(
𝜅

2 − 𝜅

)2𝓁 𝜆i−1+t − 𝜎
𝜆n − 𝜎

𝜏 (31)

with

𝜅 =
(
𝜆i−1+t − 𝜎
𝜆i+k̃ − 𝜎

)(
𝜆n − 𝜆i+k̃

𝜆n − 𝜆i−1+t

)
,

and a constant 𝜏 > 0 depending on the initial subspace span{Z(0)}.

Proof. Following Lemma 6, we observe the accompanying iteration

span{C(𝓁+1)} = RRΛ
𝜎
,k̃,↑

(
span{C(𝓁)

,Λ−1
𝜎 C(𝓁)}

)
(32)

with the coefficient matrix C(𝓁) = V∗SZ(𝓁) where the Rayleigh-Ritz procedure RRΛ
𝜎
,k̃,↑(⋅) extracts orthonor-

mal Ritz vectors of Λ𝜎 = diag(𝜆i − 𝜎, … , 𝜆n − 𝜎) associated with the k̃ smallest Ritz values, that is, 𝜃(𝓁+1)
1 −

𝜎, … , 𝜃
(𝓁+1)
k̃

− 𝜎 are Ritz values of Λ𝜎 in span{C(𝓁+1)}, and coincide with the k̃ smallest Ritz values of Λ𝜎 in
span{C(𝓁)

,Λ−1
𝜎 C(𝓁)}.

In addition, 𝜎 < 𝜆i ensures that Λ𝜎 is positive definite. By using its square root matrix Λ1∕2
𝜎 , we define

E(𝓁) = Λ1∕2
𝜎 C(𝓁) and A = Λ−1

𝜎 so that

span{E(𝓁),AE(𝓁)} = span{Λ1∕2
𝜎 C(𝓁)

,Λ−1∕2
𝜎 C(𝓁)} = Λ1∕2

𝜎 span{C(𝓁)
,Λ−1

𝜎 C(𝓁)}.

Then the iteration (32) is equivalent to

span{E(𝓁+1)} = RRA,k̃,↓
(
span{E(𝓁),AE(𝓁)}

)
, (33)

where the Rayleigh-Ritz procedure RRA,k̃,↓(⋅) extracts A-orthonormal Ritz vectors of A associated
with the k̃ largest Ritz values. For explaining this equivalence, we can denote by C a basis
matrix of span{C(𝓁)

,Λ−1
𝜎 C(𝓁)} consisting of orthonormal Ritz vectors of Λ𝜎 . Then C∗C is an identity

matrix, and C∗Λ𝜎C is a diagonal matrix containing Ritz values of Λ𝜎 . The corresponding E = Λ1∕2
𝜎 C

fulfills

E∗E = C∗Λ𝜎C, E∗AE = C∗C,

so that its columns are A-orthonormal Ritz vectors of A in span{E} = Λ1∕2
𝜎 span{C}. Moreover, the concerned

Ritz values of A are reciprocals of those of Λ𝜎 .
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18 of 27 ZHOU et al.

We further denote by 𝛼1 ≥ · · · ≥ 𝛼n−i+1 the eigenvalues of A, and by𝜓 (𝓁)1 ≥ · · · ≥ 𝜓 (𝓁)
k̃

the Ritz values in the
𝓁th subspace from (33). Then

𝛼t = (𝜆i−1+t − 𝜎)−1
, 𝜓

(𝓁)
t =

(
𝜃
(𝓁)
t − 𝜎

)−1
,

so that the estimate (31) is equivalent to

𝛼t − 𝜓 (𝓁)t

𝜓
(𝓁)
t − 𝛼n−i+1

≤

(
𝜅

2 − 𝜅

)2𝓁
𝜏 (34)

with

𝜅 =
𝛼k̃+1 − 𝛼n−i+1

𝛼t − 𝛼n−i+1
.

Finally, we derive (34) via the simplified version

span{E(𝓁+1)} = span{AE(𝓁) + 𝛽E(𝓁)},

of (33). Therein span{E(𝓁)} can be represented by f (A)span{E(0)} with f (𝜂) = 𝜂 + 𝛽. This corresponds to the
block form of an abstract power method so that its convergence behavior can be analyzed as in Section 2.2 in
Reference 16. By using 𝛽 = − 1

2
(𝛼t+1 + 𝛼n−i+1), we get

|f (𝛼1)| ≥ · · · ≥ |f (𝛼t)| ≥ |f (𝛼j)| ∀ j ∈ {t + 1, … ,n − i + 1}.

Then the estimate (2.20) in Reference 16 implies (34) where the constant 𝜏 is given by the tangent square of
the angle between span{E(0)} and the invariant subspace of A associated with the k̃ largest eigenvalues. This
angle depends on span{Z(0)} since E(0) = Λ1∕2

𝜎 V∗SZ(0). ▪

Theorem 6 predicts the cluster robustness of the BPSD-id since it indicates that the convergence rate increases with
the Ritz value index t and the parameter 𝜅 can be bounded away from 1 for a sufficiently large block size k̃.

It is desirable to extend Theorem 6 to effectively positive definite preconditioners where
(𝜅 + 𝜀(2 − 𝜅))2𝓁∕((2 − 𝜅) + 𝜀𝜅)2𝓁 is a suitable convergence factor with the quality parameter 𝜀 defined in (16). Toward
this aim, the analysis of the cluster robustness of a preconditioned subspace iteration in Reference 11 can be adapted to
the restricted formulation of the BPSD-id and yields an estimate of the form

𝜃
(𝓁)
t − 𝜆i−1+t

𝜆i+k̃ − 𝜃
(𝓁)
t

≤

(
𝜀 + (1 − 𝜀)𝜆i−1+t − 𝜈

𝜆i+k̃ − 𝜈

)2𝓁 𝜃
(0)
k̃
− 𝜆i−1+t

𝜆i+k̃ − 𝜃
(0)
k̃

, (35)

for an arbitrary 𝜈 < 𝜆i. Therein the quality parameter 𝜀 is related to 𝜈 and certain auxiliary vectors, but close to that from
an error propagation formulation such as (16).

A recent approach in Reference 18 for analyzing the cluster robustness of the BPSD is also compatible with the
restricted formulation of the BPSD-id. The resulting estimate reads

𝜃
(𝓁)
t − 𝜆i−1+t

𝜆i+k̃ − 𝜃
(𝓁)
t

≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2𝓁 𝜃
(0)
k̃
− 𝜆i−1+t

𝜆i+k̃ − 𝜃
(0)
k̃

(36)

with

𝜅 =
(
𝜆i−1+t − 𝜈
𝜆i+k̃ − 𝜈

)(
𝜆n − 𝜆i+k̃

𝜆n − 𝜆i−1+t

)
.

In the case 𝜀 = 0 and 𝜈 = 𝜎, the convergence factor in (36) coincides with that in (31).
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ZHOU et al. 19 of 27

An alternative of the multi-step estimates (35) and (36) follows from the single-step estimate (21) in Theorem 3 for
j = i − 1 + t, namely,

𝜃
(𝓁)
t − 𝜆i−1+t

𝜆i+t − 𝜃(𝓁)t

≤

(
𝜅 + 𝜀(2 − 𝜅)
(2 − 𝜅) + 𝜀𝜅

)2𝓁
𝜃
(0)
t − 𝜆i−1+t

𝜆i+t − 𝜃(0)t

(37)

with

𝜅 =
(
𝜆i−1+t − 𝜈
𝜆i+t − 𝜈

)(
𝜆n − 𝜆i+t

𝜆n − 𝜆i−1+t

)
.

The estimate (37) cannot predict the cluster robustness, but can provide better bounds for the first steps in comparison
to (35) and (36).

5 NUMERICAL EXPERIMENTS

In this section, we illustrate main convergence estimates of the PSD-id and the BPSD-id presented in the pre-
vious sections by several numerical examples. Example 1 with non-clustered targets eigenvalues demonstrates
single-step estimates for the BPSD-id in Section 3.2. In Example 2, we implement the BPSD-id for a large-scale
eigenvalue problem and compare three effectively positive definite preconditioners. In Example 3, we revisit
Example 5.2 in Reference 4 where the eigenvalue problem is derived by the partition-of-unity finite element
for a self-consistent pseudopotential density functional calculation. We refine the implementation of the PSD-id
therein (by accelerating inner steps) and interpret a cubic convergence for dynamic larger shifts by estimates in
Section 3.3. Example 4 with clustered targets eigenvalues demonstrates multi-step estimates for the BPSD-id in
Section 4.

Example 1. We consider the Laplacian eigenvalue problem −Δu = 𝜆u on the rectangle [0, 1.5] × [0, 1] with
two slits {0.5} × [0.45, 0.55] and {1} × [0.45, 0.55]; see Figure 1. The boundary condition on the rectangle
boundary and the slits is simply u = 0. By using the five-point star discretization with the mesh size h =
45∕3600, we get the eigenvalue problem (1) of order n = 9383 and S = I. The seven smallest eigenvalues of
(H, S) are well separated:

𝜆1 ≈ 27.07834, 𝜆2 ≈ 38.24327, 𝜆3 ≈ 45.24858,

𝜆4 ≈ 49.32646, 𝜆5 ≈ 58.36810, 𝜆6 ≈ 78.91626, 𝜆7 ≈ 89.70648.

We compute the six smallest eigenvalues by the BPSD-id (Algorithm 2) with {k, k̃} = {1, 2}, {2, 3}, {3, 4}.
Recall that k is the number of wanted eigenvalues in each run and k̃ is the block size. For instance, if
{k, k̃} = {2, 3}, then the BPSD-id with block size 3 computes 2 eigenvalues in each of three successive runs.

We first consider fixed shifts and use incomplete matrix factorizations for generating the preconditioner
K, namely,

F I G U R E 1 Laplacian eigenvalue problem in Example 1. The two slits on the domain clearly influence the shapes of eigenfunctions
associated with the three smallest operator eigenvalues.
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20 of 27 ZHOU et al.

ichol(H-sigma*S,struct(‘type’,‘ict’,‘droptol’,3e-5))

with the shift 𝜎 = 20 for the first run (i.e., for i = 1) and

ilu(H-sigma*S,struct(‘type’,‘crout’,‘milu’,‘row’,‘droptol’,3e-5))

with the shift 𝜎 = 𝜆i−1 for further runs.
Figure 2 depicts the convergence of the residual norm ||R(∶, 1 ∶ k)||S−1 . We run 1000 random initial sub-

spaces and show the slowest convergence. We observe that the residual norm decreases monotonically for
different choices of {k, k̃}.

The convergence of the BPSD-id in terms of the Ritz value error 𝜃t − 𝜆t for t ∈ {1, … , 6} is depicted
in Figure 3, where the indices of Ritz values are permutated to match the target eigenvalues. We observe
that Theorem 3 provides sharp error bounds in dotted curves. For evaluating these bounds, we determine
the quality parameter 𝜀 by using Lemma 4 with 𝜈 = 𝜎 and the fact that the nonzero eigenvalues of K̃Λ𝜎 =
(V∗SKSV)V∗(H − 𝜎S)V coincide with those of K(SVV∗)(H − 𝜎S)VV∗S. Then the extremal eigenvalues of K̃Λ𝜎
can be obtained by eigs applied to a subroutine for matrix-vector multiplications where (VV∗S)x is com-
puted by x − U (U∗(Sx)), and (SVV∗)y by y − S (U(U∗y)). Once 𝜀 is determined, we calculate the right-hand
side of the bound (21) in Theorem 3 with 𝜈 = 𝜎 and precomputed eigenvalues. Thereafter the (absolute) error
bound of the corresponding Ritz value is obtained by solving an elementary equation. The values of 𝜀 con-
cerning the construction of the preconditioner K by ichol (𝜎 = 20) or ilu (𝜎 = 𝜆i−1) with droptol ∈
{2e-5,3e-5,6e-5} are listed in Table 1. For each 𝜎, the value of 𝜀 increases with droptol. The case
𝜀 ≈ 1 occurs for droptol > 1e-4. Then the convergence factor in (21) is also close to 1 and reflects a slow
convergence. Lemma 4 thus enables controlling the preconditioning quality in the BPSD-id and extends the
approach for the PSD mentioned in (5) or its equivalent form (1.6) in Reference 8. The application also covers
preconditioners generated by multigrid techniques and approximately solving linear systems.

We note that the sharpness statement for the estimate (21) cannot easily be observed for random iterates
as shown in Figure 3. The attainability of the associated equality within certain low-dimensional invariant
subspaces can however be illustrated similarly to Figure 4.5 in Reference 10.

Let us consider refining the preconditioner K by a dynamic shift 𝜎. With the index i of the smallest target
eigenvalue in the current run, we estimate the ratio 𝜂 = (𝜃i − 𝜆i)∕(𝜆i+1 − 𝜃i) roughly by (𝜃i,old − 𝜃i)∕(𝜃i+1 − 𝜃i)
as suggested for the PSD-id in Section 5 in Reference 4. If 𝜂 and the residual norm ||R(∶, 1 ∶ k)||S−1 are both
smaller than the threshold 0.1, we update 𝜎 by 𝜎 ← (𝜎 + 𝜃i)∕2 and refine the preconditioner K by

ilu(H-sigma*S,struct(‘type’,‘crout’,‘milu’,‘row’,‘droptol’,max(eta,1e-12))).

F I G U R E 2 Convergence of the BPSD-id (Algorithm 2) in terms of the residual norm ||R(∶, 1 ∶ k)||S−1 for computing the six smallest
eigenvalues in Example 1. The pair {k, k̃} is {1, 2} (left), {2, 3} (center) and {3, 4} (right).
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ZHOU et al. 21 of 27

F I G U R E 3 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 𝜃t − 𝜆t for computing the six smallest
eigenvalues in Example 1 with fixed shifts. The error bounds in dotted curves are determined by Theorem 3.

T A B L E 1 Quality parameter 𝜀 of the preconditioner K in Example 1.

droptol 𝝈 = 20 𝝈 = 𝝀1 𝝈 = 𝝀2 𝝈 = 𝝀3 𝝈 = 𝝀4 𝝈 = 𝝀5

2e-5 0.2391 0.1386 0.1848 0.0830 0.1672 0.0618

3e-5 0.3106 0.2384 0.3293 0.1567 0.1918 0.1224

6e-5 0.4605 0.5432 0.9126 0.3808 0.2890 0.3147

F I G U R E 4 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 𝜃t − 𝜆t for computing the six smallest
eigenvalues in Example 1 with dynamic shifts.

We mark the first refinement by “+.” As shown in Figure 4, this modification leads to an acceleration. The
improvement is evident for the {k, k̃} = {1, 2} (left subfigure). Furthermore, Theorem 3 produces proper
bounds in dotted curves which are built similarly as in Figure 3 but with a dynamic shift 𝜎 in various steps.
Therein the quality parameter 𝜀 can be reduced to 1e-9.

Example 2. For discussing the performance of the BPSD-id in large-scale problems, let us consider a
matrix pair arising from an adaptive finite element discretization of the Laplacian eigenvalue problem on
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22 of 27 ZHOU et al.

F I G U R E 5 Laplacian eigenvalue problem in Example 2. The first row displays the domain, the initial grid and an adaptively refined
grid. The second row illustrates approximate eigenfunctions associated with the three smallest operator eigenvalues. The corresponding
residuals are used for the grid refinement.

F I G U R E 6 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 𝜃t − 𝜆t for computing the six smallest
eigenvalues in Example 2. Left: Using ichol for generating the preconditioner with a constant shift. Center: Modifying the preconditioner
by MINRES with the tolerance 0.1. Right: Modifying the preconditioner by MINRES with the tolerance 0.01.

a wrench-shaped domain with homogeneous Dirichlet boundary conditions; see Figure 5. The boundary is
defined by

{20 cos(t) + 10 cos(2t), 5 sin(t) + sin(5t); t ∈ [0, 2𝜋)} .

Similarly to Appendix in Reference 11, matrix eigenvalue problems are generated successively by an adap-
tive finite element discretization. The refinement is controlled by residuals of approximate eigenfunctions
associated with the three smallest operator eigenvalues.

We consider the matrix pair (H, S) from the 29th grid of the discretization with n = 1,618, 797 degrees
of freedom. The seven smallest eigenvalues of (H, S) are well separated and located in the interval
(0.1418824, 0.4562653). Similarly to Example 1, we compute the six smallest eigenvalues 𝜆1, … , 𝜆6 by 3
successive runs of the BPSD-id (Algorithm 2) with {k, k̃} = {2, 4}.

Figure 6 illustrates the convergence of the BPSD-id in terms of the Ritz value error 𝜃t − 𝜆t for t ∈ {1, … , 6}.
Therein we compare three effectively positive definite preconditioners.

In the left subfigure, the preconditioner K is generated by the incomplete matrix factorization

ichol(H-sigma*S,struct(‘type’,‘ict’,‘droptol’,1e-6))

with the shift 𝜎 = 0.1 < 𝜆1. We use this K for each run, since generating K by ilu with 𝜎 = 𝜆i−1 is too costly.
Consequently, more outer steps are required in the second and third runs (curves for 𝜃3, 𝜃4 and 𝜃5, 𝜃6) than in
the first run (curves for 𝜃1, 𝜃2).
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ZHOU et al. 23 of 27

In the central subfigure, we modify K for the second and third runs where approximations of (H − 𝜎S)−1

for 𝜎 = 𝜆i−1 are constructed by MINRES with the aboveichol factorization and the tolerance 0.1. This clearly
reduces the number of required outer steps. However, the computational time for these two runs reads 176 s,
longer than 105 s measured in the left subfigure.

The same modification with the tolerance 0.01, as illustrated in the right subfigure, does not lead to a fur-
ther significant reduction of step numbers, but increases the computational time to 208 s. The values of the
corresponding quality parameter are given in Table 2 (columns 𝜎 = 𝜆2 and 𝜎 = 𝜆4). In addition, modifica-
tions with dynamic shifts are also less efficient with respect to the total computational time. Thus a simply
applicable preconditioner with fixed shifts is occasionally more appropriate.

Example 3. To verify the sharpness of the estimates with larger shifts discussed in Section 3.3, we use
the matrix pencil (H, S) of order n = 5336 derived from partition-of-unity finite element method for
quantum-mechanical materials calculation; see Example 5.2 in Reference 4. The matrix H is given by a
rank-l modification of an n × n sparse matrix Ĥ with l = 26. Both H and S are ill-conditioned and their
condition numbers are (1010). Furthermore, H and S share a common near-nullspace span{V} of dimen-
sion 1000 such that ||HV || = ||SV || = (10−4). This is considered as an extremely ill-conditioned eigenvalue
problem.

For the BPSD-id, the explicit form of H is dense so that constructing K by incomplete matrix factorizations
is not efficient. Thus MINRES with preconditioner chol(S) is used for computing the preconditioned resid-
ual Kr with K ≈ (H − 𝜎S)−1. The stopping criterion of MINRES uses the residual norm 𝜓 = ||r||2∕(||Hz||2 +||𝜌(z)Sz||2) instead of ||r||S−1 . The initial 𝜎 is −1, which is smaller than the smallest eigenvalue 𝜆1 ≈ −0.8888.
The tolerance of MINRES is 0.1 for 𝜎 = −1. If 𝜓 and an estimated value of (𝜌(z) − 𝜆i) ∕ (𝜆i+1 − 𝜌(z)) are
sufficiently small, then 𝜎 is set equal to 𝜌(z).

We begin with the PSD-id (Algorithm 1) implemented as a weakened form of the BPSD-id where r =
R(∶, 1) is used for constructing the trial subspace. This corresponds to an acceleration of the PSD-id so that
Theorem 4 is still applicable and the estimate (22) indicates a cubic convergence for larger shifts from the
interval (𝜆i, (𝜆i + 𝜆i+1)∕2).

We note that the inner steps (MINRES) in the above implementation can significantly be accelerated by
using Ĥ + 3S instead of S in chol(S). In other words, Ĥ + 3S gives a better approximation of H − 𝜎S in
comparison to S. In addition, a substantial acceleration of the outer steps in the third and fourth runs is
enabled by using 𝜆i−1 as the initial 𝜎. This improvement can be observed by comparing the reduction of the
residual norm 𝜓 in Figure 7 (left) with that in Figure 5.2 in Reference 4.

Furthermore, Figure 7 (center) depicts the reduction of 𝜓 for fixed shifts, that is, 𝜎 = −1 for the first run
and 𝜎 = 𝜆i−1 for further runs. The tolerance of MINRES is constantly 0.1. In comparison to the version with
dynamic shifts, only the second run is considerably slowed down with respect to the outer steps. The total
computational time is however only slightly increased. In Figure 7 (right), a hybrid version is implemented
where dynamic shifts are used if the iteration index for the first possible switch is larger than 6. Then dynamic
shifts are enabled in the second run, and the total computational time is reduced in comparison to the previous
two versions.

Since our estimates are formulated for Ritz value errors, we observe in Figure 8 the error 𝜃t − 𝜆t
for the three versions mentioned above. Therein 𝜃t denotes the approximate eigenvalue in the tth run.
The convergence rate can be made cubic by using dynamic shifts as predicted by Theorem 4. For fixed
shifts, the linear convergence predicted by Theorem 2 can be observed for t ∈ {1, 3, 4}. The error for t =
2 indicates various convergence rates so that Theorem 2 would give overestimation for several iteration
steps. This phenomenon however reflects the fact that the implemented PSD-id uses an augmented trial
subspace.

T A B L E 2 Quality parameter of the MINRES preconditioner in Example 2.

MINRES tol 𝝈 = 𝝀1 𝝈 = 𝝀2 𝝈 = 𝝀3 𝝈 = 𝝀4 𝝈 = 𝝀5

0.01 0.2756 0.5157 0.7036 0.4972 0.7269

0.1 0.4947 0.6813 0.8707 0.7470 0.9265
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F I G U R E 7 Convergence of a weakened form of BPSD-id using only one residual vector and an relative residual norm for computing
the four smallest eigenvalues in Example 3. The preconditioner is constructed by MINRES with certain shifts. Left: Enabling dynamic shifts.
The first dynamic step is marked by “+.” Center: Using fixed shifts only. Right: Enabling dynamic shifts when the convergence in the first
steps is slow.

F I G U R E 8 Convergence of a weakened form of BPSD-id in terms of the Ritz value error 𝜃t − 𝜆t in addition to Figure 7.

When implementing the standard BPSD-id with shifts from (𝜆i, (𝜆i + 𝜆i+1)∕2) in Example 3, a cubic con-
vergence can occur for the smallest Ritz value in each run. Further Ritz values only converge linearly. This
difference matches the two estimates from Theorem 5.

Example 4. By using a block size which is larger than the cluster size, the BPSD-id can efficiently compute
clustered eigenvalues. This fact has been analyzed in Theorem 6 for exact shift-invert preconditioning. The
estimate (31) corresponds to a special form of (36) concerning effectively positive definite preconditioners.
The estimate (36) can be derived by adapting the analysis from Reference 18 to the restricted formulation of
the BPSD-id analogously to Section 3.2. In this example, we compare (36) with its counterparts (35) and (37)
which are based on Reference 11 and the single-step estimate (21), respectively.

We modify the eigenvalue problem in Example 1 by setting larger slits {0.5} × [0.1, 0.9] and {1} × [0.1, 0.9]
on the rectangle [0, 1.5] × [0, 1]; see Figure 9. The mesh size h = 1∕80 leads to n = 9271. The modified domain
can be regarded as three small rectangles connected by narrow gates. For a sufficiently small gate width,
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F I G U R E 9 Laplacian eigenvalue problem in Example 4. The eigenfunctions associated with the fourth to sixth smallest operator
eigenvalues are displayed.

F I G U R E 10 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 𝜃t − 𝜆t for t ∈ {4, 5, 6} in Example 4 with
clustered eigenvalues. The three bounds are based on the multi-step estimates (37), (35), and (36).

the eigenvalue problem is almost split into three partial problems of the same size. Thus the eigenvalues are
roughly copies of those from partial problems. As a result, there are two tight clusters among the seven smallest
eigenvalues:

𝜆1, 𝜆2, 𝜆3 ∈ (49.24886, 49.32647), 𝜆4, 𝜆5, 𝜆6 ∈ (78.61283, 78.91626), 𝜆7 ≈ 127.5209.

Let us examine a run of the BPSD-id with i = 4 and k̃ = 3, which means that the eigenvalues 𝜆4, 𝜆5, 𝜆6 are
to be computed. The preconditioner K is generated by

ilu(H-sigma*S,struct(‘type’,‘crout’,‘milu’,‘row’,‘droptol’,3e-5))

for 𝜎 = 𝜆3. We denote by Bound1, Bound2 and Bound3 the bounds for the Ritz value error 𝜃t − 𝜆t (with simpli-
fied indices) which are determined on the basis of (37), (35), and (36), respectively. We compare these bounds
with the error 𝜃t − 𝜆t in Figure 10 with subfigures for t ∈ {4, 5, 6} by evaluating their numerical maxima
concerning 1000 random initial subspaces.

We note that Bound2 and Bound3 are nearly invariant for t due to the eigenvalue cluster {𝜆4, 𝜆5, 𝜆6}. More-
over, Bound3 is evidently more accurate than Bound2. For t ∈ {4, 5}, the clustered eigenvalues make Bound1
nearly constant. For t = 6, the moderate gap between 𝜆6 and 𝜆7 leads to a meaningful Bound1 which actually
coincides with Bound3.
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6 CONCLUSION

The limitation of the approach presented in Reference 4 for analyzing the convergence behavior of the PSD-id method
is overcome by embedding concise bounds from References 8 and 10 concerning the PSD and BPSD methods. The new
estimates are more flexible with weaker assumptions, natural description of preconditioning and extension to block iter-
ations. Therein the preconditioners are assumed to be effectively positive definite and particularly include approximative
shift-invert preconditioners where the shift is smaller than the target eigenvalue. In addition, the case of larger shifts is
discussed based on the analysis of an abstract power method from Reference 16 and the analysis of an inexact Rayleigh
quotient iteration from Reference 13. Furthermore, the cluster robustness of the BPSD-id is analyzed for exact shift-invert
preconditioning analogously to an abstract block iteration from Reference 16. A more general analysis for effectively
positive definite preconditioners is enabled by recent progress for the BPSD from Reference 18. Topics for further study
include “implicit deflation” versions of the LOBPCG and various Davidson methods as well as practical settings of shifts
and block sizes.
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