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Abstract. We consider the following constrained Rayleigh quotient optimization prob-
lem (CRQopt):

min
vPRn

vTAv subject to vTv�1 and CTv�b,

where A is an n�n real symmetric matrix and C is an n�m real matrix. Usually, m!n.
The problem is also known as the constrained eigenvalue problem in literature since it
becomes an eigenvalue problem if the linear constraint CTv�b is removed. We start by
transforming CRQopt into an equivalent optimization problem (LGopt) of minimiz-
ing the Lagrangian multiplier of CRQopt, and then into another equivalent problem
(QEPmin) of finding the smallest eigenvalue of a quadratic eigenvalue problem. Al-
though these equivalences have been discussed in literature, it appears to be the first
time that they are rigorously justified in this paper. In the second part, we present
numerical algorithms for solving LGopt and QEPmin based on Krylov subspace pro-
jection. The basic idea is to first project LGopt and QEPmin onto Krylov subspaces to
yield problems of the same types but of much smaller sizes, and then solve the reduced
problems by direct methods, which is either a secular equation solver (in the case of
LGopt) or an eigensolver (in the case of QEPmin). We provide convergence analy-
sis for the proposed algorithms and present error bounds. The sharpness of the error
bounds is demonstrated by examples, although in applications the algorithms often
converge much faster than the bounds suggest. Finally, we apply the new algorithms
to semi-supervised learning in the context of constrained clustering.
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1 Introduction

In this paper, we are concerned with the following linear constrained Rayleigh quotient
(CRQ) optimization:

CRQopt:
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min vT Av,

s.t. vTv�1,

CTv�b,

(1.1a)

(1.1b)

(1.1c)

where APRn�n is symmetric, CPRn�m has full column rank, and bPRm. Necessarily m n
but often m!n. We are particularly interested in the case where A is large and sparse and
b�0.

CRQopt (1.1) is also known as the constrained eigenvalue problem, a term coined in
1989 [10]. However, it had appeared in literature much earlier than that [15]. In that
sense, CRQopt is a classical problem. However, past studies are fragmented with some
claims, although often true, not rigorously justified or needed conditions to hold. In this
paper, our goal is to provide a thorough investigation into this classical problem, includ-
ing rigorous justifications of statements previously taken for granted in literature and
addressing the theoretical subtleties that were not paid attention to. We also present a
quantitative convergence analysis for the Krylov type subspace projection method, which
we will also call the Lanczos algorithm, for solving large scale CRQopt (1.1).

1.1 Related works

CRQopt (1.1) has found a wide range of applications, such as ridge regression [5, 12],
trust-region subproblem [27, 33], constrained least square problem [9], spectral image
segmentation [6, 36], transductive learning [19], and community detection [28].

The first systematic study of CRQopt (1.1) belongs to Gander, Golub and von Matt
[10]. Using the full QR and eigen-decompositions, they reformulated CRQopt (1.1) as an
optimization problem of finding the minimal Lagrangian multiplier via solving a secu-
lar equation (in a way that is different from our secular equation solver in Appendix A).
Alternatively, they also turned CRQopt (1.1) into an optimization problem of finding the
smallest real eigenvalue of a quadratic eigenvalue problem (QEP). However, the equiv-
alence between the QEP optimization and the Lagrangian multiplier problem was not
rigorously justified in [10].

Numerical algorithms proposed in [10] are not suitable for large scale CRQopt (1.1)
because they require a full eigen-decomposition of A. Later in [14], Golub, Zhang and
Zha considered large and sparse CRQopt (1.1) but only with the homogeneous constraint,
i.e, b�0. In this special case, CRQopt (1.1) is equivalent to computing the smallest eigen-
value of A restricted to the null space of CT. An inner-outer iterative Lanczos method was
proposed to solve the homogeneous CRQopt (1.1). In [41], Xu, Li and Schuurmans pro-
posed a projected power method for solving CRQopt (1.1). The projected power method
is an iterative method only involving matrix-vector products, and thus it is suitable for
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large and sparse CRQopt (1.1). However, its convergence is linear at best and often too
slow. In [6], Eriksson, Olsson and Kahl reformulated CRQopt (1.1) into an eigenvalue op-
timization problem (see Appendix B for details). An algorithm based on the line search
was used to find the optimal solution. This algorithm is suitable for CRQopt (1.1) with a
large and sparse matrix A, but it is too costly because the smallest eigenvalue has to be
computed multiple times during each line search action.

1.2 Contributions

Our study on CRQopt (1.1) begins with the standard approach of Lagrangian multipliers,
as was taken in [10], to lead to an optimization problem of minimizing the Lagrangian
multiplier of CRQopt, called LGopt (Section 2.2). Then LGopt is transformed to a prob-
lem of finding the smallest real eigenvalue of a quadratic eigenvalue problem, called
QEPmin (Section 2.3). Our major contributions are as follows:

(i) Although transforming CRQopt into LGopt and QEPmin is not really new, our
formulations of LGopt and QEPmin set them up onto a natural path for use in Krylov
subspace type projection methods that only requires matrix-vector products. Therefore,
the formulations are suitable for large scale CRQopt. We rigorously prove the equiva-
lences among the three problems while they are only loosely argued previously as, see
for example [10]. As far as subtle technicalities are concerned, we prove that the leftmost
eigenvalue in the complex plane is real, which has a significant implication when it comes
to numerical computations.

(ii) We devise a Lanczos algorithm to solve the induced optimization problems: LGopt
and QEPmin. This algorithm is made possible, as we argued moments ago, by our dif-
ferent formulations from what in literature. Along the way, we also propose an efficient
numerical algorithm for the type of secular equations arising from solving each projected
LGopt. We establish a quantitative convergence analysis for the Lanczos algorithm and
obtain error bounds on approximations generated by the algorithm. These error bounds
are in general sharp in the worst case as demonstrated by artificially designed numerical
examples.

(iii) We apply the proposed Lanczos algorithm to large scale CRQopt for constrained
clustering, an extension of the well-known spectral algorithm with linear constraints to
encode prior knowledge labels. We observe that the new Lanczos algorithm is 2 to 23
times faster than FAST-GE-2.0 [18] for constrained image segmentation.

1.3 Organization and notation

The rest of the article is organized as follows. In Section 2, we investigate the theoretical
aspects of CRQopt (1.1) such as the feasible set, existence of a minimizer, and transform-
ing CRQopt (1.1) into equivalent optimization problems with rigorous justifications. A
Krylov subspace projection approach for solving CRQopt (1.1) via its equivalent opti-
mization problems are detailed in Section 3. The convergence analysis is given in Sec-
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tion 3.5. Numerical examples to demonstrate the sharpness of convergence estimates
are presented in Section 3.6. Section 4 describes an application of our algorithms to the
constrained image segmentation problem. Concluding remarks are in Section 5. There
are three appendices. Appendix A explains how to solve the secular equation arising
from solving the LGopt. Appendix B proves the equivalence between CRQopt (1.1) and
an eigenvalue optimization problem proposed by Eriksson, Olsson and Kahl [6]. Ap-
pendix C documents CRQPACK, a software package for an implementation of Lanczos
algorithm and reproduce numerical experiments presented in this paper.

Throughout the article, R, Rn and Rm�n are sets of real numbers, columns vectors of
dimension n, and m�n matrices, respectively. C, Cn and Cm�n are sets of complex num-
bers, columns vectors of dimension n, and m�n matrices, respectively. We use MATLAB-
like notation X

pi:j,k:lq to denote the submatrix of X consisting of the intersections of rows
i to j and columns k to l, and when i : j is replaced by :, it means all rows, similarly for
columns. For a vector v PC, v

pkq refers the kth entry of v and v
pi:jq is the subvector of v

consisting of the ith to jth entries inclusive. An n�n identity matrix is In or simply I if
its size is clear from the context, and ej is the jth column of an identity matrix whose size
is determined by the context. diagpc1,c2,��� ,cnq is an n�n diagonal matrix with diagonal
elements c1,c2,��� ,cn. The imaginary unit is i�

?

�1. For X PCm�n, XT, RpXq and N pXq
denote its transpose, range and null space, respectively. For a real symmetric matrix H,
eigpHq stands for the set of all eigenvalues of H, and λminpHq and λmaxpHq denote the
smallest and largest eigenvalue of H, respectively. }�}p p1¤ p¤8) is the ℓp-vector or ℓp-
operator norm, respectively, depending on the argument. As a special case, }�}2 or }�} is
either the Euclidean norm of vector or the spectral norm of a matrix.

2 Theory

2.1 Feasible set and solution existence

Let n0 be the unique minimal norm solution of CTv�b:

n0�pC
T
q

:b, (2.1)

where X: is the Moore-Penrose inverse of X [1, 4, 38]. By the assumption of rankpCq�m,
C:

�pCTCq�1CT and pCT
q

:

�pC:

q

T
�CpCTCq�1. The most important orthogonal projection

throughout this article is
P� I�CC:, (2.2)

which orthogonally projects any vector onto N pCT
q, the null space of CT [38]. Any vPRn

that satisfies CTv�b can be orthogonally decomposed as

v�pI�Pqv�Pv�n0�PvPn0�N pCT
q. (2.3)

Evidently }v}2
�}n0}

2
�}Pv}2, which, together with the unit length constraint (1.1b), lead

to the following immediate conclusions about the solvability of CRQopt (1.1):
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• If }n0}¡ 1, then there is no unit vector v satisfying CTv� b. This is due to the fact
that any v satisfying CTv�b has norm no smaller than }n0}. Thus CRQopt (1.1) has
no solution.

• If }n0}�1, then v�n0 is the only unit vector that satisfies CTv�b. Thus CRQopt (1.1)
has a unique minimizer v�n0.

• If }n0} 1, then there are infinitely many feasible vectors v that satisfy CTv�b.

Therefore only the case }n0}  1 needs further investigation. Consequently, throughout
the rest of the article, we will assume }n0} 1.

2.2 Equivalent LGopt

Using the orthogonal decomposition (2.3), we have

vT Av�vTPAPv�2vTPAn0�nT
0 An0, (2.4a)

vTv�}n0}
2
�}Pv}2. (2.4b)

Since nT
0 An0 and }n0} are constants, CRQopt (1.1) is equivalent to the following con-

strained quadratic minimization problem:

CQopt:

$

'

'

&

'

'

%

min vTPAPv�2vTb0,

s.t. }Pv}�γ,

vPn0�N pCT
q,

(2.5a)

(2.5b)

(2.5c)

where

b0�PAn0PN pCT
q, γ :�

b

1�}n0}
2
¡0. (2.6)

Necessarily, 0 γ 1. However, in the rest of our development, unless we refer back to
CRQopt (1.1), γ 1 can be removed, i.e., γ can be any positive number.

Theorem 2.1. v
�

is a minimizer of CRQopt (1.1) if and only if v
�

is a minimizer of CQopt (2.5).

One way to solve CQopt (2.5) is the method of the Lagrangian multipliers. It seeks
the stationary points of the Lagrangian function

L pv,λq�vTPAPv�2vTb0�λpvTPv�γ2
q. (2.7)

Differentiating L with respect to v and λ, we get

pPA�λIqPv��b0, (2.8a)

}Pv}�γ. (2.8b)
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Let u� Pv PN pCT
q. Then u� Pu and v� n0�u. The Lagrangian equations in (2.8) are

equivalent to the following equations:

pPAP�λIqu��b0, (2.9a)

}u}�γ, (2.9b)

uPN pCT
q. (2.9c)

In fact, any solution pλ,vq of (2.8) gives rise to a solution pλ,uq with u� Pv of (2.9), and
conversely any solution pλ,uq of (2.9) leads to a solution pλ,vq with v�n0�u of (2.8).

The system of equations (2.9) has more than one solution pairs pλ,uq since CQopt (2.5)
is non-convex and any local minimum or maximum has a corresponding solution pair
pλ,uq of (2.9). In addition, in Section 2.3, we will show that under some conditions, an
eigenpair of a quadratic eigenvalue problem (QEP) leads to a solution of (2.9), and the
number of eigenpairs is not unique. We seek a pair pλ,uq of (2.9) that minimizes the
objective function of (2.5) for vPRn. Note that

f pvq :� vTPAPv�2vTb0�vTPAPv�2vTPAn0

u�Pv
� uT Au�2uTAn0

u�Pu
� uTPAPu�2uTPAn0

� uTPAPu�2uTb0� f puq, (2.10)

i.e., f pvq� f puq for vPRn and u�Pv. Therefore minimizing f pvq over vPRn is equivalent
to minimizing f puq over u PN pCT

q. The following lemma compares the value of f at
different solution pairs pλ,uq of (2.9). The proof of the lemma is inspired by Gander [9]
on solving a least squares problem with a quadratic constraint.

Lemma 2.1. For two solution pairs pλi,uiq for i�1,2 of the Lagrangian system of equations (2.9),
λ1 λ2 if and only if f pu1q  f pu2q.

Proof. The proof relies on the following three facts: (i) For any solution pair pλ,uq of (2.9),
we have

λu�PAPu�b0 ñ λ�
1

uTu
uT
pPAPu�b0q�

1

γ2
uT
pPAPu�b0q. (2.11)

(ii) Given pλi,uiq for i�1,2, satisfying (2.9), we have

f pu1q � uT
1 PAPu1�2uT

1 b0
(2.9a)
� �bT

0 u1�λ1uT
1 u1�2uT

1 b0

(2.9b)
� uT

1 b0�λ1γ2 (2.9a)
� �uT

2 pPAP�λ2 Iqu1�λ1γ2.

Similarly, we have f pu2q��uT
1 pPAP�λ1Iqu2�λ2γ2. Therefore

f pu1q� f pu2q�pλ1�λ2qpγ
2
�uT

1 u2q. (2.12)
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(iii) For ui of norm γ, by the Cauchy-Schwartz inequality, uT
1 u2¤}u1}}u2}�γ2, and uT

1 u2�

}u1}}u2}�γ2 if and only if u1�u2. Hence if u1�u2, then γ2
�uT

1 u2¡0.
Now we are ready to prove the claim of the lemma. If λ1 λ2, then u1�u2 otherwise

(2.11) would imply λ1�λ2, and thus f pu1q  f pu2q by (2.12). On the other hand, if f pu1q 

f pu2q, then γ2
�uT

1 u2 ¡ 0 because γ2
�uT

1 u2 ¥ 0 always and it cannot be 0 by (2.12), and
thus λ1�λ2 0 again by (2.12).

As a consequence of Lemma 2.1, we find that solving CQopt (2.5) is equivalent to
solving the smallest Lagrangian multiplier λ of (2.7), i.e., those λ that satisfy (2.9). Specif-
ically, solving CQopt (2.5) is equivalent to solving the following Lagrangian minimization
problem:

LGopt:

$

'

'

'

'

&

'

'

'

'

%

min λ

s.t. pPAP�λIqu��b0,

}u}�γ,

uPN pCT
q.

(2.13a)

(2.13b)

(2.13c)

(2.13d)

Theorem 2.2. If v
�

is a minimizer of CQopt (2.5), then pλ
�

,u
�

q with u
�

� Pv
�

and λ
�

�

1
γ2 uT

�

pPAPu
�

�b0q is a minimizer of LGopt (2.13). Conversely if pλ
�

,u
�

q is a minimizer of

LGopt (2.13), then v
�

�n0�u
�

is a minimizer of CQopt (2.5).

The case b0 � PAn0 � 0, which includes but is not equivalent to the homogeneous
CRQopt (1.1) (i.e., b�0) treated in [14,15] can be dealt with as follows. Suppose b0�0 and
let θ1 be the smallest eigenvalue of PAP. Keep in mind that PAP always has an eigenvalue
0 with multiplicity m associated with the subspace N pCT

q

K

�RpCq, the column space of
C. There are the following two subcases:

• Subcase θ1�0: Then: θ1 0. Let z1 be a corresponding eigenvector of PAP. Then
z1�PAPz1{θ1PN pCT

q. So pθ1,z1q is a minimizer of LGopt (2.13) and therefore z1 is a
minimizer of CQopt (2.5), which in turn implies that v

�

�n0�γz1{}z1} is a minimizer
of CRQopt (1.1).

• Subcase θ1 � 0: If there exists a corresponding eigenvector z1 PN pCT
q, i.e., Pz1 �

0, then pθ1,Pz1q is a minimizer of LGopt (2.13) and therefore Pz1 is a minimizer
of CQopt (2.5), which in turn implies that v

�

� n0�γPz1{}Pz1} is a minimizer of
CRQopt (1.1). Otherwise there exists no corresponding eigenvector z1 such that
Pz1�0. Let θ2 be the second smallest eigenvalue of PAP, which is nonzero, and z2 a
corresponding eigenvector. Then z2�PAPz2{θ2 PN pCT

q, and pθ2,z2q is a minimizer
of LGopt (2.13) and therefore z2 is a minimizer of CQopt (2.5), which in turn implies
that v

�

�n0�γz2{}z2} is a minimizer of CRQopt (1.1).

In view of such a quick resolution for the case b0 � 0, in the rest of this article, we will
assume

b0�PAn0�0. (2.14)

:This cannot happen if A is positive semidefinite.
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2.3 Equivalent QEPmin

Let pλ,uq be a feasible pair of LGopt (2.13) and λReigpPAPq. From (2.13b), we can write
u��pPAP�λIq�1b0, and then

γ2
�uTu�bT

0 pPAP�λIq�2b0�bT
0 z, (2.15)

where z�pPAP�λIq�2b0, or equivalently, pPAP�λIq2z�b0. Therefore bT
0 z{γ2

�1 by (2.15),
and the pair pλ,zq satisfies the quadratic eigenvalue problem (QEP):

pPAP�λIq2z�b0�b0 �1�b0

�

bT
0 z{γ2

	

�

1

γ2
b0bT

0 z. (2.16)

We claim that any z satisfying (2.16) is in N pCT
q. To see this, we expand pPAP�λIq2z and

extract λ2z from pPAP�λIq2z�b0 to get

z�
1

λ2

�

�pPAPq2z�2λ�PAPz�b0

�

PN pCT
q,

where we have used the assumption λReigpPAPq to conclude λ�0, and b0�PAn0PN pCT
q.

Therefore we have shown that under the assumption that LGopt (2.13) has no feasible
pair pλ,uq with λ P eigpPAPq, any feasible pair pλ,uq of LGopt (2.13) satisfies QEP (2.16)
with zPN pCT

q.

Next, we prove that any pair pλ,zq satisfying

0�zPN pCT
q, λReigpPAPq and QEP (2.16), (2.17)

leads to a feasible pair of the Lagrange equations (2.13). First we note that bT
0 z�0; other-

wise we would have pPAP�λIq2z�0 by (2.16), implying z�0 since λReigpPAPq, a con-
tradiction. Let pλ,zq be a scalar-vector pair satisfying (2.17). Define u :��pPAP�λIq�1b0.
Then pPAP�λIqu��b0, i.e., (2.13b) holds, and also

λu�PAPu�b0 ñ u�
1

λ
pPAPu�b0qPN pCT

q,

i.e., (2.13d) holds. Without loss of generality, we may scale z such that bT
0 z�γ2. It follows

from (2.16) that

pPAP�λIq2z�b0 ñ z�pPAP�λIq�2b0,

implying

1�
1

γ2
bT

0 z�
1

γ2
bT

0 pPAP�λIq�2b0�
1

γ2
uTu ñ }u}�γ,

i.e., (2.13c) holds. Lemma 2.2 summarizes what we have just proved.
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Lemma 2.2. Suppose the constraints of LGopt (2.13) has no feasible pair pλ,uqwith λPeigpPAPq,
and suppose that QEP (2.16) has no solution pair pλ,zq with 0� zPN pCT

q and λPeigpPAPq.
Then any pair pλ,uq satisfying the constraints of LGopt (2.13) gives rise to a pair pλ,zq with
z�pPAP�λIq�2b0 that satisfies QEP (2.16). Conversely, any pair pλ,zq with z� 0 satisfying
QEP (2.16) leads to a pair pλ,uq with u :��pPAP�λIq�1b0 that satisfies the constraints of
LGopt (2.13).

As a corollary of Lemma 2.2, we conclude that LGopt (2.13) is equivalent to

QEPmin:

$

'

&

'

%

min λ

s.t. pPAP�λIq2z�γ�2b0bT
0 z,

λPR, 0�zPN pCT
q,

(2.18a)

(2.18b)

(2.18c)

under the assumptions of Lemma 2.2. Soon we show that LGopt (2.13) and QEPmin
(2.18) are still equivalent even without the assumptions.

We name the minimization problem (2.18) QEPmin because the constraint (2.18b) is
a quadratic eigenvalue problem (QEP). Although this QEP generally may have complex
eigenvalues λ, the “min” in (2.18a) implicitly restricts the consideration only to the real
eigenvalues λ of QEP (2.18b) in the context of QEPmin (2.18). In this sense, there is no
need to specify λPR in (2.18c), but we are doing it anyway to emphasize the implication.
This comment applies to two other minimization problems pQEPmin (2.26) and rQEPmin
(3.22) later that involve a QEP as a constraint as well.

In the rest of this section, we prove the equivalence between LGopt (2.13) and QEPmin
(2.18) without the assumptions of Lemma 2.2. The key idea is to remove the null space
conditions u,zPN pCT

q by projecting Eqs. (2.13b), (2.13c) in LGopt and (2.18b) in QEPmin
onto an appropriate subspace.

2.4 pLGopt

Let S�rS1, S2sPRn�n be an orthogonal matrix with

RpS1q�N pCT
q, RpS2q�N pCT

q

K. (2.19)

Since rankpCq �m, we know S1 PRn�pn�mq and S2 PRn�m. It can be verified that the
projection matrix P� I�CC: in (2.2) can be written as

P�S1ST
1 � I�S2ST

2 , (2.20)

and

PS1�S1, PS2�0.

Set

g0�ST
1 b0, H�ST

1 PAPS1�ST
1 AS1PR

pn�mq�pn�mq, (2.21)
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we have

STPAPS�

�

ST
1 PAPS1 ST

1 PAPS2

ST
2 PAPS1 ST

2 PAPS2

�

�

�

n�m m

n�m H 0
m 0 0

�

, (2.22a)

STb0�

�

ST
1 b0

ST
2 b0

�

�

�

n�m g0

m 0

�

. (2.22b)

Immediately from the decomposition (2.22a), we conclude the following lemma.

Lemma 2.3. The eigenvalues of PAP consist of those of H and 0 with multiplicities m, i.e.,
eigpPAPq�eigpHqYt0,0,��� ,0u. If 0�λPeigpPAPq, then λPeigpHq and its associated eigen-
vector must be in N pCT

q. The matrix PAP has more than m eigenvalues 0 if and only if H is
singular. For each eigenvalue 0 of PAP coming from eigpHq, there is an eigenvector z of PAP
such that Pz�0 (in fact, Pz is an eigenvector for that particular eigenvalue 0 as well).

To explicitly eliminate the constraint u PN pCT
q in LGopt (2.13), we project LGopt

(2.13) onto RpS1q and introduce the following projected minimization problem

pLGopt:

$

'

&

'

%

min λ

s.t. pH�λIqy��g0,

}y}�γ.

(2.23a)

(2.23b)

(2.23c)

The next theorem establishes the equivalence between LGopt (2.13) and pLGopt (2.23).

Theorem 2.3. The pair pλ
�

,y
�

q is a minimizer of pLGopt (2.23) if and only if pλ
�

,u
�

q with
u
�

�S1y
�

is a minimizer of LGopt (2.13).

Proof. We begin by showing the equivalence between the constraints of LGopt (2.13) and
those of pLGopt (2.23). Note that any 0�uPN pCT

q can be expressed by u�S1y for some
0�yPRn�m and vice versa. Making use of (2.22), we have

ST
rpPAP�λIqu�b0s�ST

pPAP�λIqSSTu�STb0

�

�

H�λI 0
0 �λI

��

y
0

�

�

�

g0

0

�

(2.24)

and
uTu�yTST

1 S1y�yTy. (2.25)

Now if pλ,uq satisfies the constraints of LGopt (2.13), then ST
rpPAP�λIqu�b0s � 0 be-

cause of (2.13b), u�S1y for some y because of (2.13d), and }y}�γ because of (2.13c) and
(2.25). It follows from (2.24) that pH�λIqy�g0�0. Thus pλ,yq satisfies the constraints of
pLGopt (2.23).
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On the other hand, suppose pλ,yq satisfies the constraints of pLGopt (2.23). Let u�
S1y PN pCT

q. Both (2.24) and (2.25) remain valid. Then ST
rpPAP�λIqu�b0s � 0 which

implies pPAP�λIqu�b0� 0 because ST is an orthogonal matrix. Also }u}�γ by (2.25).
This completes the proof of that pλ,uq satisfies the constraints of LGopt (2.13).

Therefore, LGopt (2.13) and pLGopt (2.23) have the same optimal value λ
�

. More than
that, if pλ

�

,u
�

q is a minimizer of LGopt (2.13), then there exists y
�

such that u
�

�S1y
�

and
that pλ

�

,y
�

q is a minimizer of pLGopt (2.23), and vice versa.

We note that for a modest-sized CRQopt (1.1), say n up to 2000, we may as well per-
form the reduction to form pLGopt (2.23) explicitly. Due to its modest size, pLGopt (2.23)
can be solved as a dense matrix computational problem. The detail is buried later in the
proof of Lemma 2.4.

2.5 pQEPmin

For the same purpose as we projected the Lagrange equations, we introduce the follow-
ing projected minimization problem as the counterpart of QEPmin (2.18):

pQEPmin:

$

'

&

'

%

min λ

s.t. pH�λIq2w�γ�2g0gT
0 w,

λPR, w�0.

(2.26a)

(2.26b)

(2.26c)

The equation in (2.26b) has an appearance of a QEP. As stated, the optimal value of pQEP-
min (2.26) is the smallest real eigenvalue of QEP (2.26b). The next theorem establishes the
equivalence between QEPmin (2.18) and pQEPmin (2.26).

Theorem 2.4. The pair pλ
�

,w
�

q is a minimizer of pQEPmin (2.26) if and only if pλ
�

,z
�

q with
z
�

�S1w
�

is a minimizer of QEPmin (2.18).

Proof. We begin by showing the equivalence between the constraints of QEPmin (2.18)
and those of pQEPmin (2.26). Keeping (2.22) in mind, we have for any z�S1w

ST
�

pPAP�λIq2z�γ�2b0bT
0 z
�

�ST
pPAP�λIqSST

pPAP�λIqSSTz�γ�2STb0bT
0 SSTz

�

�

pH�λIq2 0
0 λ2 I

��

w
0

�

�

�

γ�2 g0gT
0 0

0 0

��

w
0

�

. (2.27)

Now if pλ,zq satisfies the constraints of QEPmin (2.18), then 0�zPN pCT
q and thus z�S1w

for some 0�wPRn�m. Therefore, by (2.27), pλ,wq satisfies (2.26b).
On the other hand, suppose pλ,wq satisfies (2.26b) and (2.26c). Let z�S1w PN pCT

q.
Then z�0 and by (2.27), ST

rpPAP�λIq2z�γ�2b0bT
0 zs�0. Since ST is orthogonal, we get

(2.18b). This proves that pλ,zq satisfies the constraints of QEPmin (2.18).
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Therefore, QEPmin (2.18) and pQEPmin (2.26) have the same optimal value λ
�

. More
than that, if pλ

�

,z
�

q is a minimizer of QEPmin (2.18), then there exists w
�

� 0 such that
z
�

�S1w
�

and that pλ
�

,w
�

q is a minimizer of pQEPmin (2.26), and vice versa.

2.6 The equivalence of pLGopt and pQEPmin

Although, in leading to pLGopt (2.23) and pQEPmin (2.26), the matrix H and the vector
g0 are derived from reducing A, C, and b in the original CRQopt (1.1), the developments
in this section does not require that. Given this, in the rest of this section, we consider
general pLGopt (2.23) and pQEPmin (2.26) with;

HPR
ℓ�ℓ, HT

�H, 0�g0 PR
ℓ, and γ¡0.

To set up the stage for the rest of this subsection, let H�YΘYT be the eigen-decomposition
of H:

H�YΘYT with Θ�diagpθ1,θ2,��� ,θℓq, Y�ry1,y2,��� ,yℓs, YTY� Iℓ. (2.28)

Without loss of generality, we arrange θi in the ascending order:

θ1�θ2�����θd θd�1¤���¤θℓ,

and set λminpHq�θ1. Define the secular function

χpλq :�gT
0 pH�λIq�2g0�γ2

�pYTg0q
T
pΘ�λIq�2

pYTg0q�γ2
�

ļ

i�1

ξ2
i

pλ�θiq
2
�γ2, (2.29)

where ξi�gT
0 yi for i�1,2,��� ,n, and let

j0�minti : ξi�0u. (2.30)

Lemma 2.4. Let pλ
�

,y
�

q be a minimizer of pLGopt (2.23). The following statements hold.

(a) λ
�

¤λminpHq.

(b) λ
�

�λminpHq if and only if

g0KU and }pH�λminpHqIq
:g0}2¤γ,

where U is the eigenspace of H associated with its eigenvalue λminpHq.

(c) If g0MU , then λ
�

 λminpHq and λ
�

is the smallest root of the secular function χpλq, and
y
�

��pH�λ
�

Iq�1g0.

;Unlike before, there is no need to assume γ 1. In addition, the size of square matrix H and vector g0 can
be arbitrary, not necessarily equal to n�m.
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Proof. The secular function χpλq in (2.29) is continuous on p�8,θ1q and limλÑ�8

χpλq�

�γ2
 0. Since

χ1

pλq��2
ℓ̧

i�1

ξ2
i

pλ�θiq
3
¡0 for λ θ1 ,

χpλq is strictly increasing in p�8,θ1q. We have the following situations to deal with:

(1) If g0MU , then
°d

i�1 ξ2
i ¡0, i.e., j0¤d, then limλÑθ�1

χpλq��8¡0. There exists a unique

λ
�

Pp�8,θ1q such that χpλ
�

q�0. Let y
�

��pH�λ
�

Iq�1g0, then

yT
�

y
�

�gT
0 pH�λ

�

Iq�2g0�χpλ
�

q�γ2
�γ2.

Therefore, pλ
�

,y
�

q satisfies the constraints of pLGopt (2.23).

(2) Suppose that g0KU , then
°d

i�1ξ2
i �0, i.e., j0¡d. Let

w��pH�θ1 Iq:g0��

ℓ̧

i�d�1

ξi

θi�θ1
yi.

Then pH�θ1 Iqw��g0 and limλÑθ�1
χpλq �wTw�γ2. There are the following three

subcases:

(i) If }w}¡γ, then there exists a unique λ
�

Pp�8,θ1q such that χpλ
�

q�0. Moreover
pλ

�

,y
�

q with y
�

��pH�λ
�

Iq�1g0 satisfies the constraints of pLGopt (2.23).

(ii) If }w}�γ, then pλ
�

,y
�

qwith λ
�

�θ1 and y
�

�w satisfies the constraints of pLGopt
(2.23).

(iii) If }w} γ, then pλ
�

,y
�

q with λ
�

�θ1 and y
�

�w�
a

γ2
�}w}2y1 satisfies the con-

straints of pLGopt (2.23).

Hence we proved that pλ
�

,y
�

q satisfies the constraints of pLGopt (2.23) for all situations.
Now we prove λ

�

is the smallest solution which satisfies the constraints of pLGopt

(2.23). Suppose there exists pλ  λ
�

such that ppλ,pyq satisfies the constraints of pLGopt

(2.23), then pλ λ
�

¤ θ1, so pλReigpHq. Therefore, in order to make ppλ,pyq satisfies (2.23b),

we have py��pH�pλIq�1g0. Note that limλÑλ�
�

χpλq¤ 0 for all cases and χpλq is strictly

increasing in p�8,λ
�

q, so χppλq�pyT
py�γ2

 0, which is contradictory to (2.23c) that }py}�γ.
Therefore, λ

�

is the smallest Lagrangian multiplier, and thus pλ
�

,y
�

q is a minimizer of
pLGopt (2.23).

For all situations, the smallest Lagrangian multiplier λ
�

of pLGopt (2.23) satisfies
λ
�

¤λminpHq, as expected. Also λ
�

�θ1 can only happen in the subcase (ii) or (iii).

Buried in the proof above is a viable numerical algorithm to solve pLGopt (2.23), pro-
vided λ

�

in the case (1) and the subcase (i) of the case (2) can be efficiently solved. In both
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cases, it is the unique root of secular equation χpλq�0 in p�8,θ1q in which χpλq mono-
tonically increasing. A default method is Newton’s method which applies the tangent
line approximation, since both χpλq and its derivative χ1

pλq are rather straightforward to
evaluate. However, this secular equation χpλq� 0 has a special rational form. Previous
ideas in solving secular equations of similar types [2, 10, 21, 43] can be adopted to devise
a much fast method than Newton’s method. Details are presented in Appendix A.

Lemma 2.5. If pλ,yq satisfies the constraints of pLGopt (2.23), then there exists a vector wPRℓ

such that pλ,wq satisfies the constraints of pQEPmin (2.26). Specifically,

w�

#

pH�λIq�1y, if λReigpHq,

the corresponding eigenvector of H, if λPeigpHq.

In particular, the optimal value of pQEPmin (2.26) is less than or equal to the optimal value of
pLGopt (2.23).

Proof. There are the cases to consider. (1) Case λPeigpHq: Let w be an eigenvector of H
corresponding to eigenvalue λ, i.e., Hw�λw. By (2.23b), g0��pH�λIqy, and thus

γ�2g0gT
0 w��γ�2g0yT

pH�λIqw�0.

Evidently, pH�λIq2w� 0. Hence pλ,wq satisfies (2.26b). (2) Case λ R eigpHq: Let w�

pH�λIq�1y. Using (2.23b), we have

pH�λIq2w�pH�λIqy��g0,

γ�2g0gT
0 w�γ�2g0gT

0 pH�λIq�1y��γ�2g0yTy��g0.

Again pλ,wq satisfies (2.26b).
Hence we proved that pλ,wq satisfies the constraints of pQEPmin (2.26). As a corol-

lary, the optimal value of pQEPmin (2.26) is less than or equal to the optimal value of
pLGopt (2.23).

The next lemma claims a stronger conclusion than the last statement in the previous
lemma.

Lemma 2.6. The optimal value of pLGopt (2.23) is equal to the optimal value of pQEPmin
(2.26).

Proof. Let pλ
�

,y
�

q be a minimizer of pLGopt (2.23), and let pλ be the optimal value of

pQEPmin (2.26). By Lemma 2.5, we have pλ¤λ
�

. It suffices to show that pλ λ
�

cannot

happen. Assume, to the contrary, that pλ λ
�

. By Lemma 2.4, we have pλ λminpHq. In

particular, pλReigpHq. Let ppλ, pwq be a minimizer of pQEPmin (2.26). By (2.26b), we have

1

γ2
p

pwTg0q
2
�

pwT 1

γ2
g0gT

0 pw� pw
T
pH�pλIq2 pw¡0,
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implying gT
0 pw�0. Let py��pγ2

{gT
0 pwqpH�

pλIq pw, and observe that

pH�pλIqpy��
γ2

gT
0 pw

�pH�pλIq2 pw��
γ2

gT
0 pw

�γ�2g0gT
0 pw��g0, (2.31a)

pyT
py�

�

γ2

gT
0
pw


2

pwT
pH�pλIq2 pw�

�

γ2

gT
0
pw


2
pwTg0gT

0 pw

γ2
�γ2, (2.31b)

i.e., ppλ,pyq satisfies the constraints of pLGopt (2.23). This implies λ
�

¤

pλ, contradicting the

assumption pλ λ
�

. Therefore, pλ�λ
�

, as expected.

We are ready to establish the equivalence between pLGopt (2.23) and pQEPmin (2.26).

Theorem 2.5 (The equivalence of pLGopt (2.23) and pQEPmin (2.26)).

(1) Let pλ
�

,y
�

q be a minimizer of pLGopt (2.23), then either λ
�

 λminpHq or λ
�

�λminpHq,
and there exists w

�

such that pλ
�

,w
�

q is a minimizer of pQEPmin (2.26). Specifically,

w
�

�

#

pH�λ
�

Iq�1y
�

, if λ
�

 λminpHq,

the corresponding eigenvector of H, if λ
�

�λminpHq.

(2) Conversely, if pλ
�

,w
�

q is a minimizer of pQEPmin (2.26), then there exists y
�

such that
pλ

�

,y
�

q is a minimizer of pLGopt (2.23). Specifically,

y
�

�

#

�pγ2
{gT

0 w
�

qpH�λ
�

Iqw
�

, if gT
0 w

�

�0,

x
�

�

a

γ2
�}x

�

}

2
pw

�

{}w
�

}q, if gT
0 w

�

�0,

where x
�

��pH�λ
�

Iq:g0 in the case gT
0 w

�

�0, and it is guaranteed that }x
�

}¤γ.

Proof. Item (1) is a consequence of Lemmas 2.5 and 2.6.
Consider item (2). Suppose pλ

�

,w
�

q is a minimizer of pQEPmin (2.26). By Lemma 2.6,
it suffices to show that there exists y

�

such that pλ
�

,y
�

q satisfies the constraints of pLGopt
(2.23).

• Case gT
0 w

�

�0: The equations in (2.31) hold with substitutions

pλÑλ
�

, pyÑy
�

��pγ2
{gT

0 w
�

qpH�λ
�

Iqw
�

.

So pλ
�

,y
�

q satisfies the constraints of pLGopt (2.23).

• Case gT
0 w

�

�0: By (2.26b), we find that pH�λ
�

Iq2w
�

�0, implying pH�λ
�

Iqw
�

�0
since H�λ

�

I is real symmetric. Hence λ
�

P eigpHq and w
�

is an associated eigen-
vector. Let x

�

be the minimum norm solution of pH�λ
�

Iqx
�

��g0.

Note that we already know λ
�

is the optimal value of pLGopt (2.23), which means
there exists y such that pλ

�

,yq satisfies (2.23b) and }y}�γ. On the other hand, x is
minimal norm solution of (2.23b), so }x}¤}y}�γ. Then it can be verified that pλ

�

,y
�

q

with y
�

�x
�

�

a

γ2
�}x

�

}

2
pw

�

{}w
�

}q satisfies the constraints of pLGopt (2.23).
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This proves that pλ
�

,y
�

q satisfies the constraints of pLGopt (2.23). In addition, by Lemma
2.6, λ

�

is the optimal value of pLGopt (2.23), which proves the result.

The following theorem is about the uniqueness of the solution for pLGopt (2.23).

Theorem 2.6 (Uniqueness of the minimizer for pLGopt (2.23)). Let pλ
�

,w
�

q be a mini-
mizer of pQEPmin (2.26).

(1) If gT
0 w

�

� 0 for all possible minimizers for pQEPmin (2.26), then λ
�

 λminpHq and the
minimizer of pLGopt (2.23) is unique.

(2) If there exists a minimizer for pQEPmin (2.26) such that gT
0 w

�

�0, then λ
�

�λminpHq and
the minimizer of pLGopt (2.23) is unique if and only if }x

�

}�γ, where x
�

��pH�λ
�

Iq:g0.

Proof. (1) First we prove λ
�

 λminpHq. Suppose it is not true, i.e., λ
�

�λminpHq, let w
�

be an eigenvector of H corresponding with eigenvalue λminpHq, then by Theorem 2.5,
pλ

�

,w
�

q is a minimizer of pQEPmin (2.26). Since QEP (2.26b) leads to γ�2g0gT
0 w

�

�pH�
λ
�

Iq2w
�

�0 and w
�

�0, we have gT
0 w

�

�0, which is contradictory to our assumption that
gT

0 w
�

�0 for all possible minimizers pλ
�

,w
�

q of pQEPmin (2.26). Therefore, λ
�

 λminpHq.
In this case pλ

�

,x
�

��pH�λ
�

Iq�1g0q is the unique minimizer of pLGopt (2.23) since the
H�λ

�

I is nonsingular and x
�

is the unique solution of (2.23b).
(2) Making use of (2.26b), we have

pH�λ
�

Iq2w
�

�γ�2g0gT
0 w

�

�0 ñ pH�λ
�

Iqw
�

�0

because H�λ
�

I is real symmetric. Therefore λ
�

PeigpHq, which yields λ
�

�λminpHq. Note
that x

�

is unique and w
�

can be chosen arbitrarily in the eigenspace of H corresponding
with eigenvalue λminpHq, so w

�

is not unique. Therefore, y
�

�x
�

�

a

γ2
�}x

�

}

2
pw

�

{}w
�

}q

is unique if and only if }x
�

}�γ.

Remark 2.1. In [10], the authors investigate the relationship between the problems

pLG: pH�λIqy��g0, }y}�γ, (2.32)

pQEP: pH�λIq2w�γ�2g0gT
0 w, λPR, w�0. (2.33)

They differ from pLGopt and pQEPmin without taking the min over λ. The following
results were obtained in [10]:

1. If pλ,yq is a solution of pLG (2.32), then there exists w such that pλ,wq is a solution
of pQEP (2.33).

2. Suppose that pλ,wq is a solution of pQEP (2.33).

• If λReigpHq, then there exists y such that pλ,yq is a solution of pLG (2.32).

• If λ P eigpHq, then there exists y such that pλ,yq is a solution of pLG (2.32) if
and only if }pH�λIq:g0}¤γ.
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Consequently, these results provide no guarantee that for any solution pλ,wq of pQEP
(2.33), there exists a corresponding solution pλ,yq of pLG (2.32). Nonetheless, the au-
thors stated without proof that for the solution pλ

�

,w
�

q of pQEP (2.33) with λ
�

being the
smallest eigenvalue of pQEP (2.33), there does exist a solution pλ

�

,y
�

q of pLGopt (2.23),
a conclusion that does not seem straightforward. In Theorem 2.5 we rigorously proved
that for any minimizer pλ

�

,w
�

q of pQEPmin (2.26), there exists y
�

such that pλ
�

,y
�

q is a
minimizer of pLGopt (2.23).

Next we will establish an important result in Theorem 2.7 below that says the leftmost
eigenvalue of QEP (2.26b) is real. We begin by establishing a close relationship between
the zeros of the secular function χpλq in (2.29) and the eigenvalues of QEP (2.26b), and
then using the relation to expose an eigenvalue distribution property of QEP (2.26b).

Lemma 2.7. Suppose λ R eigpHq, λ (possibly complex) is an eigenvalue of QEP (2.26b) if and
only if χpλq�0, where χpλq is defined in (2.29).

Proof. Let χpλq�0 and λReigpHq. Define z�pH�λIq�2g0. Then we have pH�λIq2z� g0

and

gT
0 z�

ℓ̧

i�1

ξ2
i

pθi�λq2
�γ2 and thus pH�λIq2z�g0�γ�2g0gT

0 z,

i.e., pλ,zq is an eigenpair of QEP (2.26b).

On the other hand, suppose λ is an eigenvalue of QEP (2.26b) and λ R eigpHq. Pre-
multiply (2.26b) by gT

0 pH�λIq�2 to get

gT
0 z�γ�2gT

0 pH�λIq�2g0gT
0 z. (2.34)

We claim that gT
0 z�0. Otherwise, pH�λIq2z�0 by (2.26b), which implies pH�λIqz�0,

i.e., λPeigpHq, a contradiction. So gT
0 z�0 and thus it follows from (2.34) that

γ�2gT
0 pH�λIq�2g0�1,

i.e., λ is a zero of χpλq, as was to be shown.

Lemma 2.8. QEP (2.26b) has no eigenvalue λ�α�iβ with α θj0 and β�0, where α, βPR, i
is the imaginary unit, and j0 is defined in (2.30).

Proof. Suppose, to the contrary, that QEP (2.26b) has an eigenvalue λ� α�iβ with α 

θj0 and β� 0. Evidently λ� α�iβ R eigpHq because all eigenvalues of H are real. By
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Lemma 2.7, α�iβ must be a zero of the secular function χpλq in (2.29), i.e.,

0�χpα�iβq�
ℓ̧

i�1

ξ2
i

pα�θi�iβq2
�γ2

�

ℓ̧

i�1

ξ2
i

pα�θiq
2
�β2

�2ipα�θiqβ
�γ2

�

ℓ̧

i�1

ξ2
i rpα�θiq

2
�β2

�2ipα�θiqβs

rpα�θiq
2
�β2

s

2
�4β2

pα�θiq
2
�γ2.

In particular, the imaginary part of χpα�iβq is zero, i.e.,

ℓ̧

i�1

�2pα�θiqβξ2
i

rpα�θiq
2
�β2

s

2
�4β2

pα�θiq
2
�β

�

�

ℓ̧

i�j0

�2pα�θiqξ
2
i

rpα�θiq
2
�β2

s

2
�4β2

pα�θiq
2

�




�0. (2.35)

Since α θi for all i¥ j0, ξ2
j0
¡0 and ξ2

i ¥0 for all i¡ j0, we know

ℓ̧

i�j0

�2pα�θiqξ
2
i

rpα�θiq
2
�β2

s

2
�4β2

pα�θiq
2
¡0.

Therefore, by (2.35), we conclude β�0, a contradiction.

Lemma 2.9. QEP (2.26b) has an eigenvalue rλ  θj0 (necessarily rλ PR), where j0 is defined in
(2.30).

Proof. There are two possible cases:

• Case θj0 � θ1: Without loss of generality, let ξ1 � 0. Since χpλq is continuous and
strictly increasing in p�8,θ1q, and

lim
λÑ�8

χpλq��γ2
 0, lim

λÑθ�1

χpλq¥ lim
λÑθ�1

ξ2
1

pλ�θ1q
2
�γ2

��8¡0,

there exists a zero rλ P p�8,θ1q of χpλq. Evidently rλ R eigpHq, and then by Lemma

2.7, rλ must be an eigenvalue of QEP (2.26b).

• Case θj0¡θ1: Let rλ�θ1 and z�y1. We have pH�rλIq2z�pH�rλIq2y1�0. Furthermore,

gT
0 z� gT

0 y1� ξ1�0. Therefore prλ,zq satisfies (2.26b), implying rλ is an eigenvalue of
QEP (2.26b) and λ̃�θ1 θj0 .

The proof is completed.
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With the three lemmas above, now we are ready to prove our main result on the
leftmost eigenvalue of QEP (2.26b).

Theorem 2.7. The leftmost eigenvalue, by which we mean the one with the smallest real part, of
QEP (2.26b) is real. As a consequence, the optimal value of pQEPmin (2.26) λ

�

is the leftmost
eigenvalue of QEP (2.26b).

Proof. Let λ
�

�α
�

�iβ
�

be the leftmost eigenvalue. By Lemma 2.9, QEP (2.26b) has a real

eigenvalue rλ with rλ θj0 . Hence α
�

¤

rλ θj0 , which together with Lemma 2.8 tell us that
β
�

�0 and thus λ
�

PR.

Remark 2.2. In [37], the authors stated without proof that the rightmost eigenvalue of
the QEP

�

pW�λIq2�δ�2hhT
�

x�0 (2.36)

is real and positive, where W is a real symmetric matrix, h is a vector, and δ¡ 0 is a
scalar. It was pointed out in [20] that the rightmost eigenvalue of (2.36) may not always
be positive and the authors proved in [20, Theorem 4.1] that the largest real eigenvalue of
(2.36) is the rightmost eigenvalue. The authors applied a maximin principle for nonlinear
eigenproblems for the proof. In Theorem 2.7 we have proved the leftmost eigenvalue λ

�

of (2.26b) is real, i.e., there is no complex eigenvalue of QEP (2.26b) with real part equal
to λ

�

and nonzero complex part. This result cannot be obtained by the approach used
in [20].

2.7 The equivalence of LGopt and QEPmin

Theorem 2.5 says that pLGopt (2.23) and pQEPmin (2.26) are equivalent. Previously in
Lemma 2.2, we showed that LGopt (2.13) and QEPmin (2.18) are also equivalent under
the assumptions stated there. Our goal in this subsection is to have the assumptions of
Lemma 2.2 removed.

For convenience, we restate LGopt (2.13) and QEPmin (2.18) as follows:

LGopt:

$

'

'

'

'

&

'

'

'

'

%

min λ

s.t. pPAP�λIqu��b0,

}u}�γ,

uPN pCT
q;

(2.13a)

(2.13b)

(2.13c)

(2.13d)

and

QEPmin:

$

'

&

'

%

min λ

s.t. pPAP�λIq2z�γ�2b0bT
0 z,

λPR, 0�zPN pCT
q.

(2.18a)

(2.18b)

(2.18c)
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Recall S1 and S2 as defined in (2.19) and H and g as defined in (2.21). Before stating
our main result in this subsection, we need two lemmas. The first one is about an eigen-
relationship between PAP and H and the second one is on the relationships among PAP�
λI, H�λI, pPAP�λIq: and pH�λIq:.

Lemma 2.10. pλ,sq is an eigenpair of H if and only if pλ,S1sq is an eigenpair of PAP with
S1sPN pCT

q.

Proof. This is a consequence of the decomposition (2.22a).

Lemma 2.11. For any λPR, pPAP�λIqS1�S1pH�λIq and pPAP�λIq:S1�S1pH�λIq:.

Proof. Let H�YΘYT be the eigen-decomposition of H, where YPRpn�mq�pn�mq is orthog-
onal and Θ is a diagonal matrix. Then the eigen-decomposition of PAP is given by

PAP�rS1 S2s

�

Y 0
0 I

��

Θ 0
0 0

��

YT 0
0 I

�

rS1 S2s
T. (2.37)

Therefore pPAP�λIqS1�S1YpΘ�λIqYT
�S1pH�λIq. On the other hand, for λ�0,

pPAP�λIq:�rS1 S2s

�

Y 0
0 I

��

pΘ�λIq: 0

0 �

1
λ I

��

YT 0
0 I

�

rS1 S2s
T,

and for λ�0,

pPAPq:�rS1 S2s

�

Y 0
0 I

��

Θ: 0
0 0

��

YT 0
0 I

�

rS1 S2s
T.

Hence pPAP�λIq:S1�S1YpΘ�λIq:YT
�S1pH�λIq:, as was to be shown.

Now we are ready to state the main result of the subsection.

Theorem 2.8 (The equivalence of LGopt (2.13) and QEPmin (2.18)).

(1) Let pλ
�

,u
�

q be a minimizer of LGopt (2.13). Then there exists z
�

such that pλ
�

,z
�

q is a
minimizer of QEPmin (2.18). Specifically,

z
�

�

$

'

'

&

'

'

%

pPAP�λ
�

Iq:u
�

, if λ
�

R eigpPAPq or λ
�

P eigpPAPq but there is no corre-
sponding eigenvector entirely in N pCT

q,

s, if λ
�

PeigpPAPq and there is a corresponding eigenvector
sPN pCT

q.

(2) Let pλ
�

,z
�

q be a minimizer of QEPmin (2.18). Then there exists u
�

PRn such that pλ
�

,u
�

q

is a minimizer of LGopt (2.13). Specifically,

u
�

�

#

�pγ2
{bT

0 z
�

qpPAP�λ
�

Iqz
�

, if bT
0 z

�

�0,

x
�

�

a

γ2
�}x

�

}

2
pz
�

{}z
�

}q, if bT
0 z

�

�0,

where x
�

��pPAP�λ
�

Iq:b0 in the case bT
0 z

�

�0 and it is guaranteed that }x
�

}¤γ.
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Proof. We prove item (1) first. By Theorem 2.3, pλ
�

,y
�

q with y
�

�ST
1 u

�

is a minimizer of
pLGopt (2.23). We have two cases to consider.

(a) If λ
�

ReigpPAPq or λ
�

PeigpPAPq but there is no corresponding eigenvector sPN pCT
q,

then λ
�

ReigpHq by Lemma 2.10. Using Theorem 2.5, we conclude that pλ
�

,w
�

qwith

w
�

�pH�λ
�

Iq�1y
�

�pH�λ
�

Iq:y
�

is a minimizer of pQEPmin (2.26). Now use Theorem 2.4 to conclude that pλ
�

,z
�

q

with z
�

�S1pH�λ
�

Iq:y
�

is a minimizer of QEPmin (2.18). By Lemma 2.11,

z
�

�S1pH�λ
�

Iq:y
�

�pPAP�λ
�

Iq:S1y
�

�pPAP�λ
�

Iq:u
�

.

(b) Suppose that λ
�

PeigpPAPq and there is a corresponding eigenvector sPN pCT
q. Then

s�S1r for some 0�rPRn�m. By Lemma 2.10, r is an eigenvector of H corresponding
to the eigenvalue λ

�

. Use Theorem 2.5 to conclude that pλ
�

,w
�

q with w
�

� r is a
minimizer of pQEPmin (2.26), which in turn, by Theorem 2.4, yields that pλ

�

,z
�

q

with z
�

� s�S1r is a minimizer of QEPmin (2.18).

Next we consider item (2). By Theorem 2.4, pλ
�

,w
�

q with w
�

� ST
1 z

�

is a minimizer of
pQEPmin (2.26). Since b0,z

�

PN pCT
q, we have z

�

�S1w
�

and bT
0 z

�

�gT
0 ST

1 S1w
�

�gT
0 w

�

.

• Case bT
0 z

�

�0: We have gT
0 w

�

�0. By Theorem 2.5, pλ
�

,y
�

qwith y
�

��pγ2
{gT

0 w
�

qpH�
λ
�

Iqw
�

solves pLGopt (2.23). By Theorem 2.3, pλ
�

,u
�

qwith u
�

��pγ2
{gT

0 w
�

qS1pH�
λ
�

Iqw
�

solves LGopt (2.13). Furthermore, by Lemma 2.11, pPAP�λ
�

Iqz
�

�

pPAP�λ
�

IqS1w
�

� S1pH�λ
�

Iqw
�

. Therefore u
�

� �pγ2
{gT

0 w
�

qS1pH�λ
�

Iqw
�

�

�pγ2
{bT

0 z
�

qpPAP�λ
�

Iqz
�

.

• Case bT
0 z

�

�0: We have gT
0 w

�

�0 and z
�

is an eigenvector of PAP corresponding to
its eigenvalue λ

�

. By Lemma 2.10, y
�

�ST
1 z

�

is an eigenvector of H corresponding
to its eigenvalue λ

�

. Let s��pH�λ
�

Iq:g, according to Theorem 2.5, }s} ¤γ and
pλ

�

,y
�

q with y
�

� s�
a

γ2
�}s}2

pw
�

{}w
�

}q solves pLGopt (2.23). By Theorem 2.4,
pλ

�

,u
�

q with u
�

�S1y
�

is a minimizer of LGopt (2.13). Now set

x
�

�S1s��S1pH�λ
�

Iq:g��pPAP�λ
�

Iq:b0,

and thus

u
�

�S1y
�

�S1s�
b

γ2
�}S1s}2

S1w
�

}S1w
�

}

�x
�

�

b

γ2
�}x

�

}

2
z
�

}z
�

}

,

as expected.

This completes the proof.
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We note that proving the equivalence between LGopt (2.13) and QEPmin (2.18) is of
theoretical interest. The proof in [10] is incomplete as discussed in Remark 2.1.

Returning to the original CRQopt (1.1), we observe that if pλ
�

,u
�

q solves LGopt (2.13),
then n0�u

�

solves CRQopt (1.1). Therefore immediately we obtain the following theo-
rem.

Theorem 2.9. Suppose pλ
�

,z
�

q is a minimizer of QEPmin (2.18). Then a minimizer v
�

of
CRQopt (1.1) is given by

v
�

�

#

n0�pγ
2
{bT

0 z
�

qpPAP�λ
�

Iqz
�

, if bT
0 z

�

�0,

n0�x
�

�

a

γ2
�}x

�

}

2
pz
�

{}z
�

}q, if bT
0 z

�

�0,

where x
�

��pPAP�λ
�

Iq:b0 in the case of bT
0 z

�

�0 and it is guaranteed that }x
�

}¤γ.

What the next theorem says is that solving QEPmin (2.18) is equivalent to calculating
the leftmost eigenvalue of QEP (2.18b) among those having eigenvectors§ in N pCT

q. This
result paves the way for the use of a Krylov subspace method to calculate the minimizer
of QEPmin (2.18) in Section 3 ahead.

Theorem 2.10. If pλ
�

,z
�

q is a minimizer of QEPmin (2.18), then λ
�

is the leftmost eigenvalue
of QEP (2.18b) among those having eigenvectors in N pCT

q.

Proof. Following the argument in the proof of Theorem 2.4, we find that the set of eigen-
values of QEP (2.18b) that have eigenvectors in PN pCT

q and the set of eigenvalues of
QEP (2.26b) are the same. The conclusion is an immediate consequence of Theorems 2.4
and 2.7.

2.8 Summary

Starting with CRQopt (1.1), we have introduced five equivalent optimization problems.
Fig. 1 summarizes the relationships of these problems. The edge “�Ñ” in Fig. 1 connect-
ing two optimization problems indicates that we have an equivalent relationship in the
previous subsections. We note that CRQopt (1.1) and CQopt (2.5) share the same min-
imizers v

�

, while correspondingly the minimizer for LGopt (2.13) is u
�

� Pv
�

. Slightly
more efforts are needed to describe corresponding minimizers for other equivalent op-
timization problems. The optimal values for the objective functions of LGopt (2.13),
pLGopt (2.23), QEPmin (2.18), and pQEPmin (2.26) are all the same. The proof of Theo-
rem 2.8 relies on Theorems 2.3, 2.4 and 2.5.

2.9 Easy and hard cases

Motivated by the treatments of the trust-region subproblem [27, 43], QEPmin (2.18) can
be classified into two categories, namely easy case and hard case, defined as follows.

§This does not exclude the possibility that they may have eigenvectors not in N pCT
q.
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Figure 1: Equivalence of optimization problems.

Definition 2.1. QEPmin (2.18) is in the hard case if it has a minimizer pλ
�

,z
�

q with bT
0 z

�

�0.
Otherwise, QEPmin (2.18) is in the easy case. Furthermore, any one of the equivalent opti-
mization problems as shown in Fig. 1 is said to be in the hard or easy case if the corresponding
QEPmin is.

The notion of hardness and easiness has its historical reason in dealing with the trust-
region subproblem. The hard case is not really hard as its name suggests when it comes to
numerical computation. It is just a degenerate and rare case that needs special attention.
The easy case is a generic one. Consider the hard case, let V be the maximal eigenspace
of PAP corresponding to eigenvalue λ

�

, then b0KV by Theorem 2.11. This creates diffi-
culties to our later Lanczos method to solve QEPmin (2.18) in that the Krylov subspace
KkpPAP,b0q�VK for any k. So in theory there is no vector in KkpPAP,b0q can approximate
any eigenvector zPV well.

In Theorems 2.11 and 2.12 below, we present a number of characterizations about the
hard case.

Lemma 2.12. QEPmin (2.18) is in the hard case if and only if pQEPmin (2.26) has a minimizer
pλ

�

,w
�

q satisfying gT
0 w

�

�0.

Proof. To see this, we let pλ
�

,z
�

q be a minimizer QEPmin (2.18) satisfying bT
0 z

�

� 0. By
Theorem 2.4, we know that z

�

and w
�

are related by z
�

� S1w
�

. Since also b0 � S1g0,
bT

0 z
�

�gT
0 w

�

.

Theorem 2.11. Suppose that QEPmin (2.18) is in the hard case, and let pλ
�

,z
�

q be a minimizer
such that bT

0 z
�

�0. Then we have the following statements:

(1) λ
�

�λminpHq, the smallest eigenvalue of H;

(2) g0KU , where U is the eigenspace of H associated with its eigenvalue λminpHq;

(3) b0KV , where V is the eigenspace of PAP associated with its eigenvalue λminpHqPeigpPAPq.

Proof. By Lemma 2.12, pQEPmin (2.26) has a minimizer pλ
�

,w
�

q satisfying gT
0 w

�

�0. The-
orem 2.6 immediately leads to item (1). Item (2) is a corollary of Lemma 2.4.

For item (3), it follows from Lemma 2.3 that if λminpHq�0, then V �S1U . Since b0�

S1g0 and g0KU by item (2), we conclude that b0KS1U . If, however, λminpHq � 0, then
V�S1U�RpS2q. Since again g0KU by item (2) and also b0KRpS2q, we still have b0KV .
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Theorem 2.12. QEPmin (2.18) is in the hard case if and only if

g0KU and }rH�λminpHqIs
:g0}2¤γ, (2.38)

where U is as defined in Theorem 2.11.

Proof. If QEPmin (2.18) is in the hard case, then its optimal value (which is also the one of
LGopt (2.13)) λ

�

�λminpHq. This can only happen when (2.38) holds. On the other hand,
if (2.38) holds, then λ

�

�λminpHq by Lemma 2.4. By Theorem 2.5, pQEPmin (2.26) has a
minimizer pλ

�

,w
�

q, where Hw
�

�λ
�

w
�

. Thus gT
0 w

�

�0 because g0KU and w
�

PU . Hence
QEPmin (2.18) is in the hard case by Lemma 2.12.

When QEPmin (2.18) is in the easy case, the situation is much simpler to characterize.

Theorem 2.13. CRQopt (1.1) has a unique minimizer when QEPmin (2.18) is in the easy case.

Proof. Suppose that QEPmin (2.18) is in the easy case. By Definition 2.1, all minimizers
pλ

�

,w
�

q of pQEPmin (2.26) satisfy gT
0 w

�

�0. Theorem 2.6 guarantees that pLGopt (2.23)
has a unique minimizer. Consequently, the minimizer of LGopt (2.13) is unique by Theo-
rem 2.3 and so is the minimizer of CRQopt (1.1).

We use the remaining part of this subsection to explain how CRQopt (1.1) and the
well-known trust-region subproblem (TRS) are related. We have already proved in The-
orem 2.1 that CRQopt (1.1) is equivalent to CQopt (2.5). Set u�Pv. Solving CQopt (2.5)
is equivalent to solving

$

'

'

&

'

'

%

min uTPAPu�2uTb0,

s.t. }u}�γ,

uPN pCT
q.

(2.39a)

(2.39b)

(2.39c)

Let H and g0 be defined in (2.21) and S1 be defined in (2.19). Then u is a minimizer of
optimization problem (2.39) if and only if y�ST

1 u is a minimizer of the following equality
constrained optimization problem

#

min yTHy�2yTg0,

s.t. }y}�γ.

(2.40a)

(2.40b)

The Lagrange equations for (2.40) is exactly the same as pLGopt (2.23). The problem
(2.40) is similar to TRS

#

min yTHy�2yTg0,

s.t. }y}¤γ,

(2.41a)

(2.41b)

except that its constraint is an equality instead of an inequality. When H is not positive
semi-definite, solution of (2.40) and TRS (2.41) are exactly the same. But when H is pos-
itive semi-definite and g0 KN pHq, we need to check whether }H:g0} γ. If so, �H:g0,
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instead of the minimizer of (2.40), is the minimizer of TRS (2.41). If, however, }H:g0}¥γ,
then the minimizer of TRS (2.41) is the same as that of (2.40).

Lemma 2.1 in [17] shows that y is the solution of (2.40) if and only if there exists
pλ PR such that ppλ,yq satisfies the constraints of pLGopt (2.23) and H�pλI is positive
semi-definite. According to Lemma 2.4, the optimal value of pLGopt (2.23) satisfies
λ
�

¤λminpHq, which indicates that H�λ
�

I is positive semi-definite. Therefore, solving
the equality constrained problem (2.40) is equivalent to solving pLGopt (2.23).

As we have mentioned, the terms “easy” and “hard” were adopted from the treatments
of the trust-region subproblem [27, 43], where the term “easy” means the associated case
is easy to explain, not implying the case is easy to solve, however. A more detailed
connection with TRS (2.41) is as follows.

1. In the easy case of QEPmin (2.18), bT
0 z

�

� 0 for all minimizers pλ
�

,z
�

q. By The-
orem 2.4, z

�

� S1w
�

for some w
�

PRn�m and thus gT
0 w

�

� bT
0 S1w

�

� bT
0 z

�

� 0. By
Theorem 2.6, λ

�

 λminpHq, and thus pλ
�

,y
�

q with y
�

��pH�λ
�

Iq�1g0 is the unique
minimizer of pLGopt (2.23). Hence y

�

is the unique minimizer of (2.40), which is
related to the easy case of TRS (2.41).

2. In the hard case of QEPmin (2.18), there exists a minimizer pλ
�

,z
�

q such that bT
0 z

�

�0.
Again by Theorem 2.4, z

�

�S1w
�

for some w
�

PRn�m and gT
0 w

�

�0. By Theorem 2.5,
a minimizer of pLGopt (2.23) is given by

pλ
�

,y
�

q and y
�

�x
�

�

b

γ2
�}x

�

}

2
w
�

}w
�

}

,

where x
�

��pH�λ
�

Iq:g0 and it is guaranteed that }x
�

}¤γ. Therefore, in general,
a minimizer of (2.40) can be expressed by y

�

� x
�

�

a

γ2
�}x

�

}

2
pw

�

{}w
�

}q, which is
related to the hard case of TRS (2.41).

It is known that the generalized Lanczos method does not work for TRS (2.41) in the
hard case [43, Theorem 4.6]. A restarting strategy was proposed to overcome the diffi-
culty, but it was commented that the strategy is computationally expensive for large scale
problems [16, Theorem 5.8].

In the next section, we present that the Lanczos algorithms for CRQopt (1.1), which
resemble the generalized Lanczos method for TRS and are suitable for handling the easy
case. However, with some additional effort, the hard case can be detected.

3 Lanczos algorithm

As was shown in Section 2, solving CRQopt (1.1) is equivalent to solving LGopt (2.13) or
QEPmin (2.18). In this section we present algorithms to solve CRQopt (1.1) by solving
LGopt (2.13) and QEPmin (2.18). We first review the Lanczos procedure in Section 3.1,
and then we apply the procedure to reduce LGopt (2.13) and QEPmin (2.18), and finally
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solve the reduced LGopt and QEPmin to yield approximations to the minimizer of the
original CRQopt (1.1). In addition, we prove the finite step stopping property of the
proposed algorithms and comment on how to detect the hard case.

3.1 Lanczos process

We review the standard symmetric Lanczos process [4,13,30,34]. Given a real symmetric
matrix M PRn�n and a starting vector r0 PRn, the Lanczos process partially computes
the decomposition MQ�QT, where T PRn�n is symmetric and tridiagonal, QPRn�n is
orthogonal and the first column of Q is parallel to r0.

Specifically, let Q�rq1,q2,��� ,qns and denote by αi for 1¤ i¤n the diagonal entries of
T, and by βi for 2¤ i¤n the sub-diagonal and super-diagonal entries of T. The Lanczos
process goes as follows: set q1� r0{}r0}, and equate the first column of both sides of the
equation MQ�QT to get

Mq1�q1α1�q2β2. (3.1)

Pre-multiply both sides of the equation (3.1) by qT
1 to get α1�qT

1 Mq1, and then let

pq2�Mq1�q1α1, β2�}pq2}.

If β2¡0, set q2�pq2{β2; otherwise the process breaks down. In general for j¥2, equating
the jth column of both sides of the equation MQ�QT leads to

Mqj�qj�1β j�qjαj�qj�1β j�1. (3.2)

Up to this point, qi for 1¤ i¤ j, αi for 1¤ i¤ j�1, and βi for 2¤ i¤ j have already been
determined. Pre-multiply both sides of Eq. (3.2) by qT

j to get αj�qT
j Mqj, and then let

pqj�1�Mqj�qj�1β j�qjαj, β j�1�}pqj�1}.

Now if β j�1¡0, we set qj�1�pqj�1{β j�1; otherwise the process breaks down. The process

can be compactly expressed by¶

MQk�QkTk�βk�1qk�1eT
k (3.3)

assuming the process encounters no breakdown for the first k steps, i.e., no βi � 0 for
2¤ i¤k, where

Qk�rq1,q2,��� ,qks, Tk�QT
k MQk�

�

�

�

�

�

�

�

α1 β2

β2 α2 β3

. . .
. . .

. . .

βk�1 αk�1 βk

βk αk

�

�

�

�

�

�

�

.

¶We sacrifice slightly mathematical rigor in writing (3.3) in exchange for simplicity and convenience, since
qk�1 cannot be determined unless also βk�1¡0.
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Furthermore, the column space RpQkq is the same as the kth Krylov subspace

KkpM,r0q :�spanpr0,Mr0,��� ,Mk�1r0q.

In the case of a breakdown with βk�1�0, MQk�QkTk and RpQkq is an invariant subspace
of M.

3.2 Solving LGopt

In this subsection, we first use (3.3) obtained by the Lanczos process with M�PAP to re-
duce LGopt (2.13), and then solve the reduced LGopt via an approach based on a secular
equation solver.

3.2.1 Dimensional reduction of LGopt

For the dimensional reduction of LGopt (2.13), we restate the Lagrange equations (2.13b)
and (2.13b) here

pPAP�λIqu��b0, }u}�γ, Pu�u, (3.4)

where we include the constraint Pu � u since we are only interested in those vectors
uPN pCT

q.
Apply the Lanczos process with M� PAP and the starting vector r0� b0 to get (3.3)

with M�PAP. It then follows that for any scalar λ,

QT
k pPAP�λIqQk�Tk�λI and QT

k b0�}b0}e1.

Consequently, we arrive at the reduced LGopt (2.13)

rLGopt:

$

'

&

'

%

min λ

s.t. pTk�λIqx��}b0}e1,

}x}�γ.

(3.5a)

(3.5b)

(3.5c)

A couple of comments are in order for the efficiency of the Lanczos process with
M� PAP. In the process, we have to calculate matrix-vector products Mx� PpApPqjqq

efficiently. For that purpose, it suffices for us to be able to calculate the product Pc effi-
ciently for any given cPRn. In fact

Pc�c�CC:c�c�Cy,

where y�C:c is the minimum-norm solution of the least squares problem

y�argmin
zPRm

}Cz�c}2, (3.6)

which can be computed by using the QR decomposition of C P Rn�m or an iterative
method such as LSQR [7, 29, 35]. Another cost-saving observation due to [14] is that
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for the matrix-vector product Mqj � PpApPqjqq, the first application of P in Pqj can be

skipped due to the fact that if the initial vector b0PN pCT
q, then Pqj�qj for all 1¤ j¤k�1.

We end this subsection by pointing out that rLGopt (3.5) cannot fall into the hard case.
The same phenomenon happens to the tridiagonal TRS generated by the generalized
Lanczos method [16, Theorem 5.3] as well. Let the eigen-decomposition of Tk be

Tk�YΘYT, YTY� Ik, Θ�diagpϑ1,ϑ2,��� ,ϑkq, (3.7)

where we suppress the dependency of Y, Θ, and ϑj on k for notational convenience.
Further, we arrange ϑj in nondecreasing order, i.e., ϑ1¤ϑ2¤���¤ϑk and Y�ry1,y2,��� ,yks.

Theorem 3.1. Suppose that β j�0 for j�2,3,��� ,k in the Lanczos process. Let µpkq be the optimal

value of rLGopt (3.5), then µpkq ϑ1�λminpTkq, and rLGopt (3.5) cannot fall into the hard case.

Proof. It is well-known that the first components of all eigenvectors yi of irreducible Tk

are nonzero [30, p.140]. In particular, eT
1 y1�0. Lemma 2.4 immediately leads to µpkq ϑ1.

Since µpkq λminpTkq by Theorem 2.11(1), we conclude that rLGopt cannot fall into the
hard case.

3.2.2 Solving rLGopt

Now we explain how to solve rLGopt (3.5). Suppose that β j� 0 for j� 2,3,��� ,k, and let
the eigen-decomposition of Tk be given by (3.7).

Theorem 3.2. The optimal value µpkq of rLGopt (3.5) is the smallest root of the secular function

pχpλq�}b0}
2eT

1 pTk�λIq�2e1�γ2
�

ķ

i�1

ζ2
i

pλ�ϑiq
2
�γ2, (3.8)

where ζi�}b0}e
T
1 yi for i�1,2,��� ,k. Furthermore,

pµpkq,xpkqq�pµpkq,�}b0}pTk�µpkq Iq�1e1q (3.9)

is a minimizer of rLGopt (3.5).

Proof. rLGopt (3.5) takes the same form as pLGopt (2.23). By Theorem 3.1, µpkq λminpTkq.
The conclusions of the lemma are now consequences of Lemma 2.4.

Theorem 3.2 naturally leads to a method for solving rLGopt (3.5) through calculating
the smallest root of the secular function pχpλq. Algorithm 1 outlines the method, based on
an efficient secular equation solver in Appendix A.

Although Theorem 3.2 assures us that the hard case cannot happen for rLGopt (3.5),
cases where |eT

1 y1| is very tiny are possible. Such a nearly hard case has to be treated with
care, a subject of further study.
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Algorithm 1 Solving rLGopt (3.5)

Input: Tk PRk�k, }b0}, γ¡0, and tolerance ǫ;
Output: pµpkq,xpkqq, approximate minimizer of rLGopt (3.5);

1: Compute the eigenvalues θ1¤ θ2¤���¤ θk of Tk and the corresponding eigenvectors
y1,��� ,yk;

2: ξi�}b0}e
T
1 yi for i�1,2,��� ,k;

3: δ0�
1
γ

b

°k
i�1ξ2

i , αp0q�θ1�δ0, βp0q�θ1 and η�γ2
�

°k
i�2

ξ2
i

prθ1�δ0s�θiq
2 ;

4: if η¡0 then λp0q
�θ1�|ξ1|{

?

η else λp0q
�θ1�δ0{2;

5: for j�0,1,2,��� do

6: χ�
°k

i�1
ξ2

i

pλpjq
�θiq

2 �γ2;

7: if χ¡0 then αpj�1q
�αpjq, βpj�1q

�λpjq else αpj�1q
�λpjq, βpj�1q

�βpjq;

8: a�pλpjq
�θ1q

3
°n

i�1
ξ2

i

pλpjq
�θiq

3 , b�pλpjq
�θ1q

°n
i�1

ξ2
i

pλpjq
�θiq

3 �χ;

9: if b¡0 then

10: λ1�θ1�
a

a{b;
11: if λ1Ppα

pj�1q ,βpj�1q
q then λpj�1q

�λ1 else λpj�1q
�pαpj�1q

�βpj�1q
q{2;

12: else

13: λpj�1q
�pαpj�1q

�βpj�1q
q{2;

14: end if

15: if |λpj�1q
�λpjq

| ǫ then stop;
16: end for

17: return pµpkq,xpkqq�pλpj�1q ,�pTk�µpkq Iq�1
}b0}e1q as a solution of rLGopt (3.5).

Remark 3.1. Let us discuss the relationship between solving rLGopt (3.5) and solving
TRS by a generalized Lanczos (GLTRS) method proposed in [16]. GLTRS projects a sim-
ilar problem to (2.39a) and (2.39b) by a Krylov subspace to yield a small-size problem.
Ignoring (2.39c) for the moment, we run the Lanczos process with M�PAP and the start-
ing vector be r0 � b0 to generate the orthonormal basis matrix Qk and the tridiagonal
matrix Tk. Since b0 PN pCT

q, it can be verified that RpQkq �N pCT
q, which means that

(2.39c) is automatically taken care of. Project (2.39a) and (2.39b) onto the column space of
Qk and we arrive at the following equality constrained optimization problem:

#

min xTTkx�2xT
}g0}e1,

s.t. }x}�γ.

(3.10a)

(3.10b)

Problem (3.10) is similar to the tridiagonal TRS generated by GLTRS except that the con-
straint here is equality instead of inequality. Solving (3.10) by the method of the La-
grangian multipliers leads to exactly rLGopt (3.5).
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3.2.3 Solving LGopt

After computing pµpkq,xpkqq, the minimizer of rLGopt (3.5), we deduce an approximate
minimizer of LGopt (2.13):

pµpkq,upkqq�pµpkq,Qkxpkqq. (3.11)

It can be verified that

}upkq}�}xpkq}�γ, upkq PRpQkq�N pCT
q. (3.12)

That is the pair in (3.11) satisfies the constraints (2.13c) and (2.13d).

The accuracy of this approximate minimizer pµpkq,upkqq can be measured by the resid-
ual vector

r
LGopt
k �pPAP�µpkq Iqupkq�b0. (3.13)

For simplicity, we may assume that pµpkq,xpkqq satisfies the constraint of rLGopt (3.5) ex-
actly. In particular pTk�µpkq Iqxpkq��}b0}e1, since it is reasonable to assume that the error
in pµpkq,upkqq as an approximate minimizer of LGopt (2.13) is much larger than the er-
ror in pµpkq,xpkqq as the computed minimizer of rLGopt (3.5). Subsequently, we have the

following expression for the residual vector r
LGopt
k , similar to the one on the generalized

Lanczos method for TRS [16].

Proposition 3.1. Suppose that the approximate minimizer pµpkq,xpkqq of rLGopt (3.5) satisfies
the constraints of rLGopt (3.5) exactly. We have

r
LGopt
k �βk�1qk�1pe

T
k xpkqq. (3.14)

Proof. We have by (3.3)

r
LGopt
k �pPAP�µpkq IqQkxpkq�b0�rQkpTk�µpkq Iq�βk�1qk�1eT

k sx
pkq
�b0

��Qk}b0}e1�βk�1qk�1pe
T
k xpkqq�b0�βk�1qk�1pe

T
k xpkqq,

as was to be shown.

In deciding if r
LGopt
k is sufficiently small, a sensible way is to check some kind of

normalized residual. In view of (3.13), a reasonable one is

NRes
LGopt
k :�

}r
LGopt
k }

p}A}�|µpkq|q}xpkq}�}b0}
�

|βk�1||e
T
k xpkq|

p}A}�|µpkq|q}xpkq}�}b0}
�: δ

LGopt
k . (3.15)

The Lanczos process is stopped if δ
LGopt
k ¤ ǫ, a prescribed tolerance. In summary, the

Lanczos algorithm for solving LGopt (2.13) is given in Algorithm 2.
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Algorithm 2 Solving LGopt (2.13)

Input: APRn�n, CPRn�m, b0PRn, γ¡0, and tolerance ǫ;
Output: pµpkq,upkqq, approximate minimizer of LGopt (2.13);

1: β1�}b0};
2: if β1�0 then stop;
3: q1�b0{β1, q0�0;
4: for k�1,2,��� do

5: q̂�Aqk, q̂�Pq̂, q̂� q̂�βkqk�1;
6: αk�qT

k q̂, q̂� q̂�αkqk, βk�1�}q̂};

7: compute the minimizer pµpkq,xpkqq of rLGopt (3.5) by Algorithm 1;

8: if δ
LGopt
k ¤ǫ then stop;

9: qk�1� q̂{βk�1;
10: end for

11: Qk�rq1,q2,��� ,qks;
12: return pµpkq,upkqq with upkq�Qkxpkq as an approximate minimizer of LGopt (2.13).

3.3 Solving QEPmin

In this section, we propose a Lanczos algorithm for solving QEPmin (2.18). It follows
the same framework as in the previous subsection. First, we reduce QEPmin (2.18) to a
smaller problem by projection, and then solve the reduced QEPmin by an eigensolver.
One immediate advantage of doing so is the availability of mature eigensolvers for use
to solve the underlying QEP. Independently, QEPmin (2.18) is of interest of its own, e.g.,
it plays a role in solving the total least square problems [20, 37].

3.3.1 Dimensional reduction of QEPmin

The Lanczos process is natural as a method to solve QEP (2.18b) for its leftmost eigen-
value and the corresponding eigenvector. For convenience, we restate QEP (2.18b) here:

pPAP�λIq2z�γ�2b0bT
0 z, Pz�z. (3.16)

Note that we have added the constraint Pz�z since we are only interested in those eigen-
vectors zPN pCT

q.

Now we discuss how to perform the dimensional reduction of the QEP (3.16) via
the projection onto the Krylov subspace generated by the Lanczos process described in
Section 3.1. Let Qk be the orthogonal matrix and Tk be the tridiagonal matrix generated
by k steps of the Lanczos process with the matrix M�PAP and the starting vector b0. We
will again have (3.3), i.e.,

PAPQk�QkTk�βk�1qk�1eT
k and QT

k b0bT
0 Qk�}b0}

2e1eT
1 . (3.17)
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By a straightforward calculation, we have

pPAP�λIq2Qk�pPAP�λIq
�

QkpTk�λIq�βk�1qk�1eT
k

�

�

�

QkpTk�λIq�βk�1qk�1eT
k

�

pTk�λIq�pPAP�λIqβk�1qk�1eT
k

�QkpTk�λIq2�βk�1qk�1eT
k pTk�λIq�βk�1pPAP�λIqqk�1eT

k (3.18)

and

QT
k pPAP�λIq2Qk�pTk�λIq2�0�βk�1QT

k pPAP�λIqqk�1eT
k

�pTk�λIq2�βk�1

�

QkpTk�λIq�βk�1qk�1eT
k

�T
qk�1eT

k

�pTk�λIq2�β2
k�1ekeT

k . (3.19)

By (3.17) and (3.19), naturally one would like to take the reduced QEP (3.16) to be

�

pTk�λIq2�β2
k�1ekeT

k

�

w�γ�2
}b0}

2e1pe
T
1 wq. (3.20)

Unfortunately, this reduced QEP may not have any real eigenvalue, not to mention that
the leftmost eigenvalue is guaranteed to be real, as demonstrated by Example 3.1 below.
To overcome it, we propose to drop the term β2

k�1ekeT
k in (3.19) and use the following

reduced QEP

pTk�λIq2w�γ�2
}b0}

2e1pe
T
1 wq. (3.21)

Since it has the same form as the QEP in pQEPmin (2.26b), the leftmost eigenvalue of the
reduced QEP (3.21) is guaranteed to be real by Theorem 2.7.

It can be seen that the corresponding reduced QEPmin (2.18) to QEP (3.21) is given
by

rQEPmin:

$

'

&

'

%

min λ

s.t. pTk�λIq2w�γ�2
}b0}

2e1pe
T
1 wq,

λPR, w�0.

(3.22a)

(3.22b)

(3.22c)

We note that the Lanczos process of PAP on b0 is the same as, upon a linear transforma-
tion by ST

1 , that of H on g0 in pQEPmin (2.26). Therefore, rQEPmin (3.22) can be viewed
as a reduced-form of pQEPmin (2.26).

Example 3.1. Let A�diagp1,2,3,4,5q, C�r0.65,1,0.68,1.13,�0.23sT and b�r1s. The eigen-
values of QEP (2.18b) and (2.18c) in QEPmin, computed by MATLAB, are 0.8333, 1.6493,
2.0000, 2.9916�0.2369i, 3.8786, 4.8236, 5.1196. We see the leftmost eigenvalue is real.
Apply the Lanczos process with k� 2 leads to a 2�2 QEP (3.20) whose eigenvalues are
computed to be 1.8124�0.4172i and 3.3714�0.2547i, both are genuine complex num-
bers! In contrast, the eigenvalues of QEP (3.21) are 1.1429, 2.2661, 2.8915, 4.0672, all of
which are real.
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3.3.2 Solving rQEPmin

To solve rQEPmin (3.21), we first linearize it into a linear eigenvalue problem (LEP).
The reader is referred to [11, Chapter 1] for many different ways to linearize a general
polynomial eigenvalue problem. Our rQEPmin (3.21) takes a rather particular form, and
we use similar ideas but slightly different linearization. Specifically, we let y�pTk�λIqw

and s�

�

y
w

�

. Then QEP (3.22b) can be converted to the following LEP:

�

Tk �γ�2
}b0}

2e1eT
1

�I Tk

�

s�λs. (3.23)

At this point, one can use a standard eigensolver to find the leftmost real eigenvalue µpkq

of LEP (3.23) and its corresponding eigenvector spkq�

�

ypkq

wpkq

�

. Subsequently, an approxi-

mate optimizer of rQEPmin (3.22) is given by pµpkq,wpkq
q.

3.3.3 Solving QEPmin

The minimizer pµpkq,wpkq
q of rQEPmin (3.22) yields an approximate minimizer of QEP-

min (2.18) as
pµpkq,zpkqq�pµpkq,Qkwpkq

q. (3.24)

The accuracy of this pair pµpkq,zpkqq as an approximate minimizer can be measured by the
norm of the following the residual vector

rQEPmin
k �

�

PAP�µpkq I
	2

zpkq�γ�2b0pb
T
0 zpkqq. (3.25)

The following proposition shows that this residual vector can be efficiently obtained dur-
ing computation.

Proposition 3.2. Suppose that pµpkq,wpkq
q is an exact minimizer of rQEPmin (3.22) and ypkq�

pTk�µpkq Iqwpkq. Then

rQEPmin
k �βk�1qk�1eT

k ypkq�βk�1pPAP�µpkq Iqqk�1pe
T
k wpkq

q. (3.26)

Proof. Keeping (3.18) in mind, we find that

rQEPmin
k �

�

PAP�µpkq I
	2

Qkwpkq
�γ�2b0bT

0 Qkwpkq

(3.18)
� QkpTk�µpkq Iq2wpkq

�βk�1qk�1eT
k pTk�µpkq Iqwpkq

�βk�1pPAP�µpkq Iqqk�1eT
k wpkq

�Qk
}b0}

2

γ2
e1pe

T
1 wpkq

q

(3.22b)
� βk�1qk�1eT

k pTk�µpkq Iqwpkq
�βk�1pPAP�µpkq Iqqk�1pe

T
k wpkq

q

� βk�1qk�1eT
k ypkq�βk�1pPAP�µpkq Iqqk�1pe

T
k wpkq

q,

as expected.
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We note that if the pk�1qst step are carried out in the Lanczos process (3.3), then the
term pPAP�µpkq Iqqk�1 in (3.26) can be expressed as a linear combination of qk, qk�1, and
qk�2. We propose to use the following normalized residual norm as a stopping criterion
for the Lanczos process:

NResQEPmin
k :�

}rQEPmin
k }

rp}A}�|µpkq|q2�γ�2
}b0}

2
�

}wpkq
}2

(3.27a)

¤

|βk�1|
�

|eT
k ypkq|�p}A}�|µpkq|q|eT

k wpkq
|

�

rp}A}�|µpkq|q2�γ�2
}b0}

2
�

}wpkq
}2

�: δQEPmin
k . (3.27b)

The Lanczos algorithm for solving QEPmin (2.18) is summarized in Algorithm 3.

Algorithm 3 Solving QEPmin (2.18)

Input: APRn�n, CPRn�m, b0PRn, γ¡0, and tolerance ǫ;
Output: pµpkq,zpkqq, approximate minimizer of QEPmin (2.18)

1: β1�}b0};
2: if β1�0 then stop;
3: q1�b0{β1, q0�0;
4: for k�1,2,��� do

5: q̂�Aqk, q̂�Pq̂, q̂� q̂�βkqk�1;
6: αk�qT

k q̂, q̂� q̂�αkqk, βk�1�}q̂};

7: compute the leftmost eigenpair pµpkq,sq of LEP (3.23);
8: ypkq� s

p1:kq, wpkq
� s

pk�1:2kq;

9: if δQEPmin
k ¤ǫ then stop;

10: qk�1� q̂{βk�1;
11: end for

12: Qk�rq1,q2,��� ,qks;

13: zpkq�Qkwpkq and upkq�� γ2

}b0}e
T
1 wpkqQkypkq;

14: return pµpkq,zpkqq as an approximated minimizer of QEPmin (2.18) and, as a by-
product, pµpkq,upkqq as an approximated minimizer of LGopt (2.13).

It remains to explain why pµpkq,upkqq at line 14 of Algorithm 3 is an approximated

minimizer of LGopt (2.13). Let
�

µpkq,

�

ypkq

wpkq

�

	

be the leftmost eigenpair of LEP (3.23). By

Theorem 3.2, µpkq ReigpTkq, pTk�µpkq Iq2wpkq
�0 and eT

1 wpkq
�0. Through a straightforward

application of Theorem 2.5 to rLGopt (3.5) and rQEPmin (3.22), we find that pµpkq,xpkqq is
the minimizer of rLGopt (3.5) where

xpkq��
γ2

}b0}eT
1 wpkq

pTk�µpkq Iqwpkq
��

γ2

}b0}eT
1 wpkq

ypkq. (3.28)
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Therefore, as a by-product, an approximate minimizer of LGopt (2.13) is given by

pµpkq,upkqq�

�

µpkq,�
γ2

}b0}e
T
1 wpkq

Qkypkq



. (3.29)

3.4 Lanczos algorithm for CRQopt

Having obtained approximate minimizers of LGopt (2.13) and QEPmin (2.18), by Theo-
rem 2.2 we can recover an approximate minimizer of CRQopt (1.1) as

vpkq�n0�upkq, (3.30)

where upkq is given by (3.11) if via solving LGopt (2.13) or by (3.29) if via solving QEP-
min (2.18). The overall algorithm called the Lanczos Method, is outlined in Algorithm 4.
In line 6, we can solve LGopt (2.13) by Algorithm 2 for rLGopt (3.5) or Algorithm 3 for
rQEPmin (3.22). Since the most time-consuming step is the Lanczos iterations, there is
no significant difference between two algorithms in overall efficiency. We include them
for the sake of completeness in addition to the different advantages of each algorithm
discussed in the previous sections.

Algorithm 4 Solving CRQopt (1.1)

Input: APRn�n, CPRn�m with full column rank, bPRm, tolerance ǫ;
Output: approximate minimizer v of CRQopt (1.1);

1: n0�pCT
q

:b (by, e.g., the QR decomposition of C);
2: if }n0}¡1 then output no solution;
3: if }n0}�1 then v�n0 and output v;
4: if }n0} 1 then

5: γ�
a

1�}n0}
2, q�An0, b0�pI�CC:

qq;
6: compute an approximate solution of LGopt (2.13) pµpkq,upkqq by Algorithm 2 or 3
7: return vpkq�n0�upkq, approximate minimizer of CRQopt (1.1);
8: end if

3.4.1 Finite step stopping property

As in many Lanczos type methods for numerical linear algebra problems [4, 13, 30, 34],
Algorithm 4 enjoys a finite-step-stopping property in the exact arithmetic, i.e., it will
deliver an exact solution in at most n steps. It is an excellent theoretic property but of
little practical significance for large scale problems. We often expect that the Lanczos
process would stop much sooner before the nth step for otherwise the method would be
deemed too expensive to be practical.
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We will show the property using LGopt (2.13) as an example, which, for convenience,
is restated here:

LGopt:

$

'

'

'

'

&

'

'

'

'

%

min λ

s.t. pPAP�λIqu��b0,

}u}�γ,

uPN pCT
q.

(2.13a)

(2.13b)

(2.13c)

(2.13d)

Let pλ
�

,u
�

q be the minimizer of LGopt (2.13) and kmax be the smallest k such that βk�1�0
in the Lancozs process, namely the Lanczos process breaks down at step k�kmax. We will
prove that µpkmaxq

�λ
�

and upkmaxq
�u

�

.

We have already shown in (3.12) that the second and third constraints of LGopt (2.13)

are satisfied by upkmaxq. Besides, since βkmax�1�0, r
LGopt
kmax

�0 by Proposition 3.1, i.e., the first

constraint of LGopt (2.13) holds. It remains to show that µpkmaxq
�λ

�

.

Lemma 3.1. µpkmaxq is the smallest root of

rχpλq :�gT
rpH�λIq:s2gT

�γ2. (3.31)

In addition, if LGopt (2.13) is in the easy case, then µpkmaxq
�λ

�

, where pλ
�

,z
�

q is the minimizer
of LGopt (2.13).

Proof. Let ϑ1¤ϑ2¤���¤ϑkmax
be the eigenvalues of Tkmax

and let y1,y2,��� ,ykmax
be the cor-

responding orthonormal eigenvectors. Expand }b0}e1�
°kmax

i�1 ζiyi and define the secular
function

pχpλq�}b0}
2eT

1 pTkmax
�λIq�2e1�γ2

�

kmax̧

i�1

ζ2
i

pλ�ϑiq
2
�γ2. (3.32)

By Theorem 3.2, µpkmaxq
 ϑ1. Apply Lemma 2.7 with H�Tkmax

and g�}b0}e1 to conclude
that µpkmaxq is a root of the secular function (3.32). Since pχpλq is strictly increasing in
p�8,µpkmaxq

q, µpkmaxq is the smallest root of pχpλq.

Expand Qkmax
to form an the orthogonal matrix pQ :�rQkmax

, Q
K

s PRn�n and let T�
pQTPAP pQ. Since the column space of Qkmax

is an invariant subspace of PAP, we have

T�

�

Tkmax

T
K

�

.

Let S�rS1,S2s be defined in (2.19), and let H�ST
1 PAPS1 and g0�ST

1 b0. For any λ ϑ1, we
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have

pχpλq�}b0}e
T
1 rpTkmax

�λIq�1
s

2
}b0}e1�γ2

�}b0}e
T
1 rpT�λIq:s2}b0}e1�γ2

�bT
0
pQ pQT

rpPAP�λIq:s2 pQ pQTb0�γ2

�bT
0 rpPAP�λIq:s2b0�γ2

�bT
0 SST

rpPAP�λIq:s2SSTb0�γ2

�rgT
0 0s

�

rpH�λIq:s2 0
0 rp�λIq:s2

�

rgT
0 0sT�γ2

�gT
0 rpH�λIq:s2g0�γ2

�: rχpλq.

Therefore, rχpλq�0 and rχpλq 0 for λ µpkmaxq, implying µpkmaxq is the smallest root of rχpλq.
On the other hand, by the definition of the easy case, bT

0 z
�

� 0 for all possible mini-
mizers pλ

�

,z
�

q of QEPmin (2.18). Theorem 2.4 says that z
�

�S1w
�

for some w
�

PRn�m and
thus gTw

�

� bT
0 S1w

�

� bT
0 z

�

�0. By Theorem 2.6, λ
�

 λminpHq. Therefore, it is related to
case (1) or subcase (i) in case (2) of the proof in Lemma 2.4, for which λ

�

is the smallest
root of rχpλq, and thus λ

�

�µpkmaxq.

Theorem 2.13 guarantees that the minimizer of CRQopt (1.1) is unique if QEPmin
(2.18) is in the easy case. We also have established a finite step stopping property for
Algorithm 4 as detailed in the following theorem, since kmax¤n.

Corollary 3.1. Suppose QEPmin (2.18) is in the easy case, and let pµpkq,wpkq
q be the minimizer

of rQEPmin (3.22). Define upkq as in (3.11) and kmax is the smallest k such that βk�1 � 0.
Then

�

µpkmaxq,upkmaxq
�

solves LGopt (2.13), and vpkmaxq
�upkmaxq

�n0 is the unique minimizer of
CRQopt (1.1).

3.4.2 Hard case

The hard case is characterized by Theorem 2.12 and we translate g0KU into b0KV , where
V is the eigenspace of PAP associated with its eigenvalue λminpHq. For this reason,
KkpPAP,b0qwill contain no eigen-information of PAP associated with λminpHq. Nonethe-
less, rLGopt (3.5) and rQEPmin (3.22) can be still formed and solved to yield approxima-
tions to the original CRQopt (1.1) with suitable stoping criteria satisfied. But the approx-
imations will be utterly wrong if it is indeed in the hard case. Hence in practice it is
important to detect when the hard case occurs.

Denote by pλ
�

,z
�

q the minimizer of LGopt (2.13). In the easy case, the smallest root of
rχpλq is λ

�

and λ
�

 λminpHq, while in the hard case, λ
�

�λminpHq and the smallest root of
rχpλq defined in (3.31) is greater than or equal to λminpHq. Since µpkq converges to µpkmaxq,
eventually whether µpkq λminpHq provide a reasonably good test to see if it is the easy
case. Therefore, we propose to detect the hard case as follows:

1. Solve rLGopt (3.5) or rQEPmin (3.22);



232 Y. Zhou, Z. Bai and R.-C. Li / CSIAM Trans. Appl. Math., 2 (2021), pp. 195-262

2. Run the Lanczos process with M� PAP with r0 � Pc, where c PRn is random to
compute λminpHq of PAP and its associated eigenvector z̃;

3. Check if the optimal value of rLGopt (3.5) or rQEPmin (3.22) is greater than or equal
to λminpHq within a prescribed accuracy;

4. If it is, then QEPmin (2.18) is in the hard case. Compute an approximation x̃ of
x
�

��pPAP�λ
�

Iq:b0

ỹ�argmin
yPRk

�

�

�

�

�

Tk

βk�1eT
k

�

y�}b0}e1

�

�

�

�

, x̃�Qkỹ,

and then an approximate minimizer of LGopt (2.13) is given by x̃�
a

γ2
�}x̃}2

pz̃{}z̃}q.

A remark is in order for item 2 above. Because of the randomness in c, with probability 1,
r0�Pc will have a significant component in S1U , where U is as defined in Theorem 2.11.

3.5 Convergence analysis

In this section, we present a convergence analysis of the Lanczos algorithm (Algorithm 4)
for solving CRQopt (1.1) in the easy case. Let hpvq � vT Av be the objective function of
CRQopt (1.1), v

�

be the unique solution of CRQopt (1.1) and pλ
�

,u
�

q be the solution of
LGopt (2.13). Our main results are upper bounds on the errors hpvpkqq�hpv

�

q, }vpkq�v
�

}

and |µpkq�λ
�

|, where vpkq defined in (3.30) is the kth approximation by Algorithm 4 and
pµpkq,xpkqq is the solution of rLGopt (3.5).

Our analysis is analogous to the one in [43]. We start by establishing an optimality
property of vpkq, as an approximation of v

�

, that minimizes hpvq over n0�KkpPAP,b0q.

Theorem 3.3. Let vpkq be defined in (3.30). Then it holds that

hpvpkqq� min
vPn0�KkpPAP,b0q,}v}�1

hpvq. (3.33)

Proof. Recall that pµpkq,xpkqq solves rLGopt (3.5). Consider the optimization problem

#

min ℓpxq :�xTTkx�2}b0}e
T
1 x,

s.t. }x}�γ.

(3.34a)

(3.34b)

By the theory of Lagrangian multipliers, we find the Lagrangian equations for (3.34) are

pTk�λIqx��}b0}e1, }x}�γ. (3.35)

Following the same argument as we did to prove Lemma 2.1, we can reach the same
conclusion that ℓpxq is strictly increasing with respect to λ in the solution pair pλ,xq of
(3.35). Therefore, in order to minimize ℓpxq, we need to find the smallest Lagrangian
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multiplier satisfying (3.35). Hence, solving (3.34) is equivalent to solving rLGopt (3.5) for
which pµpkq,xpkqq is a minimizer and thus xpkq solves (3.34), where xpkq is defined in (3.28).

By definition, upkq�Qkxpkq and vpkq�upkq�n0. For any vPn0�KkpPAP,b0qwith }v}�1,
let

u�v�n0PKkpPAP,b0q�N pCT
q. (3.36)

Hence Pu�u, }u}�γ, and u�Qkru for some ruPRk. We have v�u�n0�Pu�n0 and

hpvq�pPu�n0q
T ApPu�n0q

�uTPAPu�2bT
0 u�nT

0 An0

�

ruTQT
k PAPQkru�2bT

0 Qkru�nT
0 An0

�

ruTTkru�2}b0}e
T
1 ru�nT

0 An0

¥rxpkqsTTkxpkq�2}b0}e
T
1 xpkq�nT

0 An0 (since xpkq solves (3.34))

�rxpkqsTQT
k PAPQkxpkq�2bT

0 Qkxpkq�nT
0 An0

�rupkqsTPAPupkq�2bT
0 upkq�nT

0 An0

�pupkq�n0q
T Apupkq�n0q

�hpvpkqq.

Since vPn0�KkpPAP,b0q with }v}�1 but otherwise is arbitrary, (3.33) holds.

Recall that H and g0 are defined in (2.21) and S1, S2 in (2.19). Let θmin and θmax be
the smallest and the largest eigenvalue of H, respectively, v

�

be the minimizer of CRQopt
(1.1), and λ

�

be the optimal objective value of LGopt (2.13). Then

pλ
�

,u
�

q with u
�

�Pv
�

�v
�

�n0

is a minimizer of LGopt (2.13). Set

κ�κpH�λ
�

Iq :�
θmax�λ

�

θmin�λ
�

.

To estimate hpvpkqq�hpv
�

q, }vpkq�v
�

} and |µpkq�λ
�

|, we first establish a lemma that pro-
vides a way to bound hpvpkqq�hpv

�

q, }vpkq�v
�

} and |µpkq�λ
�

| in terms of any nonzero
vPn0�KkpPAP,b0q.

Lemma 3.2. For any nonzero vPn0�KkpPAP,b0q, we have

0¤hpvpkqq�hpv
�

q¤4}H�λ
�

I}2 �}v�v
�

}

2
2, (3.37a)

}vpkq�v
�

}¤2
?

κ}v�v
�

}2, (3.37b)

|µpkq�λ
�

|¤

1

γ2

�

4}H�λ
�

I}2 �}v�v
�

}

2
2�2

?

κ}b0}2 �}v�v
�

}2

�

. (3.37c)
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Proof. For vPn0�KkpPAP,b0q, let

u�v�n0PKkpPAP,b0q, ru�γu{}u}, rv�n0�ruPn0�KkpPAP,b0q. (3.38)

First, we have |}u}�γ|�|}u}�}u
�

}|¤}u�u
�

}�}v�v
�

}, which leads to

�

�

�

�

1�
γ

}u}

�

�

�

�

¤

}v�v
�

}

}u}
. (3.39)

Let r� rv�v
�

, we have

}r}�}v
�

�

rv}¤}v
�

�v}�}v�rv}¤}v
�

�v}�}u�ru}

�}v
�

�v}�

�

�

�

�

u�
γu

}u}

�

�

�

�

�}v
�

�v}�}u}�

�

�

�

�

1�
γ

}u}

�

�

�

�

¤2}v
�

�v}, (3.40)

where we have used (3.39) to infer the last inequality.
The first inequality in (3.37a) holds because

hpvpkqq� min
vPn0�KkpPAP,b0q,}v}�1

hpvq¥ min
vPn0�N pCT

q,}v}�1
hpvq�hpv

�

q.

Let f puq�uT Au�2uTb0, it can be verified that hpvq�hpu�n0q� f puq�nT
0 An0. Therefore,

ru�u
�

�

rv�v
�

�r, hprvq�hpv
�

q� f pruq� f pu
�

q. (3.41)

Set s�ST
1 r. It follows from rPN pCT

q that r�S1s and }s}�}r}. Noting that rv satisfies the
constraint of CRQopt (1.1) and that ru�u

�

�r, we have

0¤hpvpkqq�hpv
�

q ¤ hprvq�hpv
�

q

(3.41)
� f pruq� f pu

�

q� f pu
�

�rq� f pu
�

q

� rTPAPr�2rT
pPAPu

�

�b0q

� rTPAPr�2λ
�

rTu
�

(3.42)

� rT
pPAP�λ

�

Iqr (3.43)

� sTST
1 pPAP�λ

�

IqS1s

� sT
pH�λ

�

Iqs

¤ }H�λ
�

I}}s}2
�}H�λ

�

I}}r}2

(3.40)
¤ 4}H�λ

�

I}}v
�

�v}2, (3.44)

yielding the second inequality in (3.37a), where we have used pPAP�λ
�

Iqu
�

��b0 to get
(3.42) and

}r}2
�2rTu

�

�}u
�

�r}2
�}u

�

}

2
�}

ru}2
�}u

�

}

2
�0

to obtain 2rTu
�

��rTr and then (3.43).
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Next we prove (3.37b). Define

rf puq :� f puq�λ
�

uTu�uT
pPAP�λ

�

Iqu�2uTb0.

Noticing pPAP�λ
�

Iqu
�

�b0�0 by (2.13b), let upkq�vpkq�n0, we have

rf pupkqq� rf pu
�

q�pupkq�u
�

q

T
pPAP�λ

�

Iqpupkq�u
�

q.

Therefore

rf pupkqq� rf pu
�

q¥pθmin�λ
�

q}upkq�u
�

}

2
�pθmin�λ

�

q}vpkq�v
�

}

2.

On the other hand,

rf pupkqq� rf pu
�

q�r f pupkqq�λ
�

}upkq}2
s�r f pu

�

q�λ
�

}u
�

}

2
s

� f pupkqq� f pu
�

q�hpvpkqq�hpv
�

q,

yielding

pθmin�λ
�

q}vpkq�v
�

}

2
¤hpvpkqq�hpv

�

q¤4}H�λ
�

I}}v�v
�

}

2, (3.45)

which leads to (3.37b).

To prove (3.37c), we pre-multiply pPAP�λ
�

Iqu
�

��b0 by uT
�

and use uT
�

u
�

�γ2 to get

γ2λ
�

�uT
�

PAPu
�

�uT
�

b0�vT
�

PAPv
�

�vT
�

b0, (3.46)

since Pv
�

�u
�

and Pb0�b0. By (2.4a), we have hpv
�

q�vT
�

PAPv
�

�2vT
�

b0�nT
0 An0 and thus

γ2λ
�

�hpv
�

q�vT
�

b0�nT
0 An0.

On the other hand, it follows from rLGopt (3.5) that rxpkqsTTkxpkq�}b0}2rx
pkq
s

Te1�γ2µpkq.
Plug in

Tk�QT
k PAPQk, upkq�Qkxpkq, QT

k b0�}b0}2e1, vpkq�upkq�n0

to get

γ2µpkq�hpupkqq�rupkqsTb0�hpvpkqq�rvpkqsTb0�nT
0 An0. (3.47)

It follows from (3.46) and (3.47) that

�

�

�

µpkq�λ
�

�

�

�

�

1

γ2

�

�

�

hpvpkqq�hpv
�

q�bT
0 pv

pkq
�v

�

q

�

�

�

¤

1

γ2

�

|hpvpkqq�hpv
�

q|�}b0}2}v
pkq
�v

�

}2

�

, (3.48)

which combined with (3.37a) and (3.37b) yield (3.37c).
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The inequalities in (3.37) hold for any v P n0�KkpPAP,b0q which, in general can be
expressed as

v�n0�φk�1pPAPqb0,

where φk�1p�q is a polynomial of degree k�1. By judicially picking certain φk�1, meaning-
ful upper bounds on hpvpkqq�hpv

�

q, }vpkq�v
�

} and |µpkq�λ
�

| are readily obtained. These
upper bounds expose the convergence behavior of vpkq. The next theorem contains our
main results of the section.

Theorem 3.4. Suppose CRQopt (1.1) is in the easy case, and let v
�

be its minimizer. Let pλ
�

,u
�

q

be the minimizer of the corresponding LGopt (2.13), and, for its corresponding pLGopt (2.23),
let θmin and θmax be the smallest and largest eigenvalue of H, respectively, and set

κ�κpH�λ
�

Iq :�
θmax�λ

�

θmin�λ
�

.

Then the following statements hold:

(a) The sequence thpvpkqqu is nonincreasing;

(b) For k¤kmax, the smallest k such that βk�1�0,

0¤hpvpkqq�hpv
�

q¤16γ2
}H�λ

�

I}2

�

Γ
k
κ�Γ

�k
κ

�

�2
, (3.49a)

}vpkq�v
�

}2¤4γ
?

κ
�

Γ
k
κ�Γ

�k
κ

�

�1
, (3.49b)

|µpkq�λ
�

|¤16}H�λ
�

I}2

�

Γ
k
κ�Γ

�k
κ

�

�2
�

4

γ
}b0}2

?

κ
�

Γ
k
κ�Γ

�k
κ

�

�1
, (3.49c)

where

Γκ :�

?

κ�1
?

κ�1
. (3.50)

Proof. Item (a) holds because for any 0¤k¤kmax,

hpvpkqq� min
vPn0�KkpPAP,b0q,}v}�1

hpvq¥ min
vPn0�Kk�1pPAP,b0q,}v}�1

hpvq�hpvpk�1q
q.

Before we prove item (b), we note that pλ
�

,ST
1 v

�

q solves pLGopt (2.23). In particular, since
pLGopt (2.23) is in the easy case,

ST
1 v

�

��pH�λ
�

Iq�1g0. (3.51)

Consider now v Pn0�KkpPAP,b0q. Then ST
1 v PKkpH,g0q�KkpH�λ

�

I,g0q. Therefore by
(3.51)

ST
1 v�ST

1 v
�

�φk�1pH�λ
�

Iqg�pH�λ
�

Iq�1g0

�rφk�1pH�λ
�

IqpH�λ
�

Iq� IspH�λ
�

Iq�1g0

��ψkpH�λ
�

IqST
1 v

�

, (3.52)
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where φk�1 is a polynomial of degree k�1, and ψkptq�1�tφk�1ptq, a polynomial of degree
k, that satisfies ψkp0q�1. Note that ψkp0q�1 but otherwise ψk is an arbitrary polynomial
of degree k, offering the freedom that we will take advantage of in a moment.

Given that v
�

solves CRQopt (1.1), we have

γ�}Pv
�

}�}S1ST
1 v

�

}�}ST
1 v

�

}.

Thus

min
vPn0�KkpPAP,b0q

}v�v
�

}� min
vPn0�KkpPAP,b0q

}ST
1 v�ST

1 v
�

} puse (3.52)q

¤γ min
ψkp0q�1

}ψkpH�λ
�

Iq}

¤γ min
ψkp0q�1

max
1¤i¤n�m

|ψkpθi�λ
�

q| (3.53)

¤γ min
ψkp0q�1

max
tPrθmin�λ

�

,θmax�λ
�

s

|ψkptq|. (3.54)

The inequality (3.54) holds for any polynomial ψk of degree k such that ψkp0q�1. For the
purpose of establishing upper bounds, we will pick one that is defined through the kth
Chebyshev polynomial of the first kind:

Tkptq�cospkarccostq for |t|¤1, (3.55a)

�

1

2

�

�

t�
a

t2
�1
	k
�

�

t�
a

t2
�1
	

�k
�

for |t|¥1. (3.55b)

Specifically, we take

ψkptq�Tk

�

2t�pα�βq

β�α


N

Tk

�

�pα�βq

β�α




, (3.56)

where α�θmin�λ
�

and β�θmax�λ
�

. Evidently, ψkp0q�1, and for tPrθmin�λ
�

,θmax�λ
�

s�

rα,βs, we have

|2t�pα�βq|�||t�λ
�

�θmin|�|t�λ
�

�θmax||¤|θmax�θmin|�β�α.

Therefore, r2t�pα�βqs{pβ�αqPr�1,1s, and thus for tPrα,βs [23]

|ψkptq|¤

�

�

�

�

Tk

�

�pα�βq

β�α




�

�

�

�

�1

�

�

�

�

�

Tk

�

κ�1

κ�1




�

�

�

�

�1

�2
�

Γ
k
κ�Γ

�k
κ

�

�1
. (3.57)

Minimize the right-most quantities in (3.37) over v P n0�KkpPAP,b0q, utilize (3.54) and
(3.57) to get the inequalities in (3.49).

We end this section with remarks regarding the results in Theorem 3.4.
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Remark 3.2. The rate of convergence for the Lanczos algorithm depends on κ. Recall

that κ� θmax�λ
�

θmin�λ
�

. When λ
�

is far away from θmin, we may regard that CRQopt (1.1) is far
from hard case. In this case, κ moves towards 1, and we expect faster convergence of
our Lanczos algorithm. However, when CRQopt (1.1) is near hard case, i.e., θmin �λ

�

,
κ is large, and Theorem 3.4 suggests slow convergence. These conclusions derived from
Theorem 3.4 are consistent with the numerical observations in [17] that “a Lanczos type
process seems to be very effective when the problem is far from the hard case”. We
provide an example in Example 3.3 later to illustrate the relationship between the rate of
convergence and κ.

Remark 3.3. The bounds in (3.49a) and (3.49b) are generally sharp. However, there are
some cases where the bounds suggested in (3.49a) and (3.49b) are pessimistic. This occurs
for near-hard-case situations where λ

�

� θmin. Although the Lanczos method could still
enjoy fast convergence, the bounds in (3.49a) and (3.49b) do not suggest so. One of such
situations is when

κ
�

:�
θmax�λ

�

θ2�λ
�

is small, even though θmin�λ
�

and thus κ is huge, where θ2 is the second smallest eigen-
value of H. This suggests that the bounds by (3.49a) and (3.49b) have room for improve-
ment. In fact, instead of (3.56), we may choose

ψkptq�
t�α

�α
�Tk�1

�

2t�pα
�

�βq

β�α
�


N

Tk�1

�

�pα
�

�βq

β�α
�




, (3.58)

where α and β are as before, and α
�

�θ2�λ
�

. Evidently, again ψkp0q�1, but now ψkpθ1�

λ
�

q�0. We have

max
1¤i¤n�m

|ψkpθi�λ
�

q|� max
2¤i¤n�m

|ψkpθi�λ
�

q|¤ max
tPrα

�

,βs
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�
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. (3.59)

By combining with (3.53), it leads to the following bounds

hpvpkqq�hpv
�

q¤16γ2
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�
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�
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, (3.60a)
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�
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, (3.60b)
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. (3.60c)
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These bounds can be much sharper than the ones in (3.49) if θmin � λ
�

and there is a
reasonably gap between θmin and θ2, see Example 3.4.

Remark 3.4. In our numerical experiments, we observed that the bound (3.49c) often
decays much slower than |µpkq�λ

�

|. Recall that in obtaining (3.49c), in (3.48), we used
the inequality

�

�

�

bT
0 pv

pkq
�v

�

q
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�

�

¤}b0}

�

�

�

vpkq�v
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. (3.61)

It turns out that }b0}
�

�vpkq�v
�

�

� decays much slower than
�

�bT
0 pv

pkq
�v

�

q

�

�, as evidenced by

numerical tests. While at this point we do not know how to estimate
�

�bT
0 pv

pkq
�v

�

q

�

� much
more accurately than the inequality (3.61), we offer a plausible explanation as follows.
Let upkq�vpkq�n0 and u

�

�v
�

�n0. Since uT
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By (3.49b),
�

�vpkq�v
�

�

�

2

2
is of order O
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Γk
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�2�
, and thus
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� is also of or-

der O
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�2�
as (3.62) suggests. Let θ1¤θ2¤���¤θn�m be the eigenvalues of PAP

restricted to the subspace RpPq, y1,y2,��� ,yn�m be the corresponding orthonormal eigen-
vectors in RpPq, u

�

�

°n�m
i�1 ξiyi, and vpkq�v

�

�upkq�u
�
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°n�m
i�1 ǫiyi. Then we have
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On the other hand, b0��pPAP�λ
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Note that the sequence tθi�λ
�

u is positive and increasing for the easy case and the se-

quence tξiyiu oscillates. Therefore, when κpPAP�λ
�

Iq� θn�m�λ
�

θ1�λ
�

is modest, i.e., the dif-
ference between θi�λ

�

for different i is modest, we expect that the difference between
�
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convergence rate of
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0 pv

pkq
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� can be similar to the convergence rate of
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�uT
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pvpkq�v
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q
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which is O
��

Γk
κ�Γ�k

κ

�

�2�
. This explains why the bound (3.49c) decays much slower than

|µpkq�λ
�

|.

3.6 Numerical examples

In this section, we demonstrate the sharpness of the convergence error bounds in Theo-
rem 3.4 for the Lanczos algorithm (Algorithm 4) for solving CRQopt (1.1). For that pur-
pose, we first provide examples that are considered to be hard for the Lanczos algorithm.
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The basic idea is similar to the one in [24]. Also shown are the history of the normalized

residual NResQEPmin
k and its upper bound δQEPmin

k in (3.27b).

3.6.1 Construction of difficult CRQopt problems

The convergence analysis of the Lanczos algorithm (Algorithm 4) for solving CRQopt
(1.1) presented in Theorem 3.4 indicates that the convergence behavior is determined
by the spectral distribution of the matrix H defined in pLGopt (2.23) and the optimal
value λ

�

of LGopt (2.13). It is not a secret that approximations by the Lanczos proce-
dure converge most slowly when the eigenvalues of H distribute like the zeros or the
extreme nodes of Chebyshev polynomials of the first kind [22–24,43]. Therefore, we con-
struct matrices A, C and vector b of CRQopt through constructing matrices H and g0 of
pLGopt (2.23).

In what follows, we describe one set of test matrix-vector pairs pH,g0q using the ex-
treme nodes of Chebyshev polynomials of the first kind. Recall that the ℓth Chebyshev
polynomials of the first kind Tℓptq has ℓ�1 extreme points in r�1,1s, defined by

τjℓ�cosϑjℓ, with ϑjl�
j

ℓ
π for j�0,1,��� ,ℓ. (3.63)

At these extreme points, |Tℓpτjℓq|�1. Given scalars α and β such that α β, set

ω�
β�α

2
, τ��

α�β

β�α
. (3.64)

The so-called the ℓth translated Chebyshev extreme nodes on rα,βs are given by [22, 23]

τtrans
jℓ �ωpτjℓ�τq for j�0,1,��� ,ℓ. (3.65)

It can be verified that τtrans
0ℓ �β and τtrans

ℓℓ
�α.

Given integers n and m with m n, and the interval rα,βs, we take

H�diag
�

τtrans
0n�m�1,τtrans

1n�m�1,��� ,τtrans
n�m�1n�m�1

�

. (3.66)

Now we construct g0�rg1,g2,��� ,gn�ms
T
PRn�m. Recall that the eigenvector of H corre-

sponding to the smallest eigenvalue is en�m. In order to make pLGopt (2.23) in the easy
case, we need to make g0 not perpendicular to that eigenvector en�m, i.e., gn�m�0. As a
simple choice, we take

g0�r1,1,��� ,1sT PR
n�m. (3.67)

With H and g0 set, we construct matrices A, C and vector b in the following way:

1. Pick 0 ζ 1, and aPRm with }a}�1{ζ;

2. Pick a random CPRn�m and compute its QR decomposition

C�
�

m n�m

S2 S1

�

�

�

m

m R
n�m 0

�

�S2R; (3.68)
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3. Define b�ζ2RTa;

4. Take A12�g0aT, A22�η Im with η�pgT
0 H�1g0q{ζ

2;

5. Set A�S

�

H A12

AT
12 A22

�

ST, where S�rS1,S2s.

Note that by the construction, the matrix A is positive semidefinite when H is positive

definite. This is because the Schur complement of H in the matrix

�

H A12

AT
12 A22

�

:

A22�AT
12H�1A12�A22�agT

0 H�1g0aT
�A22�pg

T
0 H�1g0qaaT

�η I�pgT
0 H�1g0qaaT

�pgT
0 H�1g0qp}a}

2 I�aaT
q

is positive semidefinite since H is positive definite and gT
0 H�1g0¡0.

Now we verify that CRQopt (1.1) with A, C, b constructed from the process above
will yield pLGopt (2.23) with matrices H and g0 and scalar γ�

a

1�ζ2, as desired.
Recall the definitions in (2.21):

g0�ST
1 b0, H�ST

1 PAPS1�ST
1 AS1PR

pn�mq�pn�mq. (3.69)

By the construction of A, ST
1 AS1�H, which is consistent with H defined in (3.69). Further

recall that P is a projection matrix ontoN pCT
q and the columns of S1 form an orthonormal

basis of N pCT
q. So P�S1ST

1 . In addition, by the QR factorization (3.68), pCT
q

:

�S2R�T,
and so n0�pC

T
q

:b�S2R�Tb. By the definition of matrix A, ST
1 AS2�A12, we have

ST
1 b0�ST

1 PAn0�ST
1 S1ST

1 AS2R�Tb�ST
1 AS2R�Tb�ζ2 A12a�ζ2g0aTa�g0, (3.70)

which is consistent with g0 defined in (3.69). Finally,

γ�
b

1�}n0}
2
�

b

1�}S2R�Tb}2
�

b

1�}R�Tb}2
�

b

1�}ζ2a}2
�

b

1�ζ2.

3.6.2 Numerical results

For testing purpose, we compute a solution v
�

by the direct method [10] as a reference

(exact) solution. We also compute κ�
λmaxpHq�λ

�

λminpHq�λ
�

to examine the error bounds in Theo-
rem 3.4.

The Lanczos algorithm (Algorithm 4) is applied to solve CRQopt (1.1) via QEPmin
(2.18) and via LGopt (2.13). For each computed vpkq, the kth iteration, we compute relative
errors

err1�
|pvpkqqT Avpkq�vT

�

Av
�

|

|vT
�

Av
�

|

, err2�}v
pkq
�v

�

} and err3�
|µpkq�λ

�

|

|λ
�

|

.

Since }v
�

}� 1, the absolute error err2 is also relative. The stoping criterion for solving

QEPmin (2.18) is either δQEPmin
k  10�15 or the number of Lanczos steps reaches maxit�

200, where δQEPmin
k is defined in (3.27). The stoping criterion for solving LGopt (2.13) is

either NRes
LGopt
k  10�15 or the number of Lanczos steps reaches maxit�200.
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Figure 2: Example 3.2: history of err1, err2 and err3 for the cases where β�100 (left) and β�1000 (right).

Example 3.2. In this example, we test the correctness and convergence behavior of the
Lanczos algorithm to solve CRQopt (1.1). Let n�1100, m�100, α�1, β�100 or 1000, and
construct H as in (3.66) and g0 as in (3.67). For pA,C,bq, let ζ�0.9 and a be random vector
normalized to have norm 1{ζ and then the rest follows Subsection 3.6.1 in constructing
A, C and b.

The convergence histories for err1, err2 and err3 are plotted in Fig. 2. It can be seen
that all converge to the machine precision. err1, err2 and err3 are the same, respectively, at
every iteration whether CRQopt (1.1) is solved via QEPmin (2.18) or LGopt (2.13), which
is consistent with our theory that solving rLGopt (3.5) is equivalent to solving rQEPmin
(3.22).

Example 3.3. We illustrate the sharpness of the error bounds (3.49) in Theorem 3.4 and
the relationship between the convergence rate of our Lanczos algorithm and κ.

The same test matrices as in Example 3.2, with β� 100 and 1000 are used. We solve
CRQopt (1.1) by solving QEPmin (2.18) and choose the same parameters as in Exam-
ple 3.2. For α�1 and β�100, We calculate

pλ
�

,κq�

#

p�42.6007,3.2706q for pα,βq�p1,100q;

p�18.2629,52.8613q for pα,βq�p1,1000q.

Judging from the corresponding κ, we expect our Lanczos algorithm will converge faster
for the case β�100 than the case β�1000. We plot in Fig. 3 the convergence histories for

err1 and its upper bound 16γ2
}H�λ

�

I}

vT
�

Av
�

�

Γk
κ�Γ�k

κ

�

�2
by (3.49a),

err2 and its upper bound 4γ
?

κ
�

Γk
κ�Γ�k

κ

�

�1
by (3.49b),

err3 and its upper bound 16
|λ
�

|

}H�λ
�

I}
�

Γk
κ�Γ�k

κ

�

�2
�

4
γ|λ

�

|

?

κ
�

Γk
κ�Γ�k

κ

�

�1
by (3.49c).

The bounds for err1 and err2 by (3.49a) and (3.49b) for both β�100 and β�1000 appear
sharp. However, the bound for err3 by (3.49c) is pessimistic. In the plots, err3 goes to 0 at
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Figure 3: Example 3.3: histories for err1 (first row), err2 (second row), err3 (third row) and their upper bounds
for β�100 (left column) and β�1000 (right column).

about a similar rate of err1, but the bounds by (3.49b) and (3.49c) for err3 progress at the
same rate as the bound by (3.49a) for err2. As discussed in Remark 3.4, we unsuccessfully
tried to establish a better bound for err3, and are only able to offer an explanation.

As expected, err1, err2 and err3 go to 0 faster for the case β�100 than the case β�1000.
It is consistent with the convergence results in Theorem 3.4 that our Lanczos algorithm
for CRQopt (1.1) converges faster when κ is smaller.
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Example 3.4. We consider an example where the error bounds in Theorem 3.4 are pes-
simistic, while those by (3.60) can correctly reveal the speed of convergence. This occurs
when CRQopt is a “nearly the hard case”, i.e., where the optimal value of the correspond-
ing pLGopt (2.23) λ

�

�λminpHq. Specifically, we choose n�1100, m�100, ζ�0.9, a a ran-
dom vector with the norm 1{ζ, and H�diagpτtrans

0n�m�2,τtrans
1n�m�2,��� ,τtrans

n�m�2n�m�2,1q with

pα,βq � p2,1000q in (3.64) and (3.65), and g0 �
�

eη ,e2η ,��� ,epn�mqη
�T

, where η��5�10�3.

In this case, λminpHq�1 and λ
�

�0.9845, λminpHq�λ
�

and κ�
λmaxpHq�λ

�

λminpHq�λ
�

�6.4466�104.

Thus it is a nearly the hard case and κ is large. We solve the associated CRQopt (1.1) via
QEPmin (2.18). In Fig. 4, we plot the convergence history:

err1, its upper bounds 16γ2
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�
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}H�λ
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Γk
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�2
by (3.49a), and
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by (3.60b),
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by (3.49c),

and 16
|λ
�

|

}H�λ
�
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θmax�θmin
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by (3.60c).

It can be observed that The error bounds by Theorem 3.4 decay much slower than err1,
err2 and err3 in this “near hard case”. This is an example for which κ is large but κ

�

is
small:

κ
�

:�
θmax�λ

�

θ2�λ
�

�983.7702,

As commented in Remark 3.3, sharper bounds (3.60) should be used. We can see that
the bounds (3.60) correctly reflect the slope of the convergence, but they are still larger
than the actual errors by several order of magnitudes. This is due to the fact that in the

proof of the bounds (3.60), we use
�

Γk
κ�Γ�k

κ

�

�1
and

�

Γk
κ�Γ�k

κ

�

�2
to reflect the convergence

trend. We select polynomials such that max1¤i¤n�m |ψkpθi�λ
�

q|�max2¤i¤n�m |ψkpθi�λ
�

q|

by setting ψkpθ1�λ
�

q�0. In this case the coefficients involving θmax�θmin
θmin�λ

�

is large in nearly
the hard case when θmin�λ

�

.

Example 3.5. In this example, we test the effectiveness of the residual bound δQEPmin
k in

(3.27). We use the same test problem as in Example 3.2 for both β� 100 and β� 1000.

We run our Lanczos algorithm for QEPmin (2.18) and record the residual NResQEPmin
k

and its bound δQEPmin
k defined in (3.27) for every Lanczos step in Fig. 5. We observe that

both NResQEPmin
k and δQEPmin

k in (3.27) converge at the same rate, suggesting δQEPmin
k is an

effective upper bound of the residual NResQEPmin
k .
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Figure 4: Example 3.4: histories of err1, err2, err3 and their upper bounds. “Error bound by κ” and “Error
bound by κ

�

” means upper bounds in (3.49) and (3.60), respectively.
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Figure 5: Example 3.5: relative residual of QEP NResQEPmin
k and the bound of the relative residual δ

QEPmin
k

for the case where β�100 (left) and β�1000 (right).

4 Application to the constrained clustering

In this section, we use semi-supervised learning for clustering as an application of
CRQopt (1.1). We first discuss unconstrained clustering in Section 4.1 and then discuss a
new model for constrained clustering in Section 4.2. Numerical experiments are shown
in Section 4.3.

4.1 Unconstrained clustering

Clustering is an important technique for data analysis and is widely used in machine
learning [8, Chapter 14.5.3], bioinformatics [32], social science [26] and image analysis
[36]. Clustering uses some similarity metric to group data into different categories. In
this section, we discuss the normalized cut, a spectral clustering method that are popular
for image segmentation [36, 39].

Given an undirected graph G�pV ,Eqwhose edge weights are represented by an affin-
ity matrix W�rwijs, we define the cut of a partition on its vertices V into two disjoint sets
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A and B, i.e., AYB�V , AXB�H as

cutpA,Bq�
¸

iPA,jPB

wij. (4.1)

Intuitively one would minimize the cut to achieve an optimal bipartition of the graph G,
but it often results in a partition pA,Bq with one of them containing only a few isolated
vortices in the graph while the other containing the rest. Such a bipartition is not balanced
and not useful in practice. To avoid such an unnatural bias that leads to small sets of
isolated vortices, the following normalized cut [36] is introduced:

NcutpA,Bq�
cutpA,Bq

volpAq
�

cutpA,Bq

volpBq
, (4.2)

where

volpAq�
¸

iPA,jPV

wij and volpBq�
¸

iPB,jPV

wij.

It turns out that minimizing NcutpA,Bq usually yields a more balanced bipartition. Let

c
�

�

d

volpBq

volpAq�volpVq
and c

�

��

d

volpAq

volpBq�volpVq
,

and xPRn (n�|V |, the cardinality of V) be the indicator vector for bipartition pA,Bq, i.e.,

x
piq�

#

c
�

, iPA,

c
�

, iPB,
(4.3)

and D be a diagonal matrix with the row sums of W on the diagonal, i.e., D�diagpW1q.
Then it can be verified that

NcutpA,Bq�xT
pD�Wqx, xTDx�1, pDxqT1�0,

where 1 is a vector of ones. Therefore in order to minimize NcutpA,Bq, we will solve the
following combinatorial optimization problem

$

'

'

'

'

&

'

'

'

'

%

min xT
pD�Wqx,

s.t. x
piq Ptc�, c

�

u,

xTDx�1,

pDxqT1�0.

(4.4a)

(4.4b)

(4.4c)

(4.4d)

However, the problem (4.4) is a discrete optimization problem and known to be NP-
complete. A common practice to make it numerical feasible is to relax x to a real vector
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and solve instead the following optimization problem

$

'

'

'

'

&

'

'

'

'

%

min xT
pD�Wqx,

s.t. xTDx�1,

pDxqT1�0,

xPR
n.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

Under the assumption that D is positive definite, by the Courant-Fisher variational prin-
ciple [13, Sec 8.1.1], solving (4.5) is equivalent to finding the eigenvector x corresponding
to the second smallest eigenvalue of the generalized symmetric definite eigenproblem

pD�Wqx�λDx.

Note that the setting here is different from the one in [36], where the indicator vector

x
piq Pt1,�bu and b� volpAq

volpBq . Instead of minimizing a quotient of two quadratic functions

in [36], we use the constraint that xTDx�1. The model (4.4) is similar to the one in [39,
section 5.1], where they use the number of vertices in the sets A and B instead of the
volumes. The model (4.4) is derived in a similar way to the derivation in [39, section 5.1].

4.2 Constrained clustering

When partial grouping information is known in advance, we can use partial grouping
information to set up different models for better clustering. These models are known as
constrained clustering. Existing methods for constrained spectral clustering includes im-
plicitly incorporating the constraints into Laplacians [3,18] and imposing the constraints
in linear forms [6, 41, 42] or bilinear forms [40].

We encode the partial grouping information into linear constraints, which can be ei-
ther homogeneous [42] or nonhomogeneous [6, 41]. In [6], the authors set up a model
where the objective function is the quotient of two quadratic functions and used hard
coding for the known associations of pixels to specific classes in terms of linear con-
straints. In [41], the authors used a model for which the objective function is quadratic
and encoded known labels by linear constraints. This is an approach that we take to set
up the model.

Let I �ti1,��� ,iℓu be the index set for which we have the prior information such as
I�A. According to (4.3), we set x

piq�c
�

for iPI . Similarly, let J �tj1,��� , jku be the index
set for which we have the prior information that J �B, and we set x

pjq�c
�

for jPJ . This
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leads to the following discrete constrained normalized cut problem

$

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

%

min xT
pD�Wqx,

s.t. x
piq Ptc�, c

�

u,

xTDx�1,

pDxqT1�0,

x
piq�c

�

for iPI ,

x
piq�c

�

for iPJ .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)

However, there are two imminent issues associated with the model (4.6):

1. the combinatorial optimization (4.6) is NP-hard;

2. the model is incomplete because to calculate c
�

and c
�

we need to know volpAq
and volpBq, which are unknown before the clustering.

Common workarounds, which we use, are as follows. For the first issue, we relax the
model (4.6) by allowing x to be a real vector, i.e., x PRn. For the second issue, we use
volpJ q

volpIq as an estimate of volpBq
volpAq to get

c
�

�

pc
�

�

d

volpJ q

volpIq�volpVq
, c

�

�

pc
�

��

d

volpIq

volpJ q�volpVq
.

By these relaxation, we reach a computational feasible model:

$

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

%

min xT
pD�Wqx,

s.t. xTDx�1,

pDxqT1�0,

x
piq�pc�, iPI ,

x
piq�pc�. iPJ ,

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

The last three equations are linear constraints and can be collectively written as a linear
system of equations:

NTx�b.

Let v�D1{2x, and define

A�D�1{2
pD�WqD�1{2 and C�D�1{2N.

Then the optimization problem (4.7) is turned into CRQopt (1.1) with matrices A, C and
b just defined.
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4.3 Numerical results

In this section, we show the numerical results of the constrained clustering for the seg-
mentation of a set of images listed in Table 1 and Fig. 6. All experiments were conducted
on a PC with Intel Core i7-4770K CPU@3.5GHz and 16-GB RAM. CRQopt (1.1) is solved
via solving QEPmin (2.18). The minimum and maximum numbers of Lanczos steps are

minit�120 and maxit�300, respectively. The stopping criterion is δQEPmin
k  8�10�5. We

check the stopping criterion every five iterations.

For a grayscale image, we can construct a weighted graph G�pV ,Eq by taking each
pixel as a node and connecting each pair pi, jq of pixel i and j by an edge with a weight
given by

wij� e
�

}Fpiq�Fpjq}2
2

δF
�

#

1 if }Xpiq�Xpjq}
8

 r,

0 otherwise ,
(4.8)

where δF and r are chosen parameters, F is the brightness value and X is the location of a
pixel [36].} We take δF�δ�maxi,j}Fpiq�Fpjq}2

2 for some parameter δ to be specified below.
The definition of weight in (4.8) ensures that every pixel is connected with an edge to at
most p2r�1q2 other pixels.

Table 1 lists the values of key parameters used in our experiments. r is taken either
5 or 10, and thus the weight matrix W is sparse, which in turn makes the matrix A in
CRQopt (1.1) sparse, too. Note that for the Crab image, the contrast between the upper
right of the object and the background is not significant. Therefore, r is chosen to be twice
as much as other images to ensure the weight matrix correctly reflect the connectivity of
the graph. δ is around 0.1, to be consistent with the statement in [36] that “δF is typically
set to 10 to 20 percent of the total range of the feature distance function”. Finally, the
number m of linear constraints is small yielding CRQopt (1.1) with m!n.

}In a 2-D image, pixel i may naturally be represented by pix,iyq where ix and iy are two integers.

Table 1: The number of pixels n, parameters δ and r and size m of linear constraints.

Image Number of pixels n δ r m

Flower 30,000 0.1 5 24

Road 50,268 0.1 5 46

Crab 143,000 0.1 10 32

Camel 240,057 0.08 5 24

Dog 395,520 0.1 5 33

Face1 562,500 0.1 5 31

Face2 922,560 0.1 5 19

Daisy 1,024,000 0.08 5 29

Daisy2 1,024,000 0.08 5 59
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Figure 6: The left, middle and right columns are labels, results of image cut and the heat maps of the solutions
by the Lanczos algorithm for CRQopt, respectively. Images from top to bottom are Flower, Road, Crab, Camel,
Dog, Face1, Face2, Daisy and Daisy2, respectively.
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Table 2: Runtime (in seconds) and number of Lanczos steps.

Image Run Time Lanczos steps

Flower 4.61 210

Road 14.92 200

Crab 21.58 135

Camel 31.12 300

Dog 22.33 135

Face1 67.46 215

Face2 35.54 165

Daisy 84.09 235

Daisy2 105.80 245

Table 3: Runtime for Fast-GE-2.0, projected power method and the Lanczos algorithm.

Image Fast-GE-2.0 Projected Power Method Lanczos algorithm

Crab 47.13 s 446.76 s 21.58 s

Daisy 1572.81 s 3+ hours 84.09 s

Daisy2 1319.58 s 3+ hours 105.80 s

Fig. 6 shows that the results of the model (4.7) for the image segmentation indeed
agree with natural visual separation of the object and the background. Table 2 displays
the wall-clock runtime and the numbers of Lanczos steps used for the images.

We note that Daisy and Daisy2 are the same image but with two different ways of
prior partial labeling. For both ways of prior partial labelling, the computed image cuts
look equally well. The purpose of experiments on Daisy and Daisy2 is to observe how the
size m of the linear constraints may affect running time. Daisy has 29 linear constraints
while Daisy2 has 59. As shown in Table 2, the Lanczos algorithm took 84.09 seconds
for Daisy and 105.80 seconds for Daisy2. It suggests that the larger m is, the more times
the Lanczos algorithm takes to solve the associated CRQopt. This is because the matrix-
vector product Px does more work as m increases.

In Table 3, we show the running time of Fast-GE-2.0 [18], the projected power method
[41], and the Lanczos algorithm for selected images. For comparable segmentation qual-
ity, the runtime of the Lanczos algorithm is significantly less than Fast-GE-2.0 and the
projected power method.

5 Conclusions

Although the constrained Rayleigh quotient optimization problem (CRQopt) (1.1), also
known as the constrained eigenvalue problem, has been around since 1970s, some of
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the mathematical claims were not rigorously justified. There are very few numerical
methods that are suitable for large scale CRQopt (1.1), such as those arising from con-
strained image segmentation. The projected power method [41] converges too slow
while the method in [14] is for the homogeneous constraints only. Eigenvalue optimiza-
tion method [6] could be too expensive. In this paper, we conducted a systematical and
rigorous theoretical study of the problem and, as a result, devised an efficient Lanczos
algorithm for large scale CRQopt (1.1). We perform a detailed convergence analysis of
the Lanczos algorithm. As an application, we apply our Lanczos algorithm to the image
cut problem with partial prior labeling. Numerical experiments demonstrate the effec-
tiveness of the algorithm in terms of accuracy and superior efficiency compared to Fast-
GE-2.0 [18] and the projected power method [41]. Future work include the treatment of
rLGopt (3.5) in nearly the hard case and applications of Lanczos algorithms on other ma-
chine learning problems such as outlier removal [25], semi-supervised kernel PCA [31],
and transductive learning [19].

Although our presentation in this paper is restricted to the real numbers, their exten-
sions to the complex version of CRQopt (1.1)

min
vPCn

vH Av s.t. vHv�1 and CHv�b

are rather straightforward, where APCn�n is Hermitian, i.e., A�AH, CPCn�m. Essentially,
all we need to do is to replace all transposes �T by complex conjugate transposes �H. We
also note that we can also easily extend the discussion of this paper to the model

min
xPRn

xT Ax s.t. xTBx�1 and CTx�b, (5.1)

where B is a symmetric positive definite matrix. In fact, let B� LLT be the Cholesky
decomposition of B and v�Lx, then (5.1) is transformed to CRQopt (1.1) with A:�L�TAL
and C :�L�TC.

Acknowledgments

We would like to thank Mr. Ning Wan for sharing his study notes on CRQopt, Dr. Yan-
wen Luo for his help in the proof for Lemma 2.8, Dr. Chengming Jiang for providing his
FAST-GE2.0 implementation of the constrained image segmentation, and Mr. Michael
Ragone for his comments on an early version of this manuscript. Y. Zhou and Z. Bai were
supported in part by NSF grants DMS-1522697, CCF-1527091 and DMS-1913364. R. Li
was supported in part by NSF grants CCF-1527104 and DMS-1719620. We are grateful
for the anonymous referees for their careful review of the manuscript and constructive
suggestions.



Y. Zhou, Z. Bai and R.-C. Li / CSIAM Trans. Appl. Math., 2 (2021), pp. 195-262 253

Appendices

A Solve secular equation

We are interested in computing the smallest root λ
�

of the secular function

χpλq :�
ņ

i�1

ξ2
i

pλ�θiq
2
�γ2, (A.1)

where it is assumed

γ¡0, θ1¤θ2¤���¤θn and either ξ1�0 or ξ1�0 but limλÑθ�1
χpλq¡0.

Those assumptions guarantee that χpλq has a unique zero λ
�

in p�8,θ1q. This is due to
the facts

lim
λÑ�8

χpλq��γ2
 0, lim

λÑθ�1

χpλq¡0, and χ1

pλq��2
ņ

i�1

ξ2
i

pλ�θiq
3
¡0 for λ θ1.

First, we find an initial lower bound αp0q of λ
�

, i.e., αp0q θ1 such that χpαp0qq 0. Note

χpλq¤
ņ

i�1

ξ2
i

pλ�θ1q
2
�γ2 for λ θ1.

One such αp0q can be found by solving

ņ

i�1

ξ2
i

pαp0q�θ1q
2
�γ2

�0 ñ αp0q�θ1�δ0 with δ0�
1

γ

g

f

f

e

ņ

i�1

ξ2
i .

We conclude that λ
�

P rαp0q,βp0qs, where βp0q� θ1. Quantities αpkq and βpkq will be deter-
mined during our iterative process to be described such that λ

�

Prαpkq,βpkqs.
Without loss of generality, we may assume that

if θ1�����θd θd�1, then ξ2�����ξd�0.

Let
j0�minti : ξi�0u. (A.2)

To find the initial guess of the root, we solve

ξ2
j0

pλ�θj0q
2
�

ņ

i�j0�1

ξ2
i

prθj0�δ0s�θiq
2
�γ2

looooooooooooooomooooooooooooooon

�:�η

�0
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for λ to get

λp0q
�

#

θj0�|ξ j0 |{
?

η, if η¡0,

θj0�δ0{2, if η¤0,

where the second case is based on bisection.

For the iterative scheme, suppose we have an approximation λpkq
� λ

�

. First, the
interval pαpkq,βpkqq will be updated as

αpk�1q
�λpkq and βpk�1q

�βpkq if χpλpkq
q 0,

βpk�1q
�λpkq and αpk�1q

�αpkq if χpλpkq
q¡0.

Then we find the next approximation λpk�1q. For that purpose, we seek to approximate
χ, in the neighborhood of λpkq, by

gpλq :��b�
a

pλ�θj0 q
2
�χpλq,

such that

gpλpkq
q��b�

a

pλpkq
�θj0q

2
�χpλpkq

q�

ņ

i�1

ξ2
i

pλpkq
�θiq

2
�γ2,

g1pλpkq
q� �2

a

pλpkq
�θj0q

3
�χ1

pλpkq
q��2

ņ

i�1

ξ2
i

pλpkq
�θiq

3
,

yielding

a��
1

2
pλpkq

�θj0q
3χ1

pλpkq
q�pλpkq

�θj0q
3

ņ

i�1

ξ2
i

pλpkq
�θiq

3
¡0,

b�
a

pλpkq
�θj0q

2
�χpλpkq

q�pλpkq
�θj0q

ņ

i�1

ξ2
i

pλpkq
�θiq

3
�χpλpkq

q.

Ideally, b¡0 so that gpλq�0 has a solution in p�8,θj0q. Assuming b¡0, we find the next

approximation λpk�1q
�λ

�

is given by

λpk�1q
�θ1�

a

a{b. (A.3)

Now if b¤0 (then λpk�1q as in (A.3) is undefined) or if λpk�1q
R pα,βq, we let λpk�1q be

pαpk�1q
�βpk�1q

q{2 according to bisection method.
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B Proof of the equivalence between CRQopt and the eigenvalue

optimization problem

Consider CRQopt (1.1), suppose U PRn�pn�mq has full column rank and that RpUq �
N pCT

q and let uPRn satisfies CTu�
?

nb. Define

pC�
�

CT
�

?

nb
�

, N�

�

n�m 1

n U u
1 0 1

�

(B.1)

and

L�NT

�

A 0
0 0

�

N, E�NT

�

�

I
n�1 0

0 1� 1
n�1

�

N, M�NT

�

In 0
0 0

�

N.

Note that it is easy to see that RpNq�N p

pCq.
In this appendix we prove that CRQopt (1.1) is equivalent to the following eigenvalue

optimization problem
max
tPR

λminpL�tE,Mq, (B.2)

where λminpL�tE,Mq is the smallest eigenvalue of pL�tEqx�λMx. This equivalency was
initially established by Eriksson, Olsson and Kahl [6]. However, the statements presented
here are stronger than the related ones in [6]. For examples, we will prove M is positive
definite, and we can use ’max’ in (B.2) instead of ’sup’ in [6].

Let rv�
?

nv, pv�

�

rv
1

�

, pA�

�

A 0
0 0

�

and pB�

�

In 0
0 0

�

. Then v is a minimizer of CRQopt

(1.1) if and only if pv is a minimizer of

min
pvT
pApv

pvT
pBpv

, s.t. pv2
pn�1q�1, pvT

pv�n�1, pCpv�0. (B.3)

Since RpNq�N p

pCq, for any pv satisfying pCpv�0, there exists pyPRn�m�1 such that pv�Npy,
N is defined in (B.1). By the matrix structure in (B.1), we know that pv2

pn�1q�1 if and only

if py2
pn�m�1q�1. Therefore, solving (B.3) is equivalent to solving

min
pyTLpy

pyMpy
, s.t. py2

pn�m�1q�1�0, pyTNTNpy�n�1. (B.4)

To prove (B.4) is equivalent to its dual problem, we use the following result on the
duality of the quadratic constrained optimization problems.

Lemma B.1 ([6, Corollary 1]). Let yT A2y�2bT
2 y�c2 be a positive semidefinite quadratic form.

If there exists y such that yT A3y�2bT
3 y�c3 0 and if A3 is positive semidefinite, then the primal

problem

inf
y

yT A1y�2bT
1 y�c1

yT A2y�2bT
2 y�c2

, s.t. yT A3y�2bT
3 y�c3�0
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and the dual problem

sup
λ

inf
y

yT
pA1�λA3qy�2pb1�λb3q

Ty�pc1�λc3q

yT A2y�2bT
2 y�c2

has no duality gap.

Proof. See [6, Corollary 1].

With the help of Lemma B.1, we have the following theorem to show that there is no
duality gap between the optimization problem (B.4) and its dual problem.

Theorem B.1 ([6, Theorem 1]). Let pAi �

�

Ai bi

bT
i ci

�

for i� 1,2,3. If pA2 and A3 are positive

semidefinite and if there exists py such that pyT
pA3py n�1 and py2

n�1�1, then the primal problem

inf
yT A3y�2bT

3 y�c3�n�1

yT A1y�2bT
1 y�c1

yT A2y�2bT
2 y�c2

� inf
pyT

pA3py�n�1,py2
n�1�1

pyT
pA1py

pyT
pA2py

(B.5)

and its dual

sup
t

inf
pyT

pA3py�n�1

pyT
pA1py�tpy2

n�1�t

pyT
pA2py

has no duality gap.

Proof. Let γ
�

be the optimal value of (B.5), then

γ
�

� inf
pyT

pA3py�n�1,py2
n�1�1

pyT
pA1py

pyT
pA2py

�sup
t

inf
pyT

pA3py�n�1,py2
n�1�1

pyT
pA1py�tpy2

n�1�t

pyT
pA2py

¥sup
t

inf
pyT

pA3py�n�1

pyT
pA1py�tpy2

n�1�t

pyT
pA2py

¥sup
t,λ

inf
py

pyT
pA1py�tpy2

n�1�t�λppyT
pA3py�pn�1qq

pyT
pA2py

�sup
t,λ

inf
py

yT A1y�2bT
1 y�c1�tpy2

n�1�t�λpyT A3y�2bT
3 y�c3�pn�1qq

yT A2y�2bT
2 y�c2

�sup
t,λ

inf
py2

n�1�1

yT A1y�2bT
1 y�c1�λpyT A3y�2bT

3 y�c3�pn�1qq

yT A2y�2bT
2 y�c2

(B.6)

� inf
yT A3y�2bT

3 y�c3�n�1

yT A1y�2bT
1 y�c1

yT A2y�2bT
2 y�c2

�γ
�

, (B.7)

where (B.6) and (B.7) apply Lemma B.1.
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Remark B.1. One of the conditions in [6, Theorem 1] is “ pA3 is positive semidefinite”.
However, the proof of Theorem B.1 applies Lemma B.1, which requires A3 to be posi-

tive semidefinite and there exists py such that pyT
pA3py n�1 and py2

n�1� 1. Therefore, the

condition “ pA3 is positive semidefinite” is not necessary. In addition, in the statement
of [6, Theorem 1], one of the constraints is y2

n�1�1. However, in (B.5), the size of the ma-

trix Ai and xAi is n�n and pn�1q�pn�1q for i�1,2,3, respectively. Therefore, we consider
yPRn and pyPRn�1, and change the constraint y2

n�1�1 to py2
n�1�1.

We now prove that the conditions of Theorem B.1 are satisfied for the constrained
Rayleigh quotient optimization problem (B.4).

Lemma B.2. Suppose }v0}   1, where v0 � pCT
q

:b. Then there exists py such that }py}2
N �

pyTNTNpy n�1 and py
pn�m�1q�1.

Proof. Note that v0�pC
T
q

:b is the minimum norm solution of CTv�b. Let pv�r
?

nvT
0 ,1sT.

Then pv PN p

pCq and thus there exists py such that pv�Npy for which we have }py}N �}pv}2 
?

n�1, and, at the same time, py
pn�m�1q�pvpn�1q�1.

By Lemma B.2 and Theorem B.1, the optimization problem (B.4) is equivalent to its
dual problem

sup
t

inf
pyTNT Npy�n�1

pyTLpy�tpy2
n�m�1�t

pyTMpy
. (B.8)

Since

tpy2
n�m�1�t� tpy2

n�m�1�t
pyTNTNpy

n�1
�

pyTEpy,

(B.8) is equivalent to

sup
t

inf
pyTNT Npy�n�1

pyT
pL�tEqpy

pyTMpy
. (B.9)

To transform the dual problem (B.9) to an eigenvalue problem, we first prove that M
is positive definite.

Lemma B.3. Let b be as defined in (1.1c) and b� 0, and N has full column rank, then M is
positive definite.

Proof. It is clear that M is positive semi-definite. We claim that M is nonsingular. Sup-
pose, to the contrary, that M is singular. Then there exists a nonzero x such that Mx�0.

We claim that x
pn�m�1q � 0; otherwise suppose x

pn�m�1q � 0 and write x�

�

x1

0

�

. It

follows from Mx�0 that UTUx�0, implying x1�0 because U has full column rank. Thus
x�0, a contradiction.
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Without loss of generality, we may normalize x
pn�m�1q to 1, i.e., x�

�

x1

1

�

. Note that

M�NTN�en�m�1eT
n�m�1. Mx�0 implies NTNx�

�

0
1

�

. NTN is invertible. We now express

pNTNq�1
pn�m�1,n�m�1q in two different ways. NTNx�

�

0
1

�

yields x�pNTNq�1

�

0
1

�

and thus

1�

�

0
1

�T

x�

�

0
1

�T

pNTNq�1

�

0
1

�

�pNTNq�1
pn�m�1,n�m�1q.

On the other hand,

NTN�

�

UTU UTu
uTU uTu�1

�

.

By the assumption that U has full column rank, UTU is invertible. Then we have

detpNTNq�detpUTUqdetrp1�uTu�uTUpUTUq�1UTus.

According to the relationship between the inverse and the adjoint of a matrix, we find

pNT Nq�1
pn�m�1,n�m�1q�p�1qn�m�1�n�m�1 detpUTUq

detpNT Nq

�

detpUTUq

detpUTUqdetrp1�uTu�uTUpUTUq�1UTus

�

detpUTUq

detpUTUqr1�uT
pI�PUqus

,

where PU is the orthogonal projection onto RpUq. Therefore, pNT Nq�1
pn�m�1,n�m�1q�1 if

and only if uT
pI�PUqu�0 implying that u is in the column space of U. Without loss of

generality, we may assume the first column of U is u. Now subtract the first column of N

from its last column to conclude that en�1 is in the null space of pC, which contradicts that
b�0.

By Lemma B.3 and Courant-Fisher minimax theorem [13, Theorem 8.1.2], finding

inf
pyT NTNpy�n�1

pyT
pL�tEqpy

pyTMpy

is equivalent to finding the smallest eigenvalue of K�1
pL�tEqK�Tx�λx, where M�KKT

is the Cholesky factorization of M. Therefore, (B.9) is equivalent to

sup
t

λminpL�tE,Mq. (B.10)

Finally, we prove that the maximum value can be obtained, i.e., ’sup’ in (B.10) can be
replaced by ’max’.
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Lemma B.4. Let f ptq�λminpL�tE,Mq. There exits t0 PR such that f pt0q�suptPR
f ptq.

Proof. We prove the claim by showing that

lim
tÑ�8

f ptq� lim
tÑ�8

f ptq��8.

First, let v1 PRpNq with the last component being zero, and set y1 � N:v1. We have

yT
1 Ey1��

}v1}
2
2

n�1  0 and yT
1 My1¡0 since M is positive definite. Hence

lim
tÑ�8

f ptq� lim
tÑ�8

inf
py

pyT
pL�tEqpy

pyT Mpy
¤ lim

tÑ�8

yT
1 pL�tEqy1

yT
1 My1

¤ lim
tÑ�8

t
yT

1 Ey1

yT
1 My1

�λmaxpL,Mq��8.

Recall v0�pC
T
q

:b and the assumption that }v0} 1. Let v2�r
?

nvT
0 , 1sT. Clearly v2PRpNq

and let y2�N:v2. We have yT
2 Ey2��

n}v0}
2
2

n�1 �1� 1
n�1¡0 since }v0} 1 and yT

2 My2¡0 since
M is positive definite. Hence

lim
tÑ�8

f ptq� lim
tÑ�8

inf
py

pyT
pL�tEqpy

pyT Mpy
¤ lim

tÑ�8

yT
2 pL�tEqy2

yT
2 My2

¤ lim
tÑ�8

t
yT

2 Ey2

yT
2 My2

�λmaxpL,Mq��8.

Therefore, there exits t1 0 such that f ptq  f p0q for t  t1 and there exits t2¡0 such that
f ptq  f p0q for when t¡ t2. Therefore

sup
tPR

f ptq� sup
tPrt1 ,t2s

f ptq.

Because f ptq � λminpL�tE,Mq is a continuous function [38], there exists t0 P rt1,t2s such
that f pt0q�suptPR

f ptq.

In conclusion, we have shown that CRQopt (1.1) is equivalent to the eigenvalue opti-
mization problem (B.2).

C CRQPACK

The Lanczos algorithm for solving CRQopt (1.1) described in this paper has been im-
plemented in MATLAB. In the spirit of reproducible research, MATLAB scripts of the
implementation of the Lanczos algorithm and the data that used to generate numeri-
cal results presented in this paper are available in CRQPACK at https://github.com/
yunshenzhou/CRQPACK.git. CRQPACK consists of three folders:

1. src: the source code for solving CRQopt (1.1). It consists of four functions
CRQ_Lanczos, QEPmin, LGopt and rLGopt. CRQ_Lanczos is the driver and calls
QEPmin and LGopt. LGopt is dependent on rLGopt. In addition, we also provide
two other drivers for solving CRQopt (1.1), namely CRQ_explicit for the direct
method [10] and CRQ_ppm for the projected power method [41].
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2. synthetic: the drivers for numerical examples in Section 3.6. correct.m and
QEPres.m are for the examples in Sections 3.2 and 3.5, respectively. CRQsharp.m

is used to generate the plots for Example 3.3 on error bounds in (3.49a) and (3.49b),
while CRQnotsharp.m on the error bounds (3.49a) and (3.49b).

3. imagecut: the code for constrained image segmentation. It has three subfolders:
examples contains the drivers, data contains image data including prior labeling
information, and auxiliary contains program to generate the matrices A, C, and
vector b of CRQopt (1.1).
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[1] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
[2] J. R. Bunch, Ch. P. Nielsen, and D. C. Sorensen. Rank-one modification of the symmetric

eigenproblem. Numer. Math., 31:31–48, 1978.
[3] S. E. Chew and N. D. Cahill. Semi-supervised normalized cuts for image segmentation. In

Proceedings of the IEEE International Conference on Computer Vision, pages 1716–1723, 2015.
[4] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.
[5] N. R. Draper. “Ridge analysis” of response surfaces. Technometrics, 5(4):469–479, 1963.
[6] A. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformulation for segmen-

tation with linear grouping constraints. Journal of Mathematical Imaging and Vision, 39(1):45–
61, 2011.

[7] D. Fong and M. Saunders. LSMR: An iterative algorithm for sparse least-squares problems.
SIAM J. Sci. Comput., 33(5):2950–2971, 2011.

[8] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements Of Statistical Learning.
Springer, 2001.

[9] W. Gander. Least squares with a quadratic constraint. Numer. Math., 36:291–307, 1981.
[10] W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue problem. Linear Algebra

Appl., 114-115:815–839, 1989.
[11] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York,

1982.
[12] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choos-

ing a good ridge parameter. Technometrics, 21(2):215–223, 1979.
[13] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, Maryland, 4th edition, 2013.
[14] Gene H. Golub, Zhenyue Zhang, and Hongyuan Zha. Large sparse symmetric eigenvalue

problems with homogeneous linear constraints: the Lanczos process with inner-outer itera-
tions. Linear Algebra Appl., 309(1):289–306, 2000.

[15] G. Golubr. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973.
[16] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the trust-region subproblem

using the Lanczos method. SIAM J. Optim., 9(2):504–525, 1999.
[17] W. W. Hager. Minimizing a quadratic over a sphere. SIAM J. Optim., 12(1):188–208, 2001.
[18] C. Jiang, H. Xie, and Z. Bai. Robust and efficient computation of eigenvectors in a general-

ized spectral method for constrained clustering. In Artificial Intelligence and Statistics, pages
757–766, 2017.



Y. Zhou, Z. Bai and R.-C. Li / CSIAM Trans. Appl. Math., 2 (2021), pp. 195-262 261

[19] T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the
Twentieth International Conference on International Conference on Machine Learning, ICML’03,
pages 290–297, 2003.

[20] J. Lampe and H. Voss. On a quadratic eigenproblem occurring in regularized total least
squares. Computational Statistics & Data Analysis, 52(2):1090–1102, 2007.

[21] R.-C. Li. Solving secular equations stably and efficiently. Technical Report UCB//CSD-94-
851, Computer Science Division, Department of EECS, University of California at Berkeley,
1993.

[22] R.-C. Li. Vandermonde matrices with Chebyshev nodes. Linear Algebra Appl., 428:1803–1832,
2007.

[23] R.-C. Li. On Meinardus’ examples for the conjugate gradient method. Math. Comp.,
77(261):335–352, 2008.

[24] R.-C. Li. Sharpness in rates of convergence for symmetric Lanczos method. Math. Comp.,
79(269):419–435, 2010.

[25] W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for automatic outlier
removal. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 3826–
3833, June 2014.

[26] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Clustering social networks. In Interna-
tional Workshop on Algorithms and Models for the Web-Graph, pages 56–67, 2007.
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