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ABSTRACT 

The purpose of this paper is to reintroduce the generalized QR factorization with or 

without pivoting of two matrices A and B having the same number of rows. When B is 

square and nonsingular, the factorization implicitly gives the orthogonal factorization of 

B-‘A. Continuing the work of Paige and Hammarling, we discuss the different forms of 

the factorization from the point of view of general-purpose software development. 
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In addition, we demonstrate the applications of the GQR factorization in solving the 
linear equality-constrained least-squares problem and the generalized linear regression 
problem, and in estimating the conditioning of these problems. 

1. INTRODUCTION 

The QR factorization of an n x m matrix A assumes the form 

A = QR 

where Q is an n x n orthogonal matrix, and R = QrA is zero below its 
diagonal. If n 2 m, then QTA can be written in the form 

Q=A = “d’ 
[ I 

where R,, is an n x n upper triangular matrix. If n < m, then the QR 
factorization of A assumes the form 

QTA = [RI, RI,] 

where RI1 is an n x n upper triangular matrix. However, in practical applica- 
tions, it is more convenient to represent the factorization in this case as 

which is known as the RQ factorization. Closely related to the QR and RQ 

factorizations are the QL and LQ factorizations, which are orthogonal-lower- 
triangular and lower-triangular-orthogonal factorizations, respectively. It is 
well known that the orthogonal factors of A provide information about its 

column and row spaces [lo]. 
A column pivoting option in the QR factorization allows the user to detect 

dependencies among the columns of a matrix A. If A has rank k, then there 
are an orthogonal matrix Q and a permutation matrix P such that 

Q=AP= [ ‘;’ ‘;‘I:_, 

k m-k 
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where R,, is k x k, upper triangular, and nonsingular [lo]. Householder 
transformation matrices or Givens rotation matrices provide numerically stable 
numerical methods to compute these factorizations with or without pivoting 
[lo]. The software for computing the QR factorization on sequential machines 
is available from the public linear-algebra library LINPACK [8]. Redesigned 
codes in block algorithm fashion that are better suited for today’s high-perfor- 
mance architectures will be available in LAPACK [l]. 

The terminology generalized QR factorization (GQR factorization), as used 
by Hammarling [12] and Paige [20], refers to the orthogonal transformations 
that simultaneously transform an n x m matrix A and an n x p matrix B to 
triangular form. This decomposition corresponds to the QR factorization of 
B-‘A when B is square and nonsingular. For example, if n 2 m, n < p, then 
the GQR factorization of A and I3 assumes the form 

Q=A = [ ;], Q=BV= [o s], 

where Q is an n x n orthogonal matrix or a nonsingular well-conditioned 
matrix, V is a p x p orthogonal matrix, R is m x m and upper triangular, and 
S is p x p and upper triangular. If B is square and nonsingular, then the QR 
factorization of B-‘A is given by 

V=(B-‘A) = [ ;] = S-‘[ ;I, 

i.e., the upper triangular part T of the QR factorization of B- ‘A can be 
determined by solving the triangular matrix equation 

S,,T = R, 

where S,, is the m x m top left comer block of the matrix S. This implicit 
determination of the QR factorization of B- ‘A avoids the possible numerical 
difficulties in forming B-’ or B-‘A. 

Just as the QR factorization has proved to be a powerful tool in solving 
least-squares and related linear regression problems, so too can the GQR 
factorization be used to solve both the linear equality-constrained least-squares 
problem 

min (1 AX - bll, 
Br=d 
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where A and B are m x n and 
ized linear regression model 

min uTu 
x, U 

where A and B are n x m and 
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p x n matrices, respectively, and the general- 

subject to b = Ax + Bu, 

n x p matrices, respectively. Throughout this 
paper, ]] * 11 denotes the Euclidean vector or matrix norm. Note that in the 
constrained least-squares problem, n is the column dimension of both A and 
B, and in the generalized regression model, n is the row dimension of both A 
and B. 

QR factorization approaches have been used for solving these problems; 
see Lawson and Hanson [16, Chapters 20-221 and Bjiirck [6, Chapter 51. We 
shall see that the GQR factorization of A and B provides a uniform approach 
to these problems. The benefit of this approach is threefold. First, it uses a 
single GQR factorization concept to solve these problems directly. Second, 
from the software-development point of view, it allows us to develop fewer 
subroutines that can be used for solving these problems. Third, just as the 
triangular factor in the QR factorization provides important information on the 
conditioning of the linear least-squares problem and the classical linear regres- 
sion model, the triangular factors in the GQR factorization provide information 
on the conditioning of these generalized problems. 

Our motivation for the GQR factorization is basically the same as that of 
Paige [20]. However, we present a more general form of the factorization that 
relaxes the requirements on the rank of some of the submatrices in the 
factored form. This modification is significant because it simplifies the devel- 
opment of software to compute the factorization but does not limit the class 
of application problems that can be solved. We also distinguish between 
the GQR factorization with pivoting and without pivoting and introduce a 
generalized RQ factorization. 

The outline of this paper is as follows: In Section 2, we show how to use 
the existing QR factorization and its variants to construct the GQR (or GRQ) 
factorization without pivoting of two matrices A and B having the same 
number of rows. In Section 3, we add a column pivoting option to the GQR 
factorization. Then, in Section 4, we show the applications of the GQR 
factorization in solving the linear equality-constrained least-squares problem 
and the generalized linear model problem, and in estimating the conditioning 
of these problems. 

2. GENERALIZED QR FACTORIZATION 

In this section, we first introduce the GQR factorization of an n X m 
matrix A and an n x p matrix B. For the sake of exposition, we assume 
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n 2 m, the most frequently occurring case. Then, for the case n < m, we 
introduce the GRQ factorization of A and B. 

GQR factorization. Let A be an n x m matrix, B an n X p matrix, and 
assume that n 2 m. Then there are orthogonal matrices Q (n x m) and V 
(pxp) suchthat 

Q’A = R, Q=BV = S, (1) 

where 

R= R1l ;_,, 
[ I 0 

with R,, (m x m) upper triangular, and 

s= [o Sll], if n<p 
p-n n 

where the n x n matrix S,, is upper triangular, or 

S 11 

[ I “-P 

s = s,, P 
if n>p, 

P 

where the p x p matrix S,, is upper triangular. 

Proof. The proof is easy and constructive. By the QR factorization of A 
we have 

QTA= “d’ ;_,. 
[ 1 

m 

Let QT premultiply B; then the desired factorizations follow upon the RQ 
factorization of QTB. If n Q p, 

(QTB)v= 1’ ‘llln; 
p-r3 n 
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otherwise, the RQ factorization of QTB has the form 

To illustrate these decompositions we give examples for each case: 

EXAMPLE. Suppose A and B are each 4 x 3 matrices given by 

Then in the GQR factorization of A and B, the computed orthogonal matrices’ 
Q and V are 

-0.2085 -0.8792 0.1562 -0.3989 

Q= 0.6255 -0.4147 0.1465 0.6444 -0.4170 -0.2322 -0.7665 0.4296 ' 
-0.6255 0.0332 0.6054 0.4910 

1 
0.5275 -0.3229 

-0.2982 -0.9365 I > 
0.7955 -0.1369 

and R and S are 

-4.7958 1.4596 -0.8341 

R= 0 -2.6210 
0 0 2.5926 ' 
0 0 -2.7537 1 0 

-4.2220 3.1170 0.8223 

S= -4.0063 1.8176 0 -2.0602 -1.7712 1 -0.4223 ' 
0 0 3.5872 

‘In all of these examples, the computed results are presented to four decimal digits, 

although the computations were carried out in double precision. If the computed variables 

are on the order of machine precision, (i.e., 2.2204~016), we round to zero. 



QR FACTORIZATION 

To illustrate the case n < p, let B be given by 

12 3 4 5 

B= [ -3 2 -2 1 2 1 ; 2 3 4 -2 -1 
13-2 2 1 

then in the GQR factorization of A and B, the orthogonal matrix V is 

I 

0.3375 -0.0791 -0.2689 -0.6363 0.6345 
0.8926 0.2044 -0.1635 0.2771 -0.2407 

v= -0.0534 -0.5118 -0.5794 -0.2833 -0.5651 
0.1585 0.1280 0.6087 -0.6280 -0.4401 

-0.2478 0.8208 -0.4414 -0.2091 -0.1626 

and the matrix S is 

0 7.0240 2.1937 0.1571 

-3.4311 2.8692 - 1.8585 0.1389 1 0 0 -5.9566 1.0776 ' 
0 0 0 3.9630 

249 

Occasionally, one wishes to compute the QR factorization of B- ‘A, for 
example, to solve the weighted least-squares problem 

rnjnI[ B-‘( Ax - b)II. 

To avoid forming B- ’ and B-‘A, we note that the GQR factorization (1) of A 
and B implicitly gives the QR factorization of B-lA: 

VT(B-lA) = [;I = S-f';'], 

i.e., the upper triangular part T of the QR factorization of B-‘A can be 
determined by solving the triangular system 

SllT = Rll 

for T, where S,, is the m x m top left corner block of the matrix S. Hence, 
the possible numerical difficulties in using, explicitly or implicitly, the QR 
factorization of B-‘A are confined to the conditioning of S,,. 
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Moreover, if we partition V = [V, V’s], where V, has m columns, then 

B-IA = Vr( S,‘R,,). 

This shows that if A is of rank m, the columns of V, form an orthonormal 
basis for the space spanned by the columns of B- ‘A. The matrix VrVr’ is the 
orthogonal projection onto W (B-IA), where 9 (*) denotes the range or 
column space. 

Another straightforward application of the GQR factorization is to find a 
maximal set of BBT-orthonormal vectors orthogonal to g(A). That is, we 
want to find a matrix Z such that 

ZTA = 0, ZTBBTZ = 1. 

Let us rewrite the decomposition (1) as 

where Q is partitioned conformally with R, 

and S,,, S,, are upper triangular. Then the desired matrix Z is given by 

Z = Q2SAT. 

When A is an n x m matrix with n < m, although it still can be presented 
in forms similar to that of the GQR factorization of A and B, it is sometimes 
more useful in applications to represent the factorization as the following: 

GRQ factorization. Let A be an n x m matrix, B an n x p matrix, and 

assume that n < m. Then there are orthogonal matrices Q (n x n) and U 

(m x m) such that 

QTAU = R, QTB = S, (2) 

R = Lo Rllln, 
m-n n 
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with R,, upper triangular, and 

S= Pll s12ln 
n p-n 

or 

s= Sll P 

[ 1 0 n-p 

if nQp 

if n>p, 

P 

where the n x n or p x p matrix S,, is upper triangular. 

Proof. The proof is similar to that of the GQR factorization. Briefly, one 
first does the QR factorization of B (B = QS), then follows it by the RQ 
factorization of QTA. n 

From the GRQ factorization of A and B, we see that if B is square and 
nonsingular, then the RQ factorization of B- ‘A is given by 

(B-~A)u= [O T] = s-l[o R,,]. 

3. GENERALIZED QR FACTORIZATION WITH PIVOTING 

The previous section introduced the generalized QR factorization. As in 
the QR factorization of a matrix, we can also incorporate pivoting into the 
GQR factorization to deal with ill-conditioned or rank-deficient matrices. 

GQR factorization with column pivoting. Let A be an n x m matrix and 

B be an n x p matrix. Then there are orthogonal matrices Q (n x n) and V 

( p x p) and a permutation matrix P such that 

where 

QTAP = R, QTBV = S, (3) 

R 11 42 

R= ; ; 
[ 1 ;z 

n-q-k 

q m-q 
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the q x q matrix R,, is upper triangular and nonsingular, and either 

p-n q n-q, 

where the q x q matrix S,, is upper triangular and S,,, if it exists, is a 

full-row-rank upper trapezoidal matrix, or 

p-n+q n-q 

if n>p 

where S, 1, if it exists, is trapezoidal with zeros in the strictly lower le$ triangle, 

and the k x (n - q) matrix S,, is full-row-rank upper trapezoidal. lf p < n - q. 

then the first block column of S is not present. 

Proof. The proof is also constructive. By the QR factorization with 

pivoting of A, we have 

QTAp= [“d’ ;‘I::-q. 
9 m-q 

where q = rank(A). If n Q p, let 

(Q;B)V, = [i “:: 2$- 9 

p-n 4 n-q 

be the RQ factorization of QTB. Then by the QR factorization with pivoting on 

the submatrix sz2, we have 

n-q 
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Then the result for this case follows by setting Q = Q1 diag( I,Qz) and 

V = V, diag( 1, Pa). 
If n > p and p ,< n - Q, let QT premultiply B, and denote the result as 

Sll q 

QTB= i& n-q’ 
[- 1 

P 

then by the QR factorization with pivoting of ssr, we have 

P 

where k = rank($r). The desired factorization forms are obtained by setting 

Q = Qr diag( I, Q2) and V = Pg. Note that in this case, the first block column 

of S in (3) is not present. 
Otherwise, if n > p and p > n - q. then by the RQ factorization of QFB 

we have 

(Q:B)v= [l$ji-'. 

P 

where s2r is p x p upper triangular. The conclusion for this case follows 

by applying the QR factorization with pivoting to the (n - q) x (n - q) 
submatrix $,. n 

To illustrate these decompositions, we give an example for each case. 

EXAMPLE. Let A be the 4 X 3 matrix 

1 3 -3 

A= [ _; : 1 -3 -3”, 1 -3 
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where rank(A) = 2. To illustrate the case n < p, let B be the 4 x 5 matrix 

1111 1 

B= -1 3 2 3 

2234 5' 
1111 -2 1 1 

Then in the GQR decomposition with column pivoting of A and B, we have 

-0.3780 0.6412 
Q= - 0.7559 0.1603 

0.3780 0.2565 
- 0.3780 - 0.7053 

I 

0.0930 -0.7658 
- 0.5906 0.0188 

v= 0.7674 0.2360 
-0.0419 - 0.3350 
- 0.2279 0.4953 

P = [ e3 e2 e,], 

0.1290 
-0.3616 
-0.8785 
-0.2844 

0.6553 

- 0.5217 1 0.1400 ’ 
0.5281 

-0.2663 0.1663 -0.5535 
-0.6319 -0.5007 0.0283 
-0.3643 -0.4453 -0.1562 
0.6002 -0.7234 -0.0497 
0.1918 -0.0009 -0.8161 

where ej is the ith column of an identity matrix 1. The matrices R and S are 

R= [ 

7.9373 - 0.3780 - 2.6458 

0 4.4561 0 0 0 0 
0 0 0 

1 ' 

[ 0.0000 0.9277 1.2449 2.8575 - 2.3896 
- - 

s= 0 0 0 1.9188 1.0978 0 0 0 6.2502 4.6798 ’ 
0 0 0 0 -3.5863 

1 
To illustrate the case rr > p and p < n - 9. let B be the 4 x 2 matrix 

2 3 

B= [ 2 3 1 2 3' 
21 

Then the GQR decomposition with column pivoting of A and B gives 

[ 

-0.3780 0.6412 0.1290 0.6553 

Q= -0.7559 0.1603 -0.3616 -0.5217 0.3780 0.2565 -0.8785 0.1400 ' 
-0.3780 -0.7053 -0.2844 0.5281 

I 

v= [e2 cl], 
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the matrices R and P are the same as above, and 

To illustrate the case n > p and p > n - 9. let B be the 4 x 3 matrix 

3 2 1 

R= [ 2 1 

0 2 
2 2 1 1 1’ 

0 

Then the GQR decomposition with column pivoting of A and B gives 

[ 

- 0.3780 0.6412 - 0.4148 0.5234 

Q= 
-0.7559 0.1603 0.1622 - 0.6137 

0.3780 0.2565 -0.6767 -0.5775 ’ 
- 0.3780 -0.7053 -0.5863 0.1264 1 
[ - 0.4380 - 0.6784 0.5898 

v= 0.5037 -0.7286 -0.4641 , 
-0.7446 - 0.0938 -0.6609 1 

the matrices R and P are also the same as above, and the matrix S is 

[ 

1.2913 3.4804 - 0.8051 

s= 
-0.8783 - 1.0619 - 0.4605 

0 3.8337 0.8619 . 
0 0 1.0103 1 

In Paige’s work [20], the submatrix S,, in the definition of GQR with 

column pivoting is said to be of full column rank. Enforcing this assumption 

would make the factorization difficult to compute; in general, it would require 

pivoting in the first r columns of B, but such pivoting could destroy the 

structure of A. Our computational procedure, as outlined in the proof, simply 

uses the conventional QR factorization to reduce the two input matrices 

without requiring that S,, have full column rank. This makes our formulation 

more general and also easier to implement. As shown in the above examples, 

the block S,, in the matrix S may not be of full column rank. 

Finally, we note that if B is square and nonsingular, the QR factorization 

with column pivoting of B- ‘A is given by 

V’( B-‘A) P = S- 
t “d’ Rd. 
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4. APPLICATIONS 

In this section, we shall show that the GQR factorization not only provides 
a simpler and more efficient way to solve the linear equality-constrained 
least-squares problem and the generalized linear regression problem, but also 
provides an efficient way to assess the conditioning of these problems. Hence 
the GQR factorization for solving these generalized problems is just as power- 
ful as the QR factorization is for solving least-squares and linear regres- 
sion problems. In the next section, we shall briefly mention some other 
applications of the GQR factorization. 

4.1. Linear Equality-Constrained Least Squares 

The linear equality-constrained least-squares (LSE) problem arises in 
constrained surface fitting, constrained optimization, geodetic least-squares 
adjustment, signal processing, and other applications. The problem is 
stated as follows: find an n-vector r that solves 

where A is an m x n matrix, m > n, B is a p x n matrix, p < n, b is an 
n-vector, and d is a p-vector. Clearly, the LSE problem has a solution if and 
only if the equation Bx = d is consistent. For simplicity, we shall assume that 

rank(B) = p, 

i.e., B has linearly independent rows, so that Bx = d is consistent for any 
right-hand side d. Moreover, we assume that the null spaces Jv( A) and “Y(B) 
of A and B intersect only trivially: 

J(A) r3 J(B) = (0). 

Then the LSE problem has a unique solution, which we denote by xe. We 
note that (6) is equivalent to the rank condition 

rank 

Several methods for solving the LSE problem are discussed in the books by 
Lawson and Hanson [16, Chapters 20-221 and Bjiirck [6, Chapter 51. For a 
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discussion of the large sparse matrix case, see Bjiirck [6], Van Loan [23], 
Barlow et al. [3], and Barlow [4]. The null-space approach via a two-step QR 
decomposition is one of the most general methods for dense matrices. Now 
this approach can be presented more easily in terms of the GQR factorization 
of A and B. 

By the GQR factorization of BT and AT, we know that there are ortho- 
gonal matrices Q and U such that 

0 Rll RlZ p s P 

Q=A=U=R= 0 0 
I 

R,, n-P Q=B= = S = 
[ 1 ;’ n-p, 

m-n p n-p P 

and from the assumptions (4) and (7), we know S,, and R,, are upper 
triangular and nonsingular. If we partition 

Q=[Q, Qz], u= [ul u, u,], 

where Qi has p columns, Vi has m - n columns, and Us has p columns, and 
set 

y = QTX = ‘I p 

[ 1 ~2 n-p’ 

where yi = QTx, i = 1,2, and ci = UiTb, i = 1,2,3, then the LSE problem is 

transformed to 

subject to 

[ST1 01[;;] =d- 

Hence we can compute yi from the equality constraint by solving the 
triangular system 

ST1 y, = d. 
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Then the LSE problem is truncated to the ordinary linear least-squares 
problem 

Since Rz2 is nonsingular and lower triangular, yZ is given by 

which only involves solving a triangular system. The solution of the LSE 
problem is then given by 

or in a more straightforward form, 

xt? = QdGQ-,Tb + Q _& [ 1 
SLTd, 

22 12 

and the residual sum of squares p2 = 11 r, 11 2 = )I Ax, - b II 2 is given by 

p2 = II ~1 II 2 + II R:, ~1 - ~2 II 2. 

EXAMPLE. Let the LSE problem be specified with 

1 

A=; [ 

1 1 

_; ;, 1 B= [; ; _:I> 

1 1 1 

b=[;]. d= [I]. 

The exact solution to this problem is X, = $[46, - 2, 121T. By the GQR 
factorization of BT and AT, we have 

1.3583 3.1867 1.6330 - 1.7321 - 0.5774 
0 0 1.1547 1 , ST= [ 0 -1.6330 

I 
, 

0 0. - 2.0000 0 0 

and the computed solution of the LSE problem is 

5.7500 
f, = 

[ 1 -0.2500 . 
1.5000 
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The relative error of the computed solution is 

II?? - %I1 
II XeII 

= 4.2892 x 10-16, 

and the norm of the residual ]I Ai, - b]] = 9.2466. 

The Sensitivity of the LSE Problem. The condition numbers of A and B 

were introduced by Elden [9] to assess the perturbed behavior of the LSE 
problem. Specifically, let E be an error matrix of A, F be an error matrix of 
B, and e and f be errors of b and d, respectively. We assume that B + F also 
has full row rank and “Y( A + E) fl Jv( B + F) = {0}, i.e., the perturbed LSE 
problem also has a unique solution. Let ge be the solution of the same 

problem with A, B, b, and d replaced by A + E, B + F, b + e, and d + f, 

respectively. Elden introduced the condition numbers 

%I( A) = II All li( AG)+ll> “A(B) = l\Bll IlBf,ll 

to measure the sensitivity of the LSE problem, where 

G = I - B+B, Bl = [I - ( AG)+A] B+, 

and At denotes the Moore-Penrose pseudoinverse of a matrix A. 

Under mild conditions, Elden’s asymptotic perturbation bound, modified 
slightly here, can be presented as follows: 

LSE-Problem Perturbation Bound. 

II x, - Fell 
II xt? II 

<x,(a)(;+..j +K,(B)(;+%) 

+ K it lA) 
( 

II E II II FII 
m + ‘dB)m pe+ ‘k”b 

) 
where 

II f4l 
ve = II All II xell ’ 

Ilf II 
-Y’ = II Bll II xell ’ 

II rt? II 
” = II All II xell ’ 

r, = Ax, - b, 

and Ok denotes the higher-order term in the perturbation matrices E, F, 
etc. 
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The interpretation of this result is that the sensitivity of Xe is measured by 
K s( A) and K *(B) if the residual re is zero or relatively small, and otherwise by 

‘6(A)]%@) + I]. 
We note that if the matrix B is zero (hence F = 0), then the LSE problem 

is just the ordinary linear least-squares problem. The perturbation bound for 
the LSE problem is then reduced to 

II-%?--eIl ll E II I- II ell 
II Tell ’ K(A) II All + II All II xell 

lIEI Il~ell 
+ K’(A) 11 A]\ )I AlI 11 x,JI + Ok”) 

where K~(A) = K(A) = II AlI (1 A+ll. Th is is just the perturbation bound of the 
linear least-squares problem obtained by Golub and Wilkinson [lo]. 

Estimation of the Condition Numbers. The condition numbers K B( A) and 
K~( B) of the LSE problem involves Bt, I&, (AC)+. etc., and computing these 
matrices can be expensive. Fortunately, it is possible to compute inexpensive 
estimates of K~( A) and K~(B) without forming Bt, BtB, or ( AG)+. This can be 
done using a method of Hager [ll] and Higham [14] that computes a lower 
bound for ]I B ]I oD, where B is a matrix, given a means for evaluating matrix- 
vector products Bu and BTu. Typically, four or five products are required, and 
the lower bound is almost always within a factor 3 of )I I?]],. To estimate 
K~( A) and K~( B), we need to estimate vector norms )I Kz ]I m, where K = ( AG)+ 
or K = Sd, and z > 0 is a vector that is readily computed. Given the GQR 
factorization of A and B, after tedious computations, we have 

(AG)+Z = 92 R~;u:z, 

where we do not need to form RizT or S& T, but rather solve the triangular 
system and do matrix-vector operations. 

Roughly speaking, the conditioning of the LSE problem only depends on 
the conditioning of the matrices R,, and S,,. In the last example, although the 

matrix R is ill conditioned (actually, it is singular), we have 

- 5.7735 1 -1.6330 ’ 
so it turns out to be a well-conditioned problem. 
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4.2. Generalized Linear Regression Model 

The generalized linear regression model (GLM) problem can be written as 

b = Ax + w, (8) 

where w is a random error with mean 0 and a symmetric nonnegative definite 
variance-covariance matrix u2 W. The problem is that of estimating the 
unknown parameters x on the basis of the observation b. If W has rank p, 

then W has a factorization 

W = BBT. 

where the n x p matrix B has linearly independent columns (for example, the 
Cholesky factorization of W could be carried out to get B). In some practical 
problems, the matrix B might be available directly. For numerical computa- 
tion reasons it is preferable to use B rather than W, since W could be ill 
conditioned, but the condition of B may be much better. Thus we replace (8) 

by 

b = Ax + Bu, (9) 

where A is an n x m matrix, B is an n x p matrix, and u is a random error 
with mean 0 and covariance a21. Then the estimator of x in (9) is the solution 
to the following algebraic generalized linear least-squares problem: 

min uTU 
x,u 

subject to b = Ax + Bu. (10) 

Notice that this problem is defined even if A and B are rank-deficient. For 
convenience, we assume that n 2 m, n 2 p, the most frequently occurring 
case. When B = 1, (10) is just an ordinary linear regression problem. We 
assume that the matrices A and B in (10) are general dense matrices. If we 
know A or B has a special structure, e.g. if B is triangular, then we might 
need to take a different approach in order to save the work without destroying 
the structure (see, for example, [Is]). 

The GLM problem can be formulated as the LSE problem: 

minllb 11[:]11 subjectto [A B][t] =b. 

Hence, it is easy to see that the GLM problem has a solution if the linear 
system 

[A Bl[:] =b 
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is consistent. Because of high overhead and possible numerical diffkulties if 
the matrices A and B are scaled differently, it is not advisable to solve the 
GLM problem directly by the method of the LSE problem. Paige [lS] and 
Hammarling [12] proposed a two-step QR decomposition approach to the 
GLM problem to treat A and B separately. Now, we show that this approach 
can be simplified with GQR-factorization terminology. 

By the GQR factorization with pivoting of A and B, we have orthogonal 
matrices Q (n x n) and V ( p x p) and a permutation matrix P such that 

Y m-q p-n+9 n-q 

where the 9 x 9 matrix R,, is upper triangular and nonsingular. We 
also assume that the (n - 9) x (n - 9) matrix S,, is upper triangular and 
nonsingular for simplicity of exposition. If we partition 

Q= [Ql a,]> v=[% Vz], p=[p, P2], 

where Q, has 9 columns, V, has n - 9 columns, and P, has 9 columns, and 
set 

“=vTuE Vl [ 1 “2 ’ 

i.e., ci = QTb, vi = ViTu, yi = PiTx. i = 1,2, then the constrained equation of 
the GLM problem (10) is transformed to 

Cl [I [ R 
= 11 

c2 0 

Hence v2 can be determined 
triangular system 

from the “bottom” equation of (11) by solving a 

s22v2 = c2. 

(11) 

Then from the “top” equation of (ll), we have 

CI = R,,Y, + R,,Y, + S,,v, + %2v2. 
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It is obvious that to get the minimum-2-norm solutions, the remaining compo- 

nents of the solutions can be chosen as 

“1 - - 0, yz = 0, Yl = Kl’(c, - wz). 

Then the solutions of the original problem are 

x, = f’&(QT - S,,S,‘Q~)b, u, = V,S,‘Q;b. 

EXAMPLE. Let the matrices A, B and the vector b in the GLM problem 

1.; -j -; -j _j, R=[-i j -;!, b=[j 

where rank( A) = 3, rank(B) = 2. The exact solutions of the GLM problem are 

X, = i[O, 6,10, - 161T and U, = &[14, 70, 281T. 

By the GQR factorization with column pivoting of the matrices A and B, 
we have 

I 

-4.4721 - 1.3416 - 1.3416 
0 -3.4928 - 6.2986 

R= 0 0 1.6743 
0 
0 

0.3111 

[ 1 1.5556 . 
0.6222 

Then the computed solutions are 

[ 

0 

2, 0.6667 = = 2.1111 1 ’ ue A 

- 1.7778 
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The relative errors of the computed solutions are 

II x&? - %?I12 II%? - %.lI, = - 

II %.I1 2 
7.9752 x 

10-16, II 
6.6762 x 10-16. 

ut? II 2 

The square minimal length of the vector ii, is &z&, = 2.9037, and the residual 
is )I b - Af, - I?&,)( 2 = 4.4464 x 10-l’. 

The Sensitivity of the GLM Problem. Regarding the sensitivity of the 
problem to perturbations, we shall consider the effects of the perturbations in 
the vector b and in the matrices A and B. Let the perturbed GLM problem 
be defined as 

min CTiTu 
4, ii 

subjectto b+e= (A+E)Z+(B+F)u. 

The solutions are denoted by Xe and E,. Then under the assumptions 

rank(A) = rank( A + E) = m 

and 

rank( A, B) = rank( A + E, B + F) = n, 

we have the following bounds on the relative error in 2, and li, due to the 
perturbations of b, A, and B: 

GLM-Problem Perturbation Bounds. 

II ze - xell 

II xe II 

+‘%(A) 

and 

II% - %?lI II EII II B II II PII 

Ii b II ’ KB(A) II All llbll 

II P II 
+ lIFll((b(l + O(E2)> (13) 
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where 

KB( A) = II All II &I. “A(B) = llBil ll(GB)+ll~ 

G = Z - AA+, AL = At[Z - B(GB)+], and p = [GZ3(GB)T]tb, Fl = FBT + BFT. 

Here O(E’) represents the higher-order term in the perturbation matrices E, 
F, etc. 

The proof is long and appears in the appendix. 
If we note that 

lIfwl1 Pll Q eqqll4~ 

then the bounds (12) and (13) can be simplified. We see that the sensitivities 
of 5, and U, basically depend on K~( A) and K*(B). For this reason, K~( A) 

and K~( B) are defined as the condition numbers of the GLM problem. They 
can be used to predict the effects of errors in the regression variables on 
regression coefficients. 

As a special case, we note that if B = I, then the GLM problem is reduced 
to the classical linear regression problem. Then u, is just the residual vector, 
u,=r,=b-Ax,,ii,=r,=(b+e)-(A+E)?,,F=O,and 

KB( A) = K(A) = II All II A+lL K*(B) = 1. 

Hence we have 

II Te - x,II IIEII IIf-t?ll 
II x II + K2(A) 1) AlI )I AlI II x,1/ + ‘(‘“) 

and 

II Fe - rf?ll IJEll IIr,lI II Tell Ilell -- 
II bll gK(A)mIJbll + llE” Ilbll + Ilbll + Ok”) 

These are the well-known perturbation results for the solution and residual of 
the ordinary linear regression problem [22, lo]. 

Estimation of Condition Numbers. To estimate the condition numbers 
Kg(A) and K~( B) of the GLM problem, we again can use the Hager-Higham 
method without the expense of forming At or (GB)+. By this technique, the 
required vector norms ]I Kz 11 o can be computed from the GQR factorization 
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of A and B, where K = (GB)+ or K = AL and z > 0 is a vector that is readily 
computed. After tedious computations, we have 

(GB)+z = V,S,‘Q;z 

ALz = P,R,‘(QTz - S,,S,'Q~z). 

Hence, we can just use a triangular system solver and matrix-vector operations 
to give the estimation of condition numbers of the GLM problem. 

Roughly speaking, we see that the conditioning of the GLM problem 
depends on the conditioning of the triangular matrices II,, and S,,. 

4.3. Other Applications 

In this section, we briefly mention some other applications of the GQR 
factorizations. 

The GQR factorization has been used as a preprocessing step for comput- 
ing the generalized singular-value decomposition in the Jacobi-Kogbetliantz 
approach; see Paige [19] and Bai [2]. 

The GQR factorization can also be used in solving structural equations: 

f = A=t, e = BBTt, e= -Ad, 

where f is given, and we wish to find d. This kind of problem regularly arises 
in the analysis of structures made up of elements joined in the style of a 
framework or network; see Heath et al. [13] and Paige [20]. 

5. SUMMARY AND FUTURE WORK 

In this paper, we have defined the generalized QR factorization with or 
without partial pivoting of two matrices A and B, each having the same 
number of rows, and shown its applications in solving the linear equality- 
constrained least-squares problem and generalized linear model problems, and 
in assessing the conditioning of these problems. A similar development could 
be done for matrices A and B having the same number of columns, instead of 
the same number of rows. Then the GQR factorization of A and B would be 
equivalent to the QR factorization of AB-‘. These discussions have served as 
the guideline for our future development of GQR factorization software for the 
LAPACK library [l]. 
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APPENDIX 

In this appendix, we prove the perturbation bounds (12) and (13) for the 
solutions x and u of the GLM problem presented in Section 4.2. 

The Lagrangian of the GLM problem is 

h(x,u, p) = uTu + 2p’(b - Ax - “), 

where p is a vector of Lagrange multipliers. Taking derivatives with respect to 
x, U, and p and equating the results to zero gives the first-order necessary 
conditions for the minimum: 

(The theory may be found in most textbooks dealing with constrained opti- 
mization; see for example [17].) S ince this is a linear equality-constrained 
problem and the Hessian of the objective function is 2 I, which always is 
positive definite, any solution of (14) also solves the GLM problem, so that (14) 
is necessary and sufficient for the GLM problem. Here we can eliminate 
u = BTp to give 

Similarly, the perturbed GLM problem can be reformulated as 

0 

A+E AT+ET T][ -;p+:;p)] = [,!.I. (16) -(B + F)(B + F) 

The (pseudo)inverse of the coefficient matrix is in the following lemma, 
which is due to Elditn [9]; we have modified it slightly to fit our case. 

LEMMA. Let 
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AtB 

1 
GT[(GB)(GB)T]+G ’ 

where 

G=I-AA+, AL = A+[ I - B(GB)+] . 

If rank([ A, B]) = n then Y = Ct. Further, if A has full column rank, then , 
Y = c-l. 

Subtracting the matrix equation (15) from (16), we have 

= -(C+Ec)-‘E,[;] + (C+E,)-‘[;I, (17) 

where 

Ec= ; 
ET 

[ 1 
_F ) Fl = FB= + BF=. 

1 

If l)CPIE,)) < 1, then we can make the expansion 

(C+E,)-‘= C-l _ C-lE,C-’ + . . . , 

and then (17) becomes 

-C-‘E,[ ;] + C-‘[ o] + O(E”), 

where O(E’) means the higher-order terms in the perturbation factors E, and 
e, which we omit in the formulas that follow. By the lemma, we have 

After taking norms, it becomes 

IlAx 11 G II BII’ II ALlI’ II EII II PII + II ALll( II EII II x II + II F,\l II PI\ + \I ell) . 
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Using the condition numbers 

269 

we get the desired relative perturbation bound (12) on the solution x. 

For the perturbation bound on the solution u, from (IT), we first have 

Ap = -( AL)TETp + GT[(GB)(GB)T]+G(~~ + F,p + e). 

Since u = BTp and u + Au = (B + F)T( p + A p), we have, subtracting them 
and using At = AT( AAT)+, 

Au = BTAp + Fp 

= B’( AL)TETp + BTGT [(GB)(GB)~]+G(E~ + F,~ + e) 

= BT( AL)TETp + ( GB)+G( EX + FI p + e), 

where the higher-order terms of the perturbation factors of E, F, and e again 

are not presented. By taking norms, and substituting in the condition numbers 
K e(A) and K A(B), we get the desired perturbation bound (13) on the solution u. 

The authors are very grateful to Jim Demmel, Sven Hammarling, and Jeremy 
Du Croz for their valuable comments. 
special thanks to the referees, whose 
presentation. 
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