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ERROR ANALYSIS OF THE LANCZOS ALGORITHM 
FOR THE NONSYMMETRIC EIGENVALUE PROBLEM 

ZHAOJUN BAI 

ABSTRACT. This paper presents an error analysis of the Lanczos algorithm in 
finite-precision arithmetic for solving the standard nonsymmetric eigenvalue 
problem, if no breakdown occurs. An analog of Paige's theory on the rela- 
tionship between the loss of orthogonality among the Lanezos vectors and the 
convergence of Ritz values in the symmetric Lanczos algorithm is discussed. 
The theory developed illustrates that in the nonsymmetric Lanczos scheme, if 
Ritz values are well conditioned, then the loss of biorthogonality among the 
computed Lanczos vectors implies the convergence of a group of Ritz triplets 
in terms of small residuals. Numerical experimental results confirm this obser- 
vation. 

1. INTRODUCTION 

This paper is concerned with an error analysis of the Lanczos algorithm for 
solving the nonsymmetric eigenvalue problem of a given real n x n matrix A: 

Ax-=Ax, yHA = yH, 

where the unknown scalar A is called an eigenvalue of A, and the unknown 
nonzero vectors x and y are called the right and left eigenvectors of A, re- 
spectively. The triplet ({, x, y) is called eigentriplet of A. In the applications 
of interest, the matrix A is usually large and sparse, and only a few eigenvalues 
and eigenvectors of A are wanted. In [2], a collection of such matrices is pre- 
sented describing their origins in problems of applied sciences and engineering. 

The Lanczos algorithm, proposed by Cornelius Lanczos in 1950 [19], is a 
procedure for successive reduction of a given general matrix to a nonsymmetric 
tridiagonal matrix. The eigenvalue problem for the latter matrix is then solved. 
The remarkable feature in practice is that in this procedure a few eigenvalues of 
A (often the largest ones in algebraic magnitude) appear as the eigenvalues of a 
smaller reduced tridiagonal matrix. The scheme references the matrix A only 
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through the matrix-vector products Ax and A Tx; hence the structure of the 
matrix is maintained, which renders the scheme particularly useful for finding 
a few eigenvalues of a very large and sparse problem. 

In the 1970s and 80s, great progress has been made on the Lanczos algo- 
rithm fo. solving a large linear system of equations with symmetric coefficient 
matrix and the symmetric eigenvalue problem. Paige [20] was the first to give 
an error analysis of the Lanczos algorithm in finite-precision arithmetic. Later, 
Parlett, Scott, Grcar, Simon, Greenbaum, Strakos, and many others [23, 11, 
30, 15, 37] presented further analyses of the Lanczos scheme and its variants. 
These analyses conclude that the loss of orthogonality among the computed 
Lanczos vectors is not necessarily a calamity, since it accompanies the conver- 
gence of a group of Ritz values to the eigenvalues of the original matrix. In [8], 
the standard Lanczos algorithm is extended to solve the symmetric generalized 
eigenvalue problem Ax = ABx. Today, the Lanczos algorithm is regarded as 
the most powerful tool for finding a few eigenvalues of a large symmetric eigen- 
value problem. Software, developed by Parlett and Scott [23] and Cullum and 
Willoughby [4], can be accessed via netlib, a software distribution system. 

In recent years, there has been considerable interest in the Lanczos algorithm 
for solving linear systems of equations with nonsymmetric coefficient matrix and 
the nonsymmetric eigenvalue problem. Parlett, Taylor, and Liu [26], Freund, 
Gutknecht, and Nachtigal [9] have proposed robust schemes for overcoming 
possible failure (called breakdown), or huge intermediate quantities (called in- 
stability) in the nonsymmetric Lanczos procedure. A theoretical investigation of 
the possible breakdown and instability of the nonsymmetric Lanczos procedure 
is made by Gragg [10], Parlett [27], Gutknecht [16], and Boley et al. [3]. 

Compared to the existing sophisticated error analysis of the Lanczos algo- 
rithm for the symmetric eigenvalue problem, much less progress has been made 
on error analysis of the nonsymmetric Lanczos algorithm. In this paper, we give 
an error analysis for the simple nonsymmetric Lanczos algorithm and study the 
effects of finite-precision arithmetic. In the spirit of Paige's floating-point error 
analysis for the symmetric Lanczos algorithm [20], based on the rounding error 
model of the basic sparse linear algebra operations, such as saxpy, inner product, 
and matrix-vector multiplication, we present a set of matrix equations which 
govern all computed quantities of the simple nonsymmetric Lanczos algorithm 
in finite-precision arithmetic. An analogy of Paige's theory on the relationship 
between the loss of orthogonality among the computed Lanczos vectors and 
the convergence of a Ritz value for the symmetric eigenvalue problem is also 
discussed in this paper. We conclude that if Ritz values are well conditioned, 
then the loss of biorthogonality among the computed Lanczos vectors implies 
the convergence of a group of Ritz triplets in terms of small residuals. The 
error analysis results developed in this paper also provide insight into the need 
for robustness schemes, such as look-ahead strategies [26, 9], to avoid potential 
breakdown and instability in the nonsymmetric Lanczos algorithm. 

Other competitive numerical techniques for solving large nonsymmetric 
eigenvalue problems are the subspace iteration method [35, 36, 6, 7] and 
Arnoldi's method [31, 32, 28, 34]. The reader is referred to [33] for a more 
complete and elegant treatment of all these methods. 

Throughout this paper we shall use the notational conventions in [14]. Specif- 
ically, matrices are denoted by upper-case italic and Greek letters, vectors by 
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lower-case italic letters, and scalars by lower-case Greek letters or lower-case 
italic if there is no confusion. The (i, j) entry of a matrix A is denoted by 
aij . The symbol R denotes the set of real numbers, Rn the set of real n-vectors, 
and Rmxn the set of real m x n matrices. The matrix AT is the transpose of 
A . By IAI we denote the matrix IAI = (Iaij1), and IAI < IBI means Iaij I Ibij I 
for any i, j. By 11 112 and 11 - IIF we denote the 2-norm and Frobenius norm, 
respectively, of a vector or matrix. 

The rest of this paper is organized as follows. Section 2 recalls the non- 
symmetric Lanczos scheme and reviews its properties. Section 3 presents a 
rounding error analysis of the Lanczos scheme in finite-precision arithmetic. 
Section 4 discusses the effects of rounding errors and the loss of biorthogonality 
in the Lanczos algorithm. Section 5 gives some numerical results to support the 
theoretical analysis of the previous sections. 

2. LANCZOS ALGORITHM AND ITS PROPERTIES IN EXACT ARITHMETIC 

In this section, we recall the standard nonsymmetric Lanczos scheme for 
the reduction of a general matrix to tridiagonal form and review some of its 
important properties in connection with the nonsymmetric eigenvalue problem. 
This sets up a framework for the following discussion on the behavior of the 
Lanczos scheme in finite-precision arithmetic. 

Given any two starting vectors u1, v1 c 1RI such that wi, = uTv1 54 0, the 
standard nonsymmetric Lanczos algorithm can be viewed as biorthonormaliz- 
ing, via a two-sided Gram-Schmidt procedure, the two Krylov sequences 

Xi(ul, A) = {u1, Au1, A2u1, ..., Ai-, u, 

Xj(vI A T) = {v1 , A Tv1, (AT)2v1, ... I (AT)i-1v}V 

Specifically, the algorithm can be described as follows, where sign(wO) denotes 
the sign of co. 

Lanczos algorithm. 
1. Choose two starting vectors u 1, v1 such that o1 uTv1 0. Define 

/31= w/ij; 

Yi = sign(wi)fll; 

ql = Ui/fl; 

P1 = VI/yi; 
2. for j = 1, 2, ... , do 

a1 =pTAqj; 

uj = Aqj - cejq - yjqj-l 

vj = ATp - Cejpj -jpj_ I 

/3+1 = ; 

yj+= sign(cowj)?j+1; 

qJ+l =uj/fj+l 

Pj+1 vjlyj+l. 
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One pass through loop 2 is called a Lanczos step. The two sequences of 
vectors {qj} and {pi} are called Lanczos vectors. In matrix notation, in the 
jth step, assuming that wj 54 0, the Lanczos algorithm generates two n x j 
matrices Qj and Pj, 

Qj = (ql , q2, - qj), PJ = (PI1, P2, ,Pj), 
which satisfy 

(2.1) PTQ =I 

and 

(2.2) AQj = QjTj + fj+l?qj+?eT, 

(2.3) A TPJ = PTjT + Yj+p1j+ejT, 

where ej = (0, 0, ..., 0, I)T E Ri and Tj is the tridiagonal matrix 

Ce I Y2 

TV = 32 ca2 ) / =C+ 
Ti ~ ~ lb~ 

flj aj 

Relation (2.1) is called the biorthonormality condition for the Lanczos vectors. 
In exact arithmetic, the above procedure must stop at the nth step with Ct)n?+ = 

0. However, it may terminate early whenever woi = 0. This is the so-called 
breakdown of the procedure, which has been discussed extensively; see, for 
example, [38, 27, 9]. In this paper, we assume that breakdown will not occur 
during the procedure. 

We note that if A is a symmetric matrix, then the above Lanczos algorithm 
with the same starting vectors generates Qj = Pj and a symmetric tridiagonal 
matrix Tj . Therefore, when A is symmetric, all the results we shall present in 
this paper reduce to those obtained by Paige [20, 21] for the symmetric Lanczos 
algorithm. 

We also note that there are infinitely many ways of choosing the scalars /?j+1 
and yj+l in the Lanczos algorithm, as long as they satisfy the equality 

(Oj = /b+l2yj+' ? 

For example, in [5], the choice fj+l = yj+l = loj is made, which may lead 
to a complex symmetric tridiagonal matrix Tj. In [9], ,8j+l and yj+l are 
chosen so that the condition (pi, qi) = 1 for i = 1, ... , j, is replaced by 
jjqiHj2 = JPI||2 = 1 for all i. There are certain tradeoffs among these choices. 
We will not go into the details of these choices. 

Let us examine the eigenvalue problem of the j x j tridiagonal matrix Tj: 

(2.4) Tjz1 = z101, 

(2.5) ij'Tj = Oiw, 

for i = 1,...,, where z1 and wi are normalized so that wifzi = 1. We 
define the Ritz triplets (0i, xi, yi) for i = 1, ...j, by 
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where for ease of notation, the index of the Ritz triplets corresponding to the 
Lanczos step j is omitted. If we consider a Ritz triplet (Oi, xi, yi) as an 
approximate eigentriplet of the large matrix A, and let ri and si define the 
corresponding residual vectors of the right and left Ritz vectors, respectively, 
then we have for i = 1, ... , j, using (2.2) and (2.3), 

(2.6) ri= Axi -xii6 = fij+1(efZi)qjl? iqj+l 

(2.7) sH = Y['A - iyH = yj+I (w['ej)pfT+ I-=_yjip 1. 

Moreover, from the biorthogonality property (2.1), we know that the Ritz 
vectors xi and yi satisfy 

(2.8) pfT?xi = 0, 

(2.9) Yqj+l =0. 

Here is another way to describe the biorthogonality of the Lanczos vectors qi 
and Pi. From the biorthogonality condition, we have the following equalities, 
which measure the backward error for the Ritz triplet (Oi, xi, yj): 

(2.10) (A - Ei)xi = Oixi, 

(2.11) yf'(A-Ei) = 6iyJ, 

where the backward error matrix Ei is 

rixH yis[H 

Ei IIXElIl2 + Il2 IIi X112 ILy1 112 
It is easy to show that the Frobenius norm of Ei is 

+ 12'ii (2.12) IEi 12= Biflj2 l1qi+111 +jyj,12 lPj+l 112 

In [18], it has been shown that the Ei is a perturbation of A satisfying (2.10) 
and (2.1 1) with minimal Frobenius norm. If we are interested in the perturba- 
tion E of A satisfying (2.10) and (2.1 1) with minimal 2-norm, it is also shown 
in [18] that 

min IhEIl2 = max lill2= III2 max lAjil 1q+ 112, IYl iI lI+ 112 

If I1Eill is sufficiently small, then (2.10) and (2.11) tell us that the Ritz triplet 
(6i, xi, yi) is the exact eigentriplet of a slightly perturbed matrix of the original 
matrix A. For measuring the absolute accuracy of the Ritz value Oi to some 
simple eigenvalue A of A, it is well known (see, for example, [38]) that when 
jlEill is sufficiently small, we have, up to first order, 

12- Oil < cond(A)IIlEill, 

where cond(A) = 114x1211y112 is the condition number of the eigenvalue A, with 
x and y the right and left eigenvectors corresponding to A . The vectors x and 
y are normalized so that yHx = 1. Obviously, we cannot estimate cond(A) 
without knowing x and y. In practice, we may replace this unknown condition 
number by the computable approximate condition number 

(2.13) cond(0i) = ||Qj|F IIIPjIIF11Zil211IWi112 
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The quantity cond(01) is therefore called the condition number of the Ritz 
value Oi. The quantities IfQjII2 = Ei1=i ljqJ12 and jlPjjI2 = EZ_ It llp12 can be 
accumulated during execution of the Lanczos steps. Consequently, IlEilFl and 
cond(01) can be used as stopping criteria for the Lanczos procedure. We should 
note that the above discussion is under the assumption of the biorthogonality of 
the Lanczos vectors. This turns out to be much more involved in the presence 
of roundoff error; see [18, 5] for more details. 

3. LANCZOS ALGORITHM IN FINITE-PRECISION ARITHMETIC 

In this section, we present a rounding error analysis of the nonsymmetric 
Lanczos algorithm in finite-precision arithmetic. Our analysis is in the same 
spirit as Paige's one for the symmetric Lanczos algorithm [20], except that we 
carry out the analysis componentwise rather than normwise. 

We use the usual model of floating-point arithmetic: 

fl(xoy) = (xoy)(l +T), 

barring overflow and underflow, where o is one of the basic operations {+, -, 

x ., V} and jTl < EM, where gM is the machine precision. A quantity with a 
hat (like a^) denotes the computed quantity. With this floating-point arithmetic 
model, it is well known [14, pp. 63-67] that the rounding error for some basic 
linear algebra operations of sparse vectors and/or matrices can be expressed as 
follows: 

Saxpy operation: 

fl(ax + y) = ax + y + e, lel < ?m(21axl + yI) + 0(2). 

Inner product: 

fl(XTy) = XTy + e, lei < keMlxITlyl + O(,62 

where k is the number of overlapping nonzero components in vectors x and 
Y3- 

Matrix-vector multiplication: 

fl(Ax) = Ax + e, lei < mCMIAl lxl + 0(? 2 

where m is the maximal number of nonzero elements of the matrix A in any 
row. 
We are now in a position to present a full rounding error analysis of the non- 
symmetric Lanczos procedure. We examine one Lanczos step to see the effects 
of the finite-precision arithmetic in the algorithm. At the jth Lanczos step, 
suppose that the quantities /b, 'j, qi_1, P , and ijb are computed; we 
want to compute scalars a&j, ,8j+i, and 2j+i, and Lanczos vectors dj+l and 
Pj+1 - 

We first need to compute aj = pTAqj in the Lanczos algorithm. Let A 
have at most m nonzero entries in any row or column; then for matrix-vector 
multiplication Aqj, we have 

(3.1) s1 fl (A qj) = A qj + (5Si 

where 
k5&iI < mM | IqIl'jI + 0(.m) 
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Then aj is computed by an inner product, 

&j = fl(p3TSf) = pjT3f + (&, 

with 
k |& < nm lflMIjIISI + (,m) 

By (3.1) and two saxpy operations, the computed vector Uj of uj = Aqj - 
ajqj - yjqjql is obtained as 

S2 = fl(s1 - &jQ) =1 -aqjj +8s2, 

Uj = fl(s2 - 2jdj-l) = 92 - Yjqj-l + 8t1, 

where the roundoff errors 6s2 and 8t1 are bounded as follows: 

1s2J <eM(2IajqjI + IS,J) + O(62) 

18tJl <? M(2I)jqj-jI + IS21) + M 

Thus, overall we have 

(3.2) Uj = Aqj- &jdj- yjdj-j + fij, 

where 

5U1j1 ? 81s61 + 18s21 + 86t1 

< mCMIAI ldjl + 2Mm&jl ldjl + 2CMemjj l'i-i I + CMIS1, + MIS21 + M 

* (2 + m)CMIAI liil + 36MI&jI lijl + 2Mmj5jj lIi-l I + O(62). 

The analysis of the computation of vj = ATP1 - ajpj - YjPj- 1 is entirely anal- 
ogous. We get 

VDj = ATPij - &xjfj - fljfij-l + (5fj, 

where 

18ij I < (2 + m)M IAI IPl3j + 3cMm&jl li3jl + 2cMI/3jI l1j-l I+ O(46)2 

With ij and iVj at hand, the scalars coj, fli+I, and yj+ 1 are computed as 

(3.3) -)j = fl(iiTfj) = fiTfj + 6j , 

(3.4) Aj+1 = fl( 1gi!) = 160I + =j+t 1 Yj+j = sign(6j)fi1+1, 

where 

16jl < nflMlUj ITIvj + O(g2 

1+,! ? EM S 11< ?CM(I jHT1VDj )/2 + 0(g2 

Finally, the new Lanczos vectors qj+l and Pi+, are computed by 

(3.5) Qj+' = fl(j//3j+1) = j//3j+l + 5j+i, 

and 

(3.6) Pj+1 = fl(iV/21j+i) = 'D/lj+i + 8Pj++, 
where the rounding error vectors 64j+l and 8i3j+l are bounded by 

1d+ I I < CMI Uj//3j+ 1 + O('62 

k5i3+i < ?MIVj/2'j+1 I + O(g2) 
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From (3.5) and (3.2), we know that the computed &j, /Bt+I and Qj+1 satisfy 

(3.7) fl+lj+l = Aj - &jj- jj_j + fj, 

where fj is the sum of roundoff errors in computing the intermediate vector 
ui and the Lanczos vector dj+ 1: 

fj = (5fj + ftj+14q+l 
By using bounds for the rounding errors iuJ and 8.dj+l , we have 

Ifjl ' 1ijl + l/bj+i8hj+l I 

(3.8) < (2 + m)emlA| ldjl + 3em|j| |qj| + em|jj ldj-l I+ M|jj + O('62 

< (3 + m)cMmAl lijl + 4CMm&j| Kill + 3RMjj lJ Iji-l + O(62)e 
A similar derivation for the computed scalar 2j+j and the Lanczos vector 

ji3+1 yields 

(3.9) +Pj+i = A j - _p - /3jPij-I + gj, 
where the error vector gj is bounded by 

(3.10) Igjl < (3 + m)CMIAl APjl + 4M&l&jl lijl + 3Mj2ij IJij-l + O(4)2 
Summarizing the above discussion and the results of (3.7), (3.8), (3.9), and 

(3.10), we have the following theorem, which governs all computed quantities. 

Theorem 3.1. Let A be an n x n real nonsymmetric matrix with at most m 
nonzero entries in any row or column. Suppose the Lanczos algorithm with 
starting vectors q1 and pi, implemented in floating-point arithmetic with ma- 
chine precision EM, reaches the jth step without breakdown. Let the computed 
&i, /h+1 and 2i+1, i+I, ,ii+1 for i = 1,..., j satisfy 

(3.11) A = +1 1ii+eF- (3.1 1 ) A~~Qj = Qj Tj + Pj+l qj+l e Fj, 

(3.12) ATPj = PjTjT + yj+Ipj+IejT + Gj, 

where e= (0, 0, ...,0, 1)T E RJ, 

Qj =(41, 42, di ,q), Pi (PIJ 2, * q, j), 

Tj= 2 &2 , A T. y 

g j ij, 
Then 

lFjl < (3 + m)cMmA| lQjl + 4CMmQj| |Tj| + 0(em), 

|Gjl < (3 + m)cMIAmjA Pj + 4.cmPjl lIiIT + O(4M). 
In finite-precision arithmetic, we also lose the biorthogonality among the 

computed Lanczos vectors qi and Pii. As in the symmetric Lanczos procedure 
[21, 30], the error, once introduced in some computed Lanczos vectors, is prop- 
agated to future steps. Such error propagation can be analyzed by the following 
corollary, which shows the interesting phenomenon of the loss of biorthonor- 
mality among the computed Lanczos vectors. 
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Corollary 3.1. Assume that the starting vectors q1 and Pt satisfy Pi 4 1. 
Then the elements h1k of the j x j matrix Hj = P1TQ1 = (I3rk) satisfy the 
following equalities. For i = 1, 2, .. ,: 

(3.13) hi+1, i+ = 1 +?hi+i,?i+, 
where 

I5hj+ 1, i+l I| < (n + 4)cM w IfjIT I +2(E) 

andfor i# k: 
(3.14) 

fk+1hi,k+l-m-+1hi+1,k=(ai-ak)hik-Ykhi,k-1 +flIh-l,k?+i3fk-g7'jk, 
where ho, k = hk,o = O - 
Proof. Writing (3.5) and (3.6) for i, we have 

hi+l ,i+l =pT = ( i +pT 
I 

T) (I + + 1) 

2j+if l + Ai+ + I li+ I 

where 

Ku ? flti+r&7>5 Jz+iI + I+i5i37i+1uI < 2t4|VIfl&I + O()2 
From (3.3) and (3.4), we know that 

A+ + = sign(&1)/B32+1 = sign(&oj)( &jX + s+ ) 
= )Tfui+ 36j + 2 sign(&)I&Ak5fh+i + 

v= VEu1 + 42 + O('2 
where 

1K21 ? k5iJ+2 2/tRIk5IRE+iI ? (n +2)8MLbVif Ul&+ O(4M).e 
Hence, the quantity hi+1 1+1 can be written 

v < ifi + C2 

where by the bounds of 4'1 and 42, 

|hI+l i+l < 2-c 7 i + ( 

< (n ? 4)aM (3.4), we+ know . 

This gives (3.13). 
In order to prove (3.14), writing (3.7) and (3.9) for k and i, we have 

(3.1 5) 3k+ 1 qk+ 1 = ATk - 2 - Ygkqk+ 1 ? fk, 

The(resultof6( ) nwli c abot fo ( T - (3i )( + q 

The esul of 3.14 now cme abu frm iX(35)3T6 Xk*? 
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4. CONVERGENCE VERSUS LOSS OF BIORTHOGONALITY 

The effects of finite-precision arithmetic and the loss of orthogonality in the 
symmetric Lanczos procedure have been studied by many people; see, for ex- 
ample, [23, 30, 15]. Paige was the first to provide an understanding of the 
effects of the loss of orthogonality among the Lanczos vectors. In [24, 30], it 
is stated that the loss of orthogonality implies convergence of a Ritz pair to an 
eigenpair. In this section, we shall discuss the effects of rounding errors on the 
nonsymmetric Lanczos procedure. We shall show that a conclusion similar to 
Paige's theory still holds, subject to a certain condition. 

From the analysis of ? 3, we know that at the end of the jth step of the 
nonsymmetric Lanczos procedure, the computed quantities obey the following 
three important equalities: 

(4.1) AQj = QjTj + /3j+lij+lejT + F1, 

(4.2) ATPj = Pj Tj + yj+Ipj+ief ? Ge 1 

(4.3) Pj Qj-Ij=Cj + Aj + Dj, 

where the rounding error matrices Fj and G1 are bounded as in Theorem 3.1, 
Cj is a strictly lower triangular matrix, Aj a diagonal matrix and Dj a strictly 
upper triangular matrix. 

To simplify our discussion, we make two assumptions, which are also used 
in the symmetric Lanczos procedure [25, p. 265]. The first assumption is the 
so-called local biorthogonality. It says that the computed Lanczos vectors are 
biorthogonal to their "neighboring" Lanczos vectors, that is 

(4.4) PTi_qi- = ?, pT dli = O for i = 2, ..,j. 

In the matrix notation, local biorthogonality means that the second subdiagonal 
elements of the strictly lower triangular matrix Cj are zero, and the superdiag- 
onal elements of the strictly upper triangular matrix Dj are also zero. 

The second assumption is that the eigenvalue problem for the j x j tridiag- 
onal matrix T1 is solved exactly, that is, 

(4.5) Tjzi = zioi, Wi Tj == oiwiH, i = 1,..,j 

With these assumptions, we are now ready to present the next theorem con- 
cerning the effects of the loss of biorthogonality. It explains the implication of 
the failure of the equalities (2.8) and (2.9). 

Theorem 4.1. Assume that the Lanczos algorithm in finite-precision arithmetic 
satisfies (4.1) through (4.5). Let 

AjTj- TjAj =Kj-L , 

pTF. - Gj Qj = Nj - Mj, 

where Kj and Nj are strictly lower triangular matrices, and Lj and Mj strictly 
upper triangular matrices. Then the computed Ritz vectors xi (= Qjz1) and Yi 
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(=Pjwi), for i = 1, ..., ,satisfy 

qiT (4.6) p3+1T = ri 

(4.7) yi +1l = i 

where 

= wy(Kj + Nj)zi, K = w[ (Lj + Mj)zi, 

2ji = j+l I(wife1), tii fii(ef Zi) . 

Proof. From xST X (4.1), we have 
- 

T T 
Tj (4.8) pJjAQj = PjfQjTj + Pj+ ITQj+ie? +Pf F. 

On the other hand, by taking the transpose of QT x (4.2), we have 

(4.9) PTAQj = TjPjTQj + 2j+iejfiTj+Qj + GjTQj. 

Subtracting (4.9) and (4.8), we get 
T T A 

1 
T - T 

0=j Qj Tj TjPj Qj + fij+IPj qj+Ief - yj+Iejpj + Qj + PTF - GQ 

that is, 

Yi+j1ej p T I ft-j+ lPjT qj+ I ejT 

(4.10) = (Ij + Cj + Aj + Dj)Tj - Tj(Ij + Cj + Aj + Dj) +PTFF - GjTQ 

-CjTj Tj Cj + Aj Tj -TjAj + Dj Tj - Tj Di J PJT J GjQ;. 

By the local biorthogonality assumption (4.4), it is easy to see that C1T1 - 

TjCj is a strictly lower triangular matrix, and DjTj - TjDj is a strictly upper 
triangular matrix. Since the diagonal elements of Aj Tj - TjAj are zero, we can 
write 

AjTj - TjAj = Kj - Lj, 

where Kj is the strictly lower triangular part of Aj Tj - TjAj and -Lj the 
strictly upper triangular part of it. Note that the rank-one matrix ejfi3+fIQj 
has nonzero entries only from (j, 1) through (j, j - 1) in the last row, and 

PjTqj+lejT has nonzero entries only from (1, j) through (j - 1, j) in the last 
column. From these observations and the equality (4.10), we know that the 
diagonal elements of PjTFj - GjTQ must also be zero. Therefore, we can write 

PTF.-GjTQj = Nj - Mj, pi Jl] 
where Nj is the strictly lower triangular part of PTF - GTQj and -My the 
strictly upper triangular part. By writing down the strictly lower triangular 
part and the strictly upper triangular part of (4.10), respectively, we have the 
following important equalities: 

(4.11) 2j+ ieJi+3Q = C T - TJCJ + Kj + Nj, 
(4.12) -j+P Pqj+jej = DjTj - TjDj - Lj - Mj. 
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From w/' x (4.11) x z,, and the assumption (4.5), we have 

YJ+ 1(Wf'Hej)PiT+1QJ7 = WY CJTJ -W[-'jCJZi + WH (Kj + NJ)zi 
- 01wHCjZl -_ 1WHCjZ, + WH(Kj + N)Z 

Hence, this gives (4.6). Similarly, by WY' x (4.12) x zi, we have 

-13+ IwIPif?+i(eJzi) = wi/D Tjzi - wf7TjDjzi - w/'(Lj + Mj)zi 
= 0-w/HD zi - 6iwfDjzl - wfH(Lj + Mj)zi. 

This gives (4.7), and the theorem is proved. El 

Equations (4.6) and (4.7) describe the way in which the biorthogonality 
is lost. Recall that the scalars tji and 'ji are the essential quantities used 
as the backward error criteria for the computed Ritz triplet (0r, xi, 9i) = 

(Oi, QZi, Pjwi). Hence, if the quantities 1Jq)| and j)0 are bounded and 
bounded away from zero, then (4.6) and (4.7) exactly reflect the reciprocal rela- 
tion between the convergence of the Lanczos procedure (i.e., tiny fji and Yji) 
and the loss of biorthogonality (i.e., large T = T and ihi - 

In order to estimate * - 1+1 ii and j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P+X 
P+Qz 

ayHj WiH PiTqj+ 1) 

In order to estimate 0qj) and Y4j), let us assume Aj = 0, i.e., j3Tqi = 1, 
which simplifies the technical details of the analysis and appears to be the case 
in practice, up to the order of machine precision. Under this assumption, we 
have Kj = Lj = 0 in Theorem 4.1, and moreover, we have 

(i) = W!fNjzi = wHx (strictly lower triangular part of PTF -GTQ) XZi, 

V/o = w/'Mjzi = WY x (strictly upper triangular part of P1TFj - GfQj) X Zi. 

By taking the absolute value on both sides of the above two equations, and using 
the standard consistency conditions for vector and matrix norms, we have 

ii< (Pj IIFIIFjIIF + jIGj IIFIIQj|IF)11Zi11211Wid12 

and 
Vi I < (|jPj ||FjJFj?|F + IIGj TIFIIQjIIF)1Zi11211WidI2 

By estimating IlFjIIF and JIGTfIF from Theorem 3.1, we have the following 
corollary, which gives upper bounds for the quantities +(J) and yj(j). 

Corollary 4.1. Assume that Aj = 0 in Theorem 4.1. Then 0(j) and 4/V0) satisfy 

(4.13) 10)j) < EM cond(01)(2(3 + m)IIAIIF + 81TJIF) ?(2 

(4.14) IwI1)1 <CMmcond(Oi)(2(3 + m)IIAIIF + 81ITJILF) +O 

where 
cond(0) = I|QjI|F1IPj|FI11Zi112IIWid12 

The quantity cond(Oj) is the condition number of the computed Ritz value 0. 

Observe that in the symmetric Lanczos procedure, IQ1 IIF = liP llF is 
bounded by the constant j7 , and jjZdj2 = IIWiII2 = 1, i.e., cond(0j) = j, 
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and lITjIF is also bounded; hence i)L = k'1/I) = O(InCMLIAID, which is 
just the result obtained by Paige [20, 21] and a key fact to explain Paige's the- 
ory [25, 30]. Unfortunately, for the nonsymmetric Lanczos procedure, because 
of possibly small wj (i.e., near breakdown), the Lanczos vectors II4ilI2 and 
II i112 could grow unboundedly. It is suggested to accumulate the quantities 
IIQ2II2 = Ei=- IIhII122 and IIPiII2 = Jj=I Ifi||2, which only costs about 4jn 
flops. We can thereby obtain a computable bound for cond(Oi) in practice. 
Theorem 4.1 and Corollary 4.1 say that if the orthogonality between pij+l and 
xci (respectively qj+l and yi) is lost, then the value Iji}l is proportional to 

1II1 (resp. lf,jil is proportional to I(i/)I). Given the upper bounds (4.13) 
and (4.14), and supposing that cond(01) is reasonably bounded, the loss of 
biorthogonality implies that Iyjil and l,Bjil are small. Therefore, in the best 
case we can state that if the effects of finite-precision arithmetic, Fj and G1 
in (3.11) and (3.12), are small, then small residuals tell us that the computed 
eigenvalues are eigenvalues of matrices close to the given matrix. In the next 
section, we shall verify this claim by numerical examples. 

To end this section, we recall that in the nonsymmetric Lanczos algorithm, 
even without breakdown (i.e., wi 4 0), the procedure is still susceptible to 
potential instabilities (near breakdown), i.e., at least some wi is tiny. Conse- 
quently, huge intermediate quantities II 1I2 and IIl 112 could appear. If this 
happens, we will have a huge condition number cond(0i), and the implication 
of the loss of biorthogonality to the small residuals may no longer hold. The 
look-ahead Lanczos strategies proposed by Parlett, Taylor, and Liu [26] and 
Freund, Gutknecht, and Nachtigal [9] provide ways to control the occurrence 
of potentially huge intermediate quantities by skipping over steps in which a 
breakdown or instabilities would occur in the standard procedure. An error 
analysis of these look-ahead Lanczos algorithms has not been given. Further 
investigations of these schemes is definitely needed. 

5. NUMERICAL EXAMPLES 

In this section, we present three numerical examples to see the practical nu- 
merical behavior of the convergence of a Ritz value versus the loss of biorthog- 
onality among the Lanczos vectors in the nonsymmetric Lanczos algorithm as 
discussed in the previous section. 

A set of experimental Fortran 77 subroutines have been developed, which 
return the desired intermediate quantities to allow us to observe the details of 
numerical behavior of the nonsymmetric Lanczos algorithm in practice. The 
eigenvalue problem of the resulting nonsymmetric tridiagonal matrix Tj in 
the Lanczos algorithm is solved by the subroutine DGEEVX, an expert driver 
routine in LAPACK [1], which allows us not only to compute the eigenvalues, 
right and left eigenvectors, but also to compute the condition numbers of the 
eigenvalues and eigenvectors. There is literature [22, 12, 5] on the solution 
of the eigenvalue problem of a nonsymmetric tridiagonal matrix which takes 
advantage of the tridiagonal structure. 

All numerical experiments are carried out on a HP Apollo 400 workstation 
with machine accuracy EM 1.11 x 1o016, with underflow and overflow thresh- 
old 2.23 x 10-308 and 1.80 x 10+308, respectively. 
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Example 1. This example is from [25], where A is a diagonal matrix 

A = diag(0, l x 10-4, 2 x 10-4, 3 x 10-4, 4 x 10-4, 1). 

The starting vectors are 

Ul = (1, 1, 1, 1, 1, 1)T VI = (1, 1, 1, 1, 1, .- .)T 

The Lanczos procedure generates a sequence of nonsymmetric tridiagonal ma- 
trices Tj with increasing number of Lanczos steps j. The following table 
illustrates the convergence of a Ritz value in terms of residuals to the largest 
eigenvalue Amax = A= 1.0 of A, and the loss of biorthogonality among the 
Lanczos vectors. 

| IJ+1iI IYj1 I I' 
' 
q+d 

2 0.13.10-12 0.26*10-3 0.13.10-12 0.25 10-3 
3 0.31 - 10-7 0.31. 10-7 0.28. 10-8 0.31* 10-7 
4 -.24. 104 0.31.10-11 0.24* 104 0.31-101 
5 0.31.100 0.22*10-15 0.31.100 0.22.10-15 
6 0.82- 100 0.82.10-16 0.81.100 0.82.10-16 

We note that in this example the corresponding Ritz value is well condi- 
tioned, qU) tvt< ) 10-16 for all j. As predicted in Theorem 4.1, the loss 
of biorthogonality accompanies the convergence of a Ritz value to the largest 
eigenvalue Al in terms of small residuals. 

Example 2. The second numerical example is for the Frank matrix: 
1 1 1 ... 1 
1 2 2 ... 2 

A= 2 3 ... 3 . 

Y n-i n, 
The Frank matrix has determinant 1. The eigenvalues of the Frank matrix may 
be obtained in terms of the zeros of Hermite polynomials. They are positive 
and occur in reciprocal pairs. For more details about the Frank matrix, the 
reader may refer to [13, 17]. In this experiment, n = 30, the largest eigenvalue 
of A is 

Apmax = A= 0.9620062229328506 102. 
We take the starting vectors u1 and vi in the nonsymmetric Lanczos algorithm 
as random vectors from the normal distribution. The following table illustrates 
(4.6) and (4.7) in the context of convergence versus loss of biorthogonality 
between Lanczos vectors. 

J f I PjlJ+1X ^I IY~j I IY1 qdj+1 I I#J I 
10 0.31-10-10 0.56. 10-2 0.13.10-10 0.56. 10-2 
15 0.15. 10-5 0.16. 10-6 0.51. 10-6 0.16. 10-6 
20 0.77. 100 0.22. 10-12 0.21.100 0.22. 10-12 
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At j = 20, we have IlQjIIF 1.81 x 103, IIPjIIF 2.5 x 102. The observed 
q(J) WI() 10-12. When the Lanczos algorithm is stopped at j = 20, the 
computed largest eigenvalue has the relative accuracy 

lomax -(computed Amax) I 4.136x 10-14. 
|Amax | 

Example 3. The third example is for a so-called Brusselator matrix, which comes 
from modeling the concentration waves in reaction and transport interaction of 
some chemical solutions in a tubular reactor [29]. This test example is also 
used by Saad in connection with Arnoldi's method [32]. In this model, the 
concentrations x(t, z) and y(t, z) of two reacting and diffusing components 
satisfy 

Ox Dx D02X aX = X 0 X+ f (X, Y), 
Ot L2O02zf(Y) 

ay Dy _ 2Y + g(x, Y) 

with boundary conditions 

x(0, z)=xo(z), y(O, z)=yO(z), 

x(0, t) = x(l, t) = x*, y(0, t) = y(l, t) = y* 

where 0 < z < 1 is the space coordinate along the tube, t is time, and f and 
g are chosen as a Brusselator wave model, 

f(x, Y) = C1 - (C2 + I)x + x2y, g(x, y) = 42x -x2y, 
with the set of parameters 

DX = 0.008, Dy = 1 =Dx 5 C2, = 2 = 5.45, L=0.51302. 

If we discretize the interval [0, 1] using k interior points and mesh size h = 
1/(k + 1), then the discrete vector is of the form (xT, yT)T where x and y 
are k-dimensional vectors. If fh and gh denote the corresponding discretized 
functions f and g, then the Jacobian is a 2 x 2 block matrix in which the 
diagonal blocks (1, 1) and (2, 2) are the matrices 

1 D~ x-Tiig Ofh(X,5Y) 
h2 L2 Tridiag{1, -2, 1}+ Ox 

and 
h- Y Tridiag 1, -2, 1} + &gh(X , y) 

respectively, while the blocks (1, 2) and (2, 1) of the Jacobian are 

afh(X, Y) and Ogh(x, Y) 
ay Ox 

respectively. We denote by A the resulting 2k x 2k Jacobian matrix. The exact 
eigenvalues are known for this problem, since there exists a quadratic relation 
between the eigenvalues of the matrix A and those of the classical difference 
matrix Tridiagf 1, -2, 1 }. The order of the Jacobian in this example is 200. 
The largest eigenvalue of A is then 

Amax=Ai = -0.1235506957879173* 104. 



224 ZHAOJUN BAI 

We take the starting vectors uI and vI in the nonsymmetric Lanczos algorithm 
as random vectors from the normal distribution. The following table presents 
information analogous to that given before. 

J _~ Ip 
X1 1 IY1 IY1 j+ I| |il l 

50 0.37*10-9 0.33 .100 0.12*10-9 0.33 .100 
70 0.47 10-9 0.26 .100 0.44*10-9 0.22 .100 
90 0.54.10-8 0.79.10-' 0.67.10-8 0.79*10-1 
100 0.29 10-7 0.64.10-2 0.41l10-7 0.64. 10-2 
105 0.27*01-3 0.61.10-6 0.11 l10-3 0.61. 10-6 
110 0.23 l10-l 0.69 l10-9 0.28 .100 0.69 l10-9 

From this table, we see that in the first 90 Lanczos steps, with no sign of 
convergence of Ritz values, the biorthogonality is well preserved. Once the 
biorthogonality is gradually lost, the Ritz values start converging. In this exam- 
ple, IlQjIIF lIPjH IF r 1.5 x 103 at j - 110, and the observed q(ii) 
5.3 x 10-1 0. At j = 110 of the Lanczos procedure, the computed largest Ritz 
value has a relative accuracy comparable to the largest eigenvalue AI of A, 

'Amax -(computed Amax) I 3.1010 x 10-8. 
'Imax I 

6. CONCLUSION AND FUTURE WORK 

In this paper, an error analysis of the nonsymmetric Lanczos algorithm in 
finite-precision arithmetic is presented. We have seen that for the nonsymmet- 
ric Lanczos algorithm without breakdown, if Ritz values are well conditioned, 
then the loss of biorthogonality among the computed Lanczos vectors implies 
the convergence of the Ritz values in terms of small residuals. This observation 
extends the results obtained by Paige for the Lanczos algorithm for the sym- 
metric eigenvalue problem. In the symmetric case, Ritz values are always well 
conditioned. The results of our error analysis also provide insight into the need 
for robustness schemes, such as the look-ahead strategies proposed by Parlett, 
Taylor, and Liu [26] and Freund, Gutknecht, and Nachtigal [9], to avoid the 
potential breakdown and instability in the nonsymmetric Lanczos procedure. 

This is only a first step in the error analysis of the nonsymmetric Lanczos 
scheme. In future work, we plan to conduct the error analysis of the variants of 
the nonsymmetric Lanczos algorithm [26, 5, 9], and study the effects of finite- 
precision arithmetic on the convergence of Ritz triplets. 
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